Discovery of Flavonoids from Scutellaria baicalensis with Inhibitory Activity Against PCSK 9 Expression: Isolation, Synthesis and Their Biological Evaluation
<p>The effects of (total) methanol extracts, hexane (Hex), chloroform (CHCl<sub>3</sub>), butyl alcohol (BuOH) and aqueous fractions of <span class="html-italic">S.</span> <span class="html-italic">baicalensis</span> on PCSK9 mRNA expression in HepG2 cells. (Atorva = Atorvastatin).</p> "> Figure 2
<p>Chemical structures isolated from <span class="html-italic">S. baicalensis.</span></p> "> Figure 3
<p>Effects of compounds from <span class="html-italic">S. baicalensis</span> on Cell viability, PCSK9 and LDL-R expression in HepG2 cells by MTT, qRT-PCR and western blot analysis. (<b>A</b>) Cells grown were treated with 20 μM of compounds for 24 h, and cell viability was assessed by the MTT assay; (<b>B</b>) Expression of PCSK9 was assayed by qRT-PCR in cells treated with compounds <b>1</b>–<b>9</b> except for <b>7</b>, and berberine (50 μM) for 24 h; (<b>C</b>) Expression of PCSK9 and LDL-R were assayed by western blots in cells treated with (<b>1</b>) and atorvastatin for 24 h. (Ber50, berberine 50 μM).</p> "> Figure 4
<p>Expressions of PCSK9 (<b>A</b>) LDLR (<b>B</b>) and SREBF1 (<b>C</b>) were assayed by qRT-PCR in cells treated with compounds <b>1a</b>, <b>1</b>, <b>4</b> and Ber (berberine) at a indicated concentrations.</p> "> Scheme 1
<p>Synthesis of racemic compound <b>1a</b>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibitory Activity against PCSK9 mRNA Expression of Root Extract from S. baicalensis
2.2. Identification of Isolates 1–9 from S. baicalensis
2.3. Stereochemistry Determination of Compound 1
2.4. Inhibitory Activity against PCSK9 mRNA Expression of Isolates from S. baicalensis
2.5. Comparison of Inhibitory Activity against PCSK9 mRNA Expression between Compound 1 and 1a
3. Materials and Methods
3.1. General Information
3.2. Cell Culture and Chemical Reagents
3.3. Extraction, Isolation and Synthetic Method
3.3.1. Isolation Method
3.3.2. Synthesis Method
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- He, X.-X.; Zhang, R.; Zou, P.-Y.; Liu, Y.W.; Zha, X.-N.; Shan, S.-S.; Liu, C.-Y. The efficacy advantage of evolocumab (AMG 145) dosed at 140 mg every 2 weeks versus 420 mg every 4 weeks in patients with hypercholesterolemia: Evidence from a meta-analysis. Eur. J. Intern. Med. 2017, 38, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Puri, R.; Nissen, S.E.; Somaratne, R.; Cho, L.; Kastelein, J.J.P.; Ballantyne, C.M.; Koenig, W.; Anderson, T.J.; Yang, J.; Kassahun, H.; et al. Impact of PCSK9 inhibition on coronary atheroma progession: Rationale and design of global assessment of plaque regression with a PCSK9 antibody as measured by intravascular ultrasound (GLAGOV). Am. Heart J. 2016, 176, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Bos, S.; Duvekot, M.H.C.; Kate, G.-J.R.T.; Verhoeven, A.J.M.; Mulder, M.T.; Schinkel, A.F.L.; Nieman, K.; Watts, G.F.; Sijbrands, E.J.G.; Lennep, J.E.R.V. Carotid artery plaques and intima medial thickness in familial hypercholesteraemic patients on long-term statin therapy: A case control study. Atherosclerosis 2017, 256, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Versmissen, J.; Oosterveer, D.M.; Yazdanpanah, M.; Defesche, J.C.; Basart, D.C.G.; Liem, A.H.; Heeringa, J.; Witteman, J.C.; Lansberg, P.J.; Kastelein, J.J.P.; et al. Efficay of statins in familial hypercholesterolaemia: A long term cohort study. BMJ 2008, 337, a2423. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, D.; Witztum, J.L. Inhibition of PCSK9: A powerful weapon for achieving ideal LDL cholesterol levels. Proc. Natl. Acad. Sci. USA 2009, 106, 9546–9547. [Google Scholar] [CrossRef] [PubMed]
