Prodrug Strategies for Enhancing the Percutaneous Absorption of Drugs
<p>A schematic cross-section of human skin [<a href="#B9-molecules-19-20780" class="html-bibr">9</a>].</p> "> Figure 2
<p>A representation of transdermal delivery pathways: (<b>1</b>) transepidermal route (intra- and intercellular); (<b>2</b>) the sweat gland and (<b>3</b>) the hair follicle (adapted from [<a href="#B19-molecules-19-20780" class="html-bibr">19</a>]).</p> "> Figure 3
<p>Structures of ARV drugs and best skin penetrant derivatives.</p> "> Figure 4
<p>Cytarabine and its best skin permeant derivatives.</p> "> Figure 5
<p>Morphine and its <span class="html-italic">n</span>-alkyl ester prodrugs.</p> "> Figure 6
<p>Naltrexone and its best skin penetrant prodrugs.</p> "> Figure 7
<p>Structures of NSAIDs and their best permeant ester prodrugs.</p> "> Figure 8
<p>Apomorphine, its diester prodrug, and their respective skin permeation fluxes.</p> "> Figure 9
<p>Bupropion, hydroxypropion and the carbamate prodrug of hydroxypropion.</p> "> Figure 10
<p>Theophylline and its best skin penetrant amide prodrug.</p> "> Figure 11
<p>Metoprolol and its ester prodrugs.</p> "> Figure 12
<p>Captopril and its best <span class="html-italic">n</span>-alkyl ester prodrugs.</p> "> Figure 13
<p>Structures of hydroquinone, salicylic acid and their best skin permeant ester co-drug <b>48</b>.</p> "> Figure 14
<p>Structures of haloperidol and its ethyl ester prodrug.</p> ">
Abstract
:1. Introduction
2. Structure of the Skin
2.1. Stratum Corneum (SC)
2.2. Viable Epidermis
2.3. Dermis
2.4. Hypodermis
2.5. Skin Appendages
3. Routes of Transdermal Delivery
3.1. Transepidermal Routes
3.2. Transappendageal (Shunt Routes)
4. Factors Influencing Skin Permeation of Drugs
4.1. Physiological Factors
4.1.1. Skin Age
4.1.2. Anatomical Location
4.1.3. Race
4.1.4. Temperature
4.1.5. Skin Hydration
4.1.6. Skin Condition (Disease)
4.1.7. Skin Metabolism
4.2. Physicochemical Factors
4.2.1. Solubility
4.2.2. Partition Coefficient
4.2.3. Molecular Mass
4.2.4. Ionization
4.2.5. Hydrogen Bonding
4.2.6. Melting Point
5. The Impact of Prodrug Strategy on the Percutaneous Absorption of Drugs
5.2. Cytarabine (Anticancer)
5.3. Morphine (Opioid Analgesic)
5.4. Naltrexone (Opioid Antagonist)
5.5. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
5.6. Apomorphine (Anti-Parkinsonian)
5.7. Bupropion (Anti-Depressant)
5.8. Theophylline (Cardiovascular)
5.9. Metoprolol Tartrate (β-Adrenergic Blocker)
5.10. Captopril (Anti-Hypertensive)
5.11. Hydroquinone (Anti-Melasma)
5.12. Haloperidol (Anti-Schizophrenic)
Drug/Prodrugs | Therapeutic Category | MW (g/mol) | Sw (mM) PBS pH 7.4 | Log D n-octanol/PBS pH 7.4 | Flux (nmol/cm2h) | Vehicle/Donor Phase Condition | Skin Penetration Enhancement | Ref. |
