Antioxidant and Cytoprotective Effects of the Di-O-Caffeoylquinic Acid Family: The Mechanism, Structure–Activity Relationship, and Conformational Effect
<p>Structures (<b>left</b>) and preferential conformation-based ball-stick models (<b>right</b>) of five di-<span class="html-italic">O</span>-caffeoylquinic acids (<b>di-COQs</b>). The ball-stick models were created in Chem3D Pro 14.0. The screenshots from models are from the same perspective; i.e., C-1 was deposited on the right end, and –COOH is upward. The three-dimensional perspective animations are shown in <a href="#app1-molecules-23-00222" class="html-app">Video S1–5</a>. However, the relative degree of crowd for caffeoyl moieties remains unchanged.</p> "> Figure 2
<p>(<b>A</b>) UV-Vis spectra of the five <b>di-COQs</b> and their chelating products with excess Fe<sup>2+</sup>. (<b>B</b>) The colors of complexes, resulting from the product mixtures, were taken by a camera.</p> "> Figure 3
<p>The proposed chelating reaction of <b>4</b>,<b>5-COQ</b> (4,5-di-<span class="html-italic">O</span>-caffeoylquinic acid) with excessive Fe<sup>2+</sup> (the reaction formula is proposed based on previous studies [<a href="#B11-molecules-23-00222" class="html-bibr">11</a>,<a href="#B22-molecules-23-00222" class="html-bibr">22</a>,<a href="#B23-molecules-23-00222" class="html-bibr">23</a>,<a href="#B24-molecules-23-00222" class="html-bibr">24</a>]).</p> "> Figure 4
<p>Experimental procedures for the MTT assay. (PE-1420 Bio-Kinetics reader: Bio-Kinetics Corporation, Sioux Center, IA, USA. Each test was repeated in five independent wells. MTT was used at 5 mg/mL (in PBS), and the addition volume was 20 μL. The addition of Fenton reagent was conducted by injection of FeCl<sub>2</sub> (100 μM) followed by H<sub>2</sub>O<sub>2</sub> (50 μM).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Animals
3.2. UV-Vis Spectra Analysis of Fe2+-Chelating with di-COQs
3.3. PTIO•-Scavenging Assay
3.4. FRAP Assay
3.5. DPPH•-Scavenging Assay
3.6. ABTS•+-Scavenging Assay
3.7. UPLC-ESI-Q-TOF-MS/MS Analysis of Reaction Products of di-COQs and Chlorogenic Acid with PTIO•
3.8. Cytoprotective Effect towards •OH-Damaged bmMSCs (MTT Assay)
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
1,3-COQ | 1,3-di-O-caffeoylquinic acid |
1,5-COQ | 1,5-di-O-caffeoylquinic acid |
3,4-COQ | 3,4-di-O-caffeoylquinic acid |
3,5-COQ | 3,5-di-O-caffeoylquinic acid |
4,5-COQ | 4,5-di-O-caffeoylquinic acid |
ABTS | [2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid diammonium salt)] |
bmMSCs | bone marrow-derived mesenchymal stem cells |
DMEM | Dulbecco’s modified Eagle’s medium |
DPPH• | (1,1-diphenyl-2-picryl-hydrazl) |
ET | electron transfer |
FBS | fetal bovine serum |
FRAP | ferric reducing antioxidant power |
HAT | hydrogen atom transfer |
PTIO• | 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical |
ROS | reactive oxygen species |
RNS | reactive nitrogen species |
RAF | radical adduct formation |
SD | standard deviation |
TPTZ | 2,4,6-tris(2-pyridyl-s-triazine) |
Trolox | [(±)-6-hydroxyl-2,5,7,8-tetramethlychromane-2-carboxylic acid] |
References
- Liliana, M. Intramolecular hydrogen bonding and conformational preferences of arzanol—An antioxidant acylphloroglucinol. Molecules 2017, 22, 1294. [Google Scholar]