- Page, M.M.; Watts, G.F. PCSK9 inhibitors-mechanisms of action. Aust. Prescr. 2016, 39, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Lagor, W.R.; Millar, J.S. Overview of the LDL receptor: Relevance to cholesterol metabolism and future approaches for the treatment of coronary heart disease. J. Recept. Ligand Channel Res. 2010, 3, 1–14. [Google Scholar] [CrossRef]
- Li, J.; Tumanut, C.; Gavigan, J.-A.; Huang, W.-J.; Hampton, E.N.; Tumanut, R.; Suen, K.F.; Trauger, J.W.; Spraggon, G.; Lesley, S.A.; et al. Secreted PCSK9 promotes LDL receptor degradation independently of proteolytic activity. Biochem. J. 2007, 406, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Lagace, T.A.; Curtis, D.E.; Garuti, R.; McNutt, M.C.; Park, S.W.; Prather, H.B.; Anderson, N.N.; Ho, Y.K.; Hammer, R.E.; Horton, J.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J. Clin. Investig. 2006, 116, 2995–3005. [Google Scholar] [CrossRef] [PubMed]
- Abifadel, M.; Elbitar, S.; Khoury, P.E.; Ghaleb, Y.; Chémaly, M.; Moussalli, M.L.; Rabés, J.P.; Varret, M.; Boileau, C. Living the PCSK9 adventure: From the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr. Atheroscler. Rep. 2014, 16, 439. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.; Sharma, M.; Ferdinand, K.C. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Present prerspective and future horizons. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, A.; Gusarova, V.; Stahl, N.; Gurnett-Bander, A.; Kyratsous, C.A. Aliromab, a therapeutic human antibody to PCSK9, does not affect CD81 levels or hepatitis C virus entry and replication into hepatocytes. PLoS ONE 2016. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Li, H.; Signh, A.B.; Cao, A.; Liu, J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1 α protein expression through the ubiquitin-proteasome degradation pathway. J. Biol. Chem. 2015, 290, 4047–4058. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.L.; Elias, V.D.; Hay, J.J.; Choi, J.; Reed, R.L. Xanthohumol improves dysfuctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice. Arch. Biochem. Biophys. 2016, 599, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Pel, P.; Chae, H.-S.; Nhoek, P.; Yeo, W.; Kim, Y.-M.; Chin, Y.-W. Lignans from the fruits of Schisandra chinensis (Turcz.) Baill inhibit proprotein convertase subtilisin/kexin type 9 expression. Phytochemistry 2017, 136, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, J.; Li, J.; Chen, C.; Huang, J.; Liu, P.; Huang, H. Polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating proprotein convertase subtilisin/kexin type 9 (PCSK9). Cardiovasc. Diabetol. 2016, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Taechalertpaisarn, J.; Zhao, B.; Liang, X.; Burgess, K. Small molecule inhibitors of the PCSK9-LDLR interaction. J. Am. Chem. Soc. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Chae, H.-S.; Lee, C.; Choi, H.G.; Ryu, J.; Li, W.; Lee, H.; Jeong, G.-S.; Chin, Y.-W.; Shim, S.H. New aromatic compounds from the fruiting body of Sparassis crispa (Wulf.) and their inhibitory activities on proprotein convertase subtilisin/kexin type 9 mRNA expression. J. Agric. Food Chem. 2017, 65, 6152–6157. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Chen, M.C.; Pham, H.; Angst, E.; King, J.C.; Park, J.; Brovman, E.Y.; Ishiguro, H.; Harris, D.M.; Reber, H.A.; et al. Baicalein, a component of Scutellaria baicalensis, induces apoptosis by Mcl-1 down-regulation in human pancreatic cancer cells. Biochim. Biophys. Acta 2011, 1813, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Joerger, R.; Wu, C. Study of the chemical composition and antimicrobial activities of ethanolic extracts from roots of Scutellaria baicalensis Georgi. J. Agric. Food Chem. 2011, 59, 10934–10942. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-H.; Lee, A.-R.; Yang, C.-H. Antioxidative and anti-Inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis Georgi. Biosci. Biotechnol. Biochem. 2006, 70, 2370–2380. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Huang, K.; Yang, X.; Xu, H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim. Biophys. Acta 1999, 1472, 643–650. [Google Scholar] [CrossRef]
