Resveratrol-Inspired Benzo[b]selenophenes Act as Anti-Oxidants in Yeast
"> Figure 1
<p>Molecular representation of the anti-oxidant capacity of resveratrol.</p> "> Figure 2
<p>Chemical structures of benzo[<span class="html-italic">b</span>]selenophenes used in this study.</p> "> Figure 3
<p>Toxicity of benzo[<span class="html-italic">b</span>]selenophenes in <span class="html-italic">S. cerevisiae</span> assessed by spot test. Horizontal lines are ten-fold serial dilutions of the yeast cell suspension. Representative experiment is shown.</p> "> Figure 4
<p>DSBs induction by resveratrol–inspired benzo[<span class="html-italic">b</span>]selenophenes in <span class="html-italic">S. cerevisiae</span>. Representative gels are shown.</p> "> Figure 5
<p>Structures of raloxifene and its Se analogue with the benzothiophene and benzoselenophene cores, respectively. The benzoselenophene core is Compound <b>1</b> in our study.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Toxicity of Benzo[b]selenophenes Measured by Spot Test
2.2. Induction of DNA Double-Strand Breaks Measured by Pulsed-Field Gel Electrophoresis
2.3. ROS Induction by Benzo[b]selenophenes
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cells and Treatment
4.3. Spot Test
4.4. Pulsed-Field Gel Electrophoresis (PFGE)
4.5. ROS Levels Measurement
4.5.1. Cell Treatment
4.5.2. Staining and Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Floyd, R.A.; Towner, R.A.; He, T.; Hensley, K.; Maples, K.R. Translational research involving oxidative stress and diseases of aging. Free Radic. Biol. Med. 2011, 51, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Free radicals and other reactive species in disease. In eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 1–9. ISBN 9780470015902. [Google Scholar]
- Gülçin, İ. Anti-oxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Brieger, K.; Schiavone, S.; Miller, F.J.; Krause, K. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-C.; Son, Y.-O.; Pratheeshkumar, P.; Shi, X. Oxidative stress and metal carcinogenesis. Free Radic. Biol. Med. 2012, 53, 742–757. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and anti-oxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef] [PubMed]
- Kopp, P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the “French paradox”? Eur. J. Endocrinol. 1998, 138, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Liswidowati; Melchior, F.; Hohmann, F.; Schwer, B.; Kindl, H. Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta 1991, 183, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340. [Google Scholar] [CrossRef] [PubMed]
- Corduneanu, O.; Janeiro, P.; Brett, A.M.O. On the electrochemical oxidation of resveratrol. Electroanalysis 2006, 18, 757–762. [Google Scholar] [CrossRef]
- Keylor, M.H.; Matsuura, B.S.; Stephenson, C.R.J. Chemistry and biology of resveratrol-derived natural products. Chem. Rev. 2015, 115, 8976–9027. [Google Scholar] [CrossRef] [PubMed]
- Tanini, D.; Panzella, L.; Amorati, R.; Capperucci, A.; Pizzo, E.; Napolitano, A.; Menichetti, S.; D’Ischia, M. Resveratrol-based benzoselenophenes with an enhanced anti-oxidant and chain breaking capacity. Org. Biomol. Chem. 2015, 13, 5757–5764. [Google Scholar] [CrossRef] [PubMed]
- Chiang, E.C.; Shen, S.; Kengeri, S.S.; Xu, H.; Combs, G.F.; Morris, J.S.; Bostwick, D.G.; Waters, D.J. Defining the optimal selenium dose for prostate cancer risk reduction: Insights from the U-shaped relationship between selenium status, DNA damage, and apoptosis. Dose-Response 2010, 8, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Letavayová, L.; Vlasáková, D.; Spallholz, J.E.; Brozmanová, J.; Chovanec, M. Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae. Mutat. Res. 2008, 638, 1–10. [Google Scholar] [CrossRef]