- Li, X.; Chen, D.; Mai, Y.; Wen, B.; Wang, X. Concordance between antioxidant activities in vitro and chemical components of Radix Astragali (Huangqi). Nat. Prod. Res. 2012, 26, 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zeng, G.; Li, X.; Zeng, H. In vitro studies on the antioxidant and protective effect of 2-substituted- 8-hydroxyquinoline derivatives against H2O2-induced oxidative stress in BMSCs. Chem. Biol. Drug Des. 2010, 75, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Heim, K.E.; Tagliaferro, A.R.; Bobily, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Li, X.C.; Liu, J.J.; Lin, J.; Wang, T.T.; Huang, J.Y.; Lin, Y.Q.; Chen, D.F. Protective effects of dihydromyricetin against •OH-induced mesenchymal stem cells damage and mechanistic chemistry. Molecules 2016, 21, 604. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Zeng, H. Synthesis, antioxidation activity of (E)-9-p-Tolyl-3-[2-(8-hydroxy-quinol-2-yl)vinyl]-carbazole and (E)-9-(p-Anisyl)-3-[2-(8-hydroxy-quinol-2-yl)vinyl]-carbazole and their induction proliferation of mesenchymal stem cells. Acta Chim. Sin. 2009, 67, 974–982. [Google Scholar]
- Li, X.C.; Jiang, Q.; Wang, T.T.; Liu, J.J.; Chen, D.F. Comparison of the antioxidant effects of quercitrin and isoquercitrin: Understanding the role of the 6″-OH group. Molecules 2016, 21, 1246. [Google Scholar] [CrossRef] [PubMed]
- Graham Solomons, T.W.; Fryhle, C.B. Organic Chemistry, 8th ed.; Chemical Industry Press: Beijing, China, 2004; p. 167. [Google Scholar]
- Berraud-Pache, R.; Navizet, I. QM/MM calculations on a newly synthesised oxyluciferin substrate: New insights into the conformational effect. Phys. Chem. Chem. Phys. 2016, 18, 27460–27467. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.Y.; Kim, J.Y.; Lee, Y.G.; Lee, H.J.; Shim, H.J.; Lee, J.H.; Kim, S.J.; Ham, K.S.; Moon, J.H. Four New Dicaffeoylquinic Acid Derivatives from Glasswort (Salicornia herbacea L.) and Their Antioxidative Activity. Molecules 2016, 21, 1097. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.M.; Na, M.; Thuong, P.T.; Su, N.D.; Sok, D.; Song, K.S.; Seong, Y.H.; Bae, K. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall Tran. J. Ethnopharmacol. 2006, 108, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, N.; Li, X. Caffeoylquinic acid derivatives from leaves of Lonicera japonica. Zhongguo Zhong Yao Za Zhi 2009, 34, 2346–2348. [Google Scholar] [PubMed]
- Yu, B.; Li, J.L.; Guo, B.B.; Fan, H.M.; Zhao, W.M.; Wang, H.Y. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis. Acta Pharmacol. Sin. 2016, 37, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Li, S.; Liu, L.; Chen, C.; Fan, S. Caffeoylquinic acids from the aerial parts of Chrysanthemum coronarium L. Plants 2017, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Du, N.; Wen, L.; Zhu, H.; Liu, F.; Wang, X.; Du, J.; Li, S. An efficient method for the preparative isolation and purification of flavonoid glycosides and caffeoylquinic acid derivatives from leaves of lonicera japonica thunb. Using high speed counter-current chromatography (HSCCC) and prep-HPLC guided by DPPH-HPLC experiments. Molecules 2017, 22, 229. [Google Scholar]
- Denu, R.A.; Hematti, P. Effects of oxidative stress on mesenchymal stem cell biology. Oxid. Med. Cell. Longev. 2016, 2016, 2989076. [Google Scholar] [CrossRef] [PubMed]
- Ivars, D.; Orero, M.T.; Javier, K.; Díaz-Vico, L.; García-Giménez, J.L.; Mena, S.; Tormos, C.; Egea, M.; Pérez, P.L.; Arrizabalaga, B.; et al. Oxidative imbalance in low/intermediate-1-risk myelodysplastic syndrome patients: The influence of iron overload. Clin. Biochem. 2017, 50, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Chiueh, C.C. Iron overload, oxidative stress, and axonal dystrophy in brain disorders. Pediatr. Neurol. 2001, 25, 138–147. [Google Scholar] [CrossRef]