- Kim, H.-M.; Moon, E.-J.; Li, E.; Kim, K.-M.; Nam, S.-Y.; Chung, C.-K. The nitric oxide-producing activities of Suctellaria baicalensis. Toxicology 1999, 135, 109–115. [Google Scholar] [CrossRef]
- Ji, S.; Wang, Q.; Miao, W.-J.; Li, Z.-W.; Si, L.-L.; Qiao, X.; Yu, S.-W.; Zhou, D.-M.; Ye, M. Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. J. Ethnopharmacol. 2015, 176, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Hirotani, M.; Kuroda, R.; Suzuki, H.; Yoshikawa, T. Cloning and expression of UDP-glucose flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis. Planta 2000, 210, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Wu, J.; Ye, W.; Xue, L.; Jiang, S.; Yi, J.; Zhang, W.; Wei, H.; Sung, M.; Wang, W.; et al. Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis. Cancer Res. 2003, 63, 4037–4043. [Google Scholar] [PubMed]
- Choi, Y.O.; Song, H.-H.; Kim, Y.-M.; Kang, N.S.; Han, S.-Y.; Chin, Y.-W. c-Met and ALK inhibitory constituents from Scutellaria baicalensis. Bull. Korean Chem. Soc. 2015, 36, 402–405. [Google Scholar] [CrossRef]
- Tuan, P.A.; Kim, J.K.; Lee, S.; Chae, S.C.; Park, S.U. Molecular characterization of carotenoid cleavage dioxygenases and the effect of gibberellin, abscisic acid, and sodium chloride on the expression of genes involved in the carotenoid biosynthetic pathway and carotenoid accumulation in the callus of Scutellaria baicalensis Georgi. J. Agric. Food Chem. 2013, 61, 5565–5572. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, B.; Xu, H.; Zhao, M.; Tang, W.; Zhang, S. Study on chemical constituent of Scutellaria regeliana. China J. Chin. Mater. Med. 2011, 36, 3270–3275. [Google Scholar] [CrossRef]
- Kimura, Y.; Sumiyoshi, M. Effects of various flavononoids isolated from Scutellaria baicalensis roots on skin damage in acute UVB-irradiated hairless mice. J. Pharm. Pharmacol. 2011, 63, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.-Y.; Cao, Y.-Y.; Chen, C.-Y.; Dai, H.-Q.; Yu, S.-X.; Wei, J.-J.; Li, H.; Yang, B. Antioxidant flavonoids from the seed of Oroxylum indicum. Fitoterapia 2011, 8, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Kishida, Y.; Hiraoka, T.; Yoshimoto, M. Studies on acetylenic compounds. XLIX. reactions of linear- conjugated diynones. Chem. Pharm. Bull. 1969, 17, 2126–2134. [Google Scholar] [CrossRef]
- Iinuma, M.; Matsuura, S. Synthetic studies of the flavone derivatives. VI. The synthesis of skullcapflavone I, II and related flavones. Yakugaku Zasshi 1979, 99, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Miyaichi, Y.; Hanamitsu, E.; Kizu, H.; Tomimori, T. Studies on the constituents of Scutellaria species (XXII). Constituents of the roots of Scutellaria amabilis Hara. Chem. Pharm. Bull. 2006, 54, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Iinuma, M.; Mizuno, M. Synthesis of flavonoids in Scutellaria spp. II. synthesis of 2′,6′-dioxygenated flavones. Yakugaku Zasshi 1987, 107, 827–829. [Google Scholar] [CrossRef]
- Park, Y.; Moon, B.-H.; Lee, E.; Lee, Y.; Yoon, Y.; Ahn, J.-H.; Lim, Y. 1H and 13C-NMR data of hydroxyflavone derivatives. Magn. Reson. Chem. 2007, 45, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Delange, D.M.; Rico, C.L.M.; Canavaciolo, V.G.; Cuellar, A.C.; Oliver, E.S. Selective and high yield isolation of pure wogonin from the aerial parts of Scutellaria havanesis Jacq. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 104–108. [Google Scholar]
- Isobe, T.; Ohsaki, A.; Nagata, k. Antibacterial constituents against Helicobacter pylori of brazilian medicinal plant, pariparoba. Yakugaku Zasshi 2002, 122, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Smejkal, K.; Grycová, L.; Marek, R.; Lemière, F.; Jankovská, D.; Forejtníková, H.; Vanco, J.; Suchý, V. C-geranyl compounds from Paulownia tomentosa fruits. J. Nat. Prod. 2007, 70, 1244–1248. [Google Scholar] [CrossRef] [PubMed]