- Jamier, V.; Ba, L.A.; Jacob, C. Selenium- and tellurium-containing multifunctional redox agents as biochemical redox modulators with selective cytotoxicity. Chem. Eur. J. 2010, 16, 10920–10928. [Google Scholar] [CrossRef] [PubMed]
- Mániková, D.; Medvecová Letavayová, L.; Vlasáková, D.; Košík, P.; Estevam, E.C.; Nasim, M.J.; Gruhlke, M.; Slusarenko, A.; Burkholz, T.; Jacob, C.; Chovanec, M. Intracellular diagnostics: Hunting for the mode of action of redox-modulating selenium compounds in selected model systems. Molecules 2014, 19, 12258–12279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mániková, D.; Vlasáková, D.; Letavayová, L.; Klobučniková, V.; Griač, P.; Chovanec, M. Selenium toxicity toward yeast as assessed by microarray analysis and deletion mutant library screen: A role for DNA repair. Chem. Res. Toxicol. 2012, 25, 1598–1608. [Google Scholar] [CrossRef] [PubMed]
- Doganay, S.; Borazan, M.; Iraz, M.; Cigremis, Y. The effect of resveratrol in experimental cataract model formed by sodium selenite. Curr. Eye Res. 2006, 31, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Paegle, E.; Domracheva, I.; Turovska, B.; Petrova, M.; Kanepe-Lapsa, I.; Gulbe, A.; Liepinsh, E.; Arsenyan, P. Natural-anti-oxidant-inspired benzo[b]selenophenes: Synthesis, redox properties, and anti-proliferative activity. Chem. Asian J. 2016, 11, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Nasim, M.J.; Ali, W.; Domínguez-Álvarez, E.; da Silva Júnior, E.N.; Saleem, R.S.Z.; Jacob, C. Reactive selenium species: Redox modulation, antioxidant, antimicrobial and anticancer activities. In Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Jain, V.K., Priyadarsini, K.I., Eds.; The Royal Society of Chemistry: London, UK, 2018; pp. 277–302. ISBN 978-1-78801-029-0. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring anti-oxidant capacity and its application to monitoring the anti-oxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, R.; Haenen, G.R.M.M.; van den Berg, H.; Bast, A. Applicability of an improved Trolox equivalent anti-oxidant capacity (TEAC) assay for evaluation of anti-oxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Mániková, D.; Vlasáková, D.; Loduhová, J.; Letavayová, L.; Vigašová, D.; Krascsenitsová, E.; Vlčková, V.; Brozmanová, J.; Chovanec, M. Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae. Mutagenesis 2010, 25, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Kwolek-Mirek, M.; Zadrag-Tecza, R. Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res. 2014, 14, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Finney, D.J. Probit Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Raj, M.A. Calculating LD50/LC50 Using Probit Analysis in EXCEL. Available online: https://probitanalysis.wordpress.com/ (accessed on 14 November 2017).
- Arsenyan, P.; Paegle, E.; Domracheva, I.; Gulbe, A.; Kanepe-Lapsa, I.; Shestakova, I. Selenium analogues of raloxifene as promising anti-proliferative agents in treatment of breast cancer. Eur. J. Med. Chem. 2014, 87, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Raspor, P.; Plesničar, S.; Gazdag, Z.; Pesti, M.; Miklavčič, M.; Lah, B.; Logar-Marinsek, R.; Poljšak, B. Prevention of intracellular oxidation in yeast: The role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid). Cell Biol. Int. 2005, 29, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Hempel, S.L.; Buettner, G.R.; O’Malley, Y.Q.; Wessels, D.A.; Flaherty, D.M. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: Comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic. Biol. Med. 1999, 27, 146–159. [Google Scholar] [CrossRef]