- Murillo-Ortiz, B.; Ramírez Emiliano, J.; Hernández Vázquez, W.I.; Martínez-Garza, S.; Solorio-Meza, S.; Albarrán-Tamayo, F.; Ramos-Rodríguez, E.; Benítez-Bribiesca, L. Impact of oxidative stress in premature aging and iron overload in hemodialysis patients. Oxid. Med. Cell. Longev. 2016, 2016, 1578235. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, X.; Lin, J.; Li, Y.; Wang, T.; Jiang, Q.; Chen, D. Sarcandra glabra (Caoshanhu) protects mesenchymal stem cells from oxidative stress: A bioevaluation and mechanistic chemistry. BMC Complement. Altern. Med. 2016, 16, 423. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, W.; Mai, W.; Wang, L. Antioxidant activity and mechanism of Tetrahydroamentoflavone in vitro. Nat. Prod. Commun. 2013, 8, 787–789. [Google Scholar]
- Přemysl, M.; Kateřina, M.; Tomáš, F.; Libuše, Z.; Luděk, J.; Paolo, B.; Ilaria, P.S.; Radomír, H.; Luciano, S. In vitro analysis of iron chelating activity of flavonoids. Org. Biochem. 2011, 105, 693–701. [Google Scholar]
- Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florêncio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Mai, W.Q.; Chen, D.F. Chemical study on protective effect against hydroxyl-induced DNA damage and antioxidant mechanism of myricitrin. J. Chin. Chem. Soc. 2014, 61, 383–391. [Google Scholar] [CrossRef]
- Goldstein, S.; Russo, A.; Samuni, A. Reactions of PTIO and Carboxy-PTIO with •NO, •NO2, and O2. Biol. Chem. 2003, 278, 50949–50955. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, X.; Chen, L.; Lu, W.; Chen, X.; Han, L.; Chen, D. Protective effect against hydroxyl radical-induced DNA damage and antioxidant mechanism of [6]-gingerol: A Chemical Study. Bull. Korean Chem. Soc. 2014, 35, 1633–1638. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Li, F.; Liang, A.; Xu, Z.; Bai, Y.; Mai, W.; Han, L.; Chen, D. Maclurin protects against Hydroxyl radical-induced damages to mesenchymal stem cells: Antioxidant evaluation and mechanistic insight. Chem. Biol. Interact. 2014, 219, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.M.; Wong, K.K.Y.; Fernyhough, A. ABTS radical-driven oxidation of polyphenols: Isolation and structural elucidation of covalent adducts. Biochem. Biophys. Res. Commun. 2006, 34, 6321–6329. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.L.; Wang, H.M.; Ni, F.Y.; Wang, X.J.; Zhao, Y.W.; Huang, W.Z.; Wang, Z.Z.; Xiao, W. Study on anti-inflammatory activities of phenolic acids from Lonicerae Japonicae Flos. Chin. Tradit. Herb. Drugs 2015, 46, 490–495. [Google Scholar]
- Jiang, Q.; Li, X.; Tian, Y.; Lin, Q.; Xie, H.; Lu, W.; Chi, Y.; Chen, D. Lyophilized aqueous extracts of Mori Fructus and Mori Ramulus protect mesenchymal stem cells from •OH–treated damage: Bioassay and antioxidant mechanism. BMC Complement. Altern. Med. 2017, 17, 242. [Google Scholar] [CrossRef] [PubMed]
- Li, X. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO•) Radical-scavenging: A New and simple antioxidant assay in vitro. Agric. Food Chem. 2017, 65, 6288–6297. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, G.; Wang, X.; Liu, D.; Deng, R.; Li, H.; Zhou, J.; Li, Y.; Zeng, H.; Chen, D. Targeting of the Shh pathway by atractylenolides promotes chondrogenic differentiation of mesenchymal stem cells. Biol. Pharm. Bull. 2012, 35, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, X.; Xu, Z.; Liu, X.; Du, S.; Li, H.; Zhou, J.; Zeng, H.; Hua, Z. Hexadecanoic acid from Buzhong Yiqi decoction induces proliferation of bone marrow mesenchymal stem cells. J. Med. Food 2010, 13, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, Q.; Jiang, S.; Li, F.; Lin, J.; Han, L.; Hong, Y.; Lu, W.; Gao, Y.; Chen, D. Flos Chrysanthemi Indici protects against hydroxyl-induced damages to DNA and MSCs via antioxidant mechanism: A chemistry study. J. Saudi Chem. Soc. 2015, 19, 454–460. [Google Scholar] [CrossRef]