- Han, X.H.; Hong, S.S.; Jin, Q.; Li, D.; Kim, H.-K.; Lee, J.; Kwon, S.H.; Lee, D.; Lee, C.-K.; Lee, M.K.; et al. Prenylated and benzylated flavonoids from the fruits of Cudrania tricuspidata. J. Nat. Prod. 2009, 72, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-S.; Hsu, M.-Y.; Kuo, P.-C.; Sreenivasulu, B.; Damu, A.G.; Su, C.-R.; Li, C.-Y.; Chang, H.-C. Constituents from the leaves of Phellodendron amurense var. wilsonii and their bioactivity. J. Nat. Prod. 2003, 66, 1207–1211. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Li, X.; Yang, K.; Li, X.; Zhang, Z.; Wang, L.; Deng, Z.; Song, B.; Yan, Z.; Zhang, Y.; et al. Synthesis and antioxidant evaluation of desmethylxanthohumol analogs and their dimers. Eur. J. Med. Chem. 2017, 125, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Aponte, J.C.; Verástegui, M.; Málaga, E.; Zimic, M.; Quiliano, M.; Vaisberg, A.J.; Gilman, R.H.; Hammond, G.B. Synthesis, cytotoxicity, and anti-Trypanosoma cruzi activity of new chalcones. J. Med. Chem. 2008, 51, 6230–6234. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Huang, K.; Wang, F.; Yang, L.; Feng, Y.; Li, H.; Li, X.; Zeng, S.; Wu, X.; Stöckigt, J.; et al. Preparation of two sets of 5,6,7-trioxygenated dihydroflavonol derivatives as free radical scavengers and neuronal cell protectors to oxidative damage. Bioorg. Med. Chem. 2009, 17, 3414–3425. [Google Scholar] [CrossRef] [PubMed]
- Marié, J.-C.; Xiong, Y.; Min, G.K.; Yeager, A.R.; Taniguchi, T.; Berova, N.; Schaus, S.E.; Porco, J.A. Enantioselective synthesis of 3,4-chromanediones via asymmetric rearrangement of 3-allyloxyflavones. J. Org. Chem. 2010, 75, 4584–4590. [Google Scholar] [CrossRef] [PubMed]
- Woydowski, K.; Ziemer, B.; Liebscher, J. Ring transformation of glycidic amides with ortho-metalated phenols to enantiopure 3-hydroxychromanones. J. Org. Chem. 1999, 64, 3489–3491. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Kubota, Y.; Fang, L.; Li, S.; Onda, M. Heterocycles. XX. reactions of 2″-methoxymethoxychalcone epoxides under acidic conditions. Chem. Pharm. Bull. 1986, 34, 4597–4604. [Google Scholar] [CrossRef]
- Momtazi, A.A.; Banach, M.; Pirro, M.; Katsiki, N.; Sahebkar, A. Regulation of PCSK9 by nutraceuticals. Pharmacol. Res. 2017, 120, 157–169. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nhoek, P.; Chae, H.-S.; Masagalli, J.N.; Mailar, K.; Pel, P.; Kim, Y.-M.; Choi, W.J.; Chin, Y.-W. Discovery of Flavonoids from Scutellaria baicalensis with Inhibitory Activity Against PCSK 9 Expression: Isolation, Synthesis and Their Biological Evaluation. Molecules 2018, 23, 504. https://doi.org/10.3390/molecules23020504
Nhoek P, Chae H-S, Masagalli JN, Mailar K, Pel P, Kim Y-M, Choi WJ, Chin Y-W. Discovery of Flavonoids from Scutellaria baicalensis with Inhibitory Activity Against PCSK 9 Expression: Isolation, Synthesis and Their Biological Evaluation. Molecules. 2018; 23(2):504. https://doi.org/10.3390/molecules23020504
Chicago/Turabian StyleNhoek, Piseth, Hee-Sung Chae, Jagadeesh Nagarajappa Masagalli, Karabasappa Mailar, Pisey Pel, Young-Mi Kim, Won Jun Choi, and Young-Won Chin. 2018. "Discovery of Flavonoids from Scutellaria baicalensis with Inhibitory Activity Against PCSK 9 Expression: Isolation, Synthesis and Their Biological Evaluation" Molecules 23, no. 2: 504. https://doi.org/10.3390/molecules23020504
APA StyleNhoek, P., Chae, H.-S., Masagalli, J. N., Mailar, K., Pel, P., Kim, Y.-M., Choi, W. J., & Chin, Y.-W. (2018). Discovery of Flavonoids from Scutellaria baicalensis with Inhibitory Activity Against PCSK 9 Expression: Isolation, Synthesis and Their Biological Evaluation. Molecules, 23(2), 504. https://doi.org/10.3390/molecules23020504