- Karlsson, M.; Kurz, T.; Brunk, U.T.; Nilsson, S.E.; Frennesson, C.I. What does the commonly used DCF test for oxidative stress really show? Biochem. J. 2010, 428, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Frazzi, R.; Tigano, M. The multiple mechanisms of cell death triggered by resveratrol in lymphoma and leukemia. Int. J. Mol. Sci. 2014, 15, 4977–4993. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Perez, L.A.; Canizal-Garcia, M.; González-Hernández, J.C.; Reynoso-Camacho, R.; Nava, G.M.; Ramos-Gomez, M. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae. Yeast 2016, 33, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.R.; Eckert, S.; Krueger, K.A.; Grady, D.; Powles, T.J.; Cauley, J.A.; Norton, L.; Nickelsen, T.; Bjarnason, N.H.; Morrow, M.; et al. The effect of raloxifene on risk of breast cancer in postmenopausal women. JAMA 1999, 281, 2189–2197. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, B.; Black, D.; Mitlak, B.; Knickerbocker, R.; Nickelsen, T.; Genant, H.; Christiansen, C.; Delmas, P.; Zanchetta, J.; Stakkestad, J.; et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene. JAMA 1999, 282, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Dietz, B.M.; Dunlap, T.; Kastrati, I.; Lantvit, D.D.; Overk, C.R.; Yao, P.; Qin, Z.; Bolton, J.L.; Thatcher, G.R.J. Structural modulation of reactivity/activity in design of improved benzothiophene selective estrogen receptor modulators: Induction of chemopreventive mechanisms. Mol. Cancer Ther. 2007, 6, 2418–2428. [Google Scholar] [CrossRef] [PubMed]
- Ristow, M. Unraveling the truth about anti-oxidants: Mitohormesis explains ROS-induced health benefits. Nat. Med. 2014, 20, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Ghurye, S.G. On the use of Student’s t-test in an asymmetrical population. Biometrika 1949, 36, 426–430. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of listed benzo[b]selenophenes are available from the authors. |
Compound | LD50 (95% CI) (mM) | ROS Measurement | |||
---|---|---|---|---|---|
Concentration (mM) 1,2 | Survival (%) 1 | ROS Levels (% of Control) 1 | p-Value | ||
1 | 4.32 (3.32–5.61) | 1.93 ± 0.19 | 82.8 ± 4.0 | 34.7 ± 3.6 | <0.0001 |
2 | 1.06 (0.94–1.20) | 0.68 ± 0.05 | 85.1 ± 3.4 | 12.0 ± 3.6 | <0.0001 |
3 | 6.73 (6.00–7.54) | 5 | 87.0 ± 3.8 | 41.0 ± 9.5 | 0.0086 |
4 | 2.05 (1.27–3.31) | 0.5 | 78.5 ± 4.1 | 94.8 ± 16.7 | 0.5700 |
5 | 1.06 (0.78–1.44) | 0.31 ± 0.02 | 83.9 ± 4.2 | 166.4 ± 28.1 | 0.0062 |
6 | 6.16 (5.64–6.74) | 5 | 84.3 ± 1.9 | 12.3 ± 1.3 | 0.0002 |
Selenite | 73.48 (59.60–90.59) | 50 | 80.7 ± 3.5 | 258.7 ± 15.6 | 0.0032 |
Resveratrol | n/a 3 | 10 | 94.4 ± 5.9 | 49.8 ± 11.8 | 0.0034 |
Trolox | n/a 3 | 10 | 104.2 ± 3.3 | 47.3 ± 1.5 | 0.0003 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mániková, D.; Šestáková, Z.; Rendeková, J.; Vlasáková, D.; Lukáčová, P.; Paegle, E.; Arsenyan, P.; Chovanec, M. Resveratrol-Inspired Benzo[b]selenophenes Act as Anti-Oxidants in Yeast. Molecules 2018, 23, 507. https://doi.org/10.3390/molecules23020507
Mániková D, Šestáková Z, Rendeková J, Vlasáková D, Lukáčová P, Paegle E, Arsenyan P, Chovanec M. Resveratrol-Inspired Benzo[b]selenophenes Act as Anti-Oxidants in Yeast. Molecules. 2018; 23(2):507. https://doi.org/10.3390/molecules23020507
Chicago/Turabian StyleMániková, Dominika, Zuzana Šestáková, Jana Rendeková, Danuša Vlasáková, Patrícia Lukáčová, Edgars Paegle, Pavel Arsenyan, and Miroslav Chovanec. 2018. "Resveratrol-Inspired Benzo[b]selenophenes Act as Anti-Oxidants in Yeast" Molecules 23, no. 2: 507. https://doi.org/10.3390/molecules23020507
APA StyleMániková, D., Šestáková, Z., Rendeková, J., Vlasáková, D., Lukáčová, P., Paegle, E., Arsenyan, P., & Chovanec, M. (2018). Resveratrol-Inspired Benzo[b]selenophenes Act as Anti-Oxidants in Yeast. Molecules, 23(2), 507. https://doi.org/10.3390/molecules23020507