- Li, X.; Han, L.; Li, Y.; Zhang, J.; Chen, J.; Lu, W.; Zhao, X.; Lai, Y.; Chen, D.; Wei, G. Protective effect of sinapine against hydroxyl radical-induced damage to mesenchymal stem cells and possible mechanisms. Chem. Pharm. Bull. 2016, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, X.; Huang, L. Correlation Between Antioxidant Activities and Phenolic Contents of Radix Angelicae Sinensis (Danggui). Molecules 2009, 14, 5349–5361. [Google Scholar] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Compounds | PTIO•-Scavenging (pH 4.5, mg/mL, mM) | PTIO• Scavenging (pH 7.4, mg/mL, mM) | FRAP (μg/mL, μM) | DPPH•-Scavenging (μg/mL, μM) | ABTS+•-Scavenging (μg/mL, μM) |
---|---|---|---|---|---|
1,3-COQ | 47.2 ± 1.6 | 57.7 ± 1.0 | 3.4 ± 0.2 | 2.9 ± 0.1 | 3.6 ± 0.0 |
(91.4 ± 3.6 e) | (111.8 ± 2.0 c) | (6.5 ± 0.4 c) | (5.7 ± 0.3 b) | (6.9 ± 0.1 c) | |
1,5-COQ | 35.5 ± 2.8 | 63.0 ± 7.6 | 3.3 ± 0.1 | 4.7 ± 0.6 | 3.5 ± 0.0 |
(68.7 ± 5.4 d) | (121.9 ± 14.8 c) | (6.4 ± 0.2 c) | (9.2 ± 1.1 c) | (6.7 ± 0.1 c) | |
3,4-COQ | 19.1 ± 0.4 | 22.3 ± 6.2 | 2.6 ± 0.1 | 2.9 ± 0.5 | 3.2 ± 0.0 |
(37.0 ± 0.5 c) | (43.1 ± 12.0 b) | (5.1 ± 0.2 b) | (5.7 ± 0.9 b) | (6.2 ± 0.1 b) | |
3,5-COQ | 55.9 ± 2.6 | 60.2 ± 2590 | 3.4 ± 0.0 | 3.2 ± 0.5 | 3.6 ± 0.1 |
(108.0 ± 5.1 f) | (116.5 ± 5.0 c) | (6.7 ± 0.1 c) | (6.1 ± 0.9 b) | (7.0 ± 0.3 c) | |
4,5-COQ | 4.3 ± 0.3 | 23.3 ± 0.3 | 2.6 ± 0.1 | 1.7 ± 0.9 | 2.8 ± 0.0 |
(8.3 ± 0.3 b) | (45.2 ± 0.6 b) | (3.4 ± 2.9 a) | (3.4 ± 1.8 a) | (5.4 ± 0.1 a) | |
Trolox | 33.4 ± 0.5 | 26.8 ± 1.5 | 16.4 ± 2.9 | 6.2 ± 0.0 | 6.9 ± 0.1 |
(0.1 ± 0.0 a) | (0.1 ± 0.0 a) | (31.7 ± 5.5 d) | (12.0 ± 0.1 d) | (13.4 ± 0.2 d) |
Compounds | Control | Model | 10 μg/mL | 30 μg/mL | 50 μg/mL | 100 μg/mL |
---|---|---|---|---|---|---|
1,3-COQ | 100% | 12.67% | 17.03% * | 20.23% * | 23.97% * | 47.15% * |
1,5-COQ | 100% | 12.67% | 19.09% * | 21.65% * | 24.90% * | 44.93% * |
3,4-COQ | 100% | 12.67% | 13.02% | 13.97% | 15.53% * | 21.15% * |
3,5-COQ | 100% | 12.67% | 13.06% | 16.21% * | 19.55% * | 23.38% * |
4,5-COQ | 100% | 12.67% | 14.14% | 21.78% * | 22.72% * | 42.04% * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, K.; Xie, H.; Xie, Y.; Li, Y.; Zhao, X.; Jiang, X.; Chen, D. Antioxidant and Cytoprotective Effects of the Di-O-Caffeoylquinic Acid Family: The Mechanism, Structure–Activity Relationship, and Conformational Effect. Molecules 2018, 23, 222. https://doi.org/10.3390/molecules23010222
Li X, Li K, Xie H, Xie Y, Li Y, Zhao X, Jiang X, Chen D. Antioxidant and Cytoprotective Effects of the Di-O-Caffeoylquinic Acid Family: The Mechanism, Structure–Activity Relationship, and Conformational Effect. Molecules. 2018; 23(1):222. https://doi.org/10.3390/molecules23010222
Chicago/Turabian StyleLi, Xican, Ke Li, Hong Xie, Yulu Xie, Yueying Li, Xiaojun Zhao, Xiaohua Jiang, and Dongfeng Chen. 2018. "Antioxidant and Cytoprotective Effects of the Di-O-Caffeoylquinic Acid Family: The Mechanism, Structure–Activity Relationship, and Conformational Effect" Molecules 23, no. 1: 222. https://doi.org/10.3390/molecules23010222
APA StyleLi, X., Li, K., Xie, H., Xie, Y., Li, Y., Zhao, X., Jiang, X., & Chen, D. (2018). Antioxidant and Cytoprotective Effects of the Di-O-Caffeoylquinic Acid Family: The Mechanism, Structure–Activity Relationship, and Conformational Effect. Molecules, 23(1), 222. https://doi.org/10.3390/molecules23010222