---|---|---|---|---|---|---|---|---|
Zidovudine 1 * | ARVs | 267.2 | 95.4 | −0.7 ± 0.04 | 8.55 ± 5.27 | PBS pH 7.4/saturated | moderate | [44] |
2 | 677.7 | 104.8 | −1.1 ± 0.05 | 53.33 ± 46.51 | ||||
Stavudine 3 * | 224.2 | 380.2 | −1.1 ± 0.04 | 59.15 ± 23.28 | no | [45] | ||
4 | 414.4 | nd | −0.7 ± 0.04 | 26.1 ± 22.23 | ||||
Lamivudine 5 * | 229.3 | 82 | −0.83 ± 0.06 | 4.23 ± 2.98 a | no | [46] | ||
6 | 285.32 | 18.0 | 1.9 | 0.046 a | ||||
7 | 331.34 | 25.8 | −0.7 ± 0.01 | 2.07± 0.62 a | [47] | |||
8 | 375.40 | nd | nd | 0.66± 0.36 a | ||||
Cytarabine 9 * | Anticancer | 243.2 | 738.8 | −1.9 ± 0.02 | 3.7 | PBS pH7.4/saturated | highly significant | [50] |
10 | 341.4 | 14.53 | 0.91 ± 0.05 | 89.0 | ||||
11 | 345.3 | 230 | −1.2 ± 0.03 | 8.3 | moderate | [51] | ||
12 | 313.3 | 48.46 | −0.26 ± 0.00 | 22.2 | significant | [52] | ||
Morphine 13 * | Opioid Analgesic | 285.3 | >100 | –1.13 ± 0.28 | 14.61 ± 4.08 | PBC/unsaturated | [56] | |
14 | 341.4 | 30.1 | 1.75 ± 0.02 | 27.57 ± 4.57 | ||||
15 | 397.5 | 3.97 | nd | 72.45 ± 7.59 | PBC/saturated | significant | ||
Naltrexone 16 * | Opioid Antagonist | 341 | 0.26 h | nd | 2.5 ± 1.5 | mineral oil/saturated | moderate | [61] |
17 | 383 | 2.04 h | 15.6 ± 6.3 | |||||
18 | 397 | 4.41 h | 11.1 ± 3.7 | |||||
16 * | 341 | 0.24 h | 3.06 ± 1.58 | no | [62] | |||
19 | 441 | 5.6 h | 3.73 ± 0.67 | |||||
16 * | 341 | 0.24 h | 3.68 ± 2.37 | moderate | [63] | |||
20 | 412 | 1.01 h | 15.53 ± 11.26 | |||||
21 | 425 | 0.96 h | 17.44 ± 11.16 | moderate | ||||
Ketorolac 22 * | NSAIDs | 255.27 | 70.87 | –0.83 ± 0.08 | 2.12 ± 1.08 | PBS pH 7.4/saturated | significant | [66] |
23 | 395.50 | 35.64 | 2.15 ± 0.09 | 24.15 ± 3.50 | ||||
Ketorolac 22 * | 255.27 | 19.1 | 1.14 ± 0.01 | 4.1 | gel A | marginal | [67] | |
24 | 343.37 | 28.3 | 2.13 ± 0.02 | 6.71 ± 0.43 | gel B | |||
Ketorolac 22 * | 255.27 | 8205.2 b | nd | 3.24 ± 0.25 | 30% ethanol in PBC/saturated | moderate | [68] | |
25 | 311.2 | 172.8 b | nd | 8.21 ± 1.45 | ||||
Diclofenac 26 * | 282.13 | 0.0041 c | 2.97 e | 2.57 ± 0.29 | PBS pH 7.4/saturated | moderate | [69] | |
27 | 340.21 | 0.662 d | 1.57 f | 5.54 ± 0.78 | ||||
6-Meo-2-naphthylacetic acid 28 | 216.24 | 63.34 | 0.23 ± 0.02 | 1.44 ± 0.2 | PBS pH 7.4/saturated | moderate | [71] | |
29 | 342.4 | 21.58 | 0.23 ± 0.01 | 6.80 ± 0.3 | ||||
30 | 356.5 | 20.09 | 0.22 ± 0.02 | 9.96 ± 0.7 | moderate | |||
31 | 370.5 | 6.20 | 0.53 ± 0.08 | 16.10 ± 1.5 | significant | |||
Apomorphine 32 * | Anti-Parkinsonian | 267.3 | nd | 2.0 ± 0.1 g | 4.19 ± 1.03 | Water/saturated | significant | [72] |
33 | 407.51 | 1.6 ± 0.03 g | 51.46 ± 5.19 | |||||
Bupropion 34 * | Antidepressant | 239.75 | 54.2 h | nd | 316.2 ± 15.6 | mineral oil/saturated | no | [77] |
35 | 255.74 | 3.9 h | 27.1 ± 4.2 | moderate | ||||
36 | 354.88 | 16.4 h | 72.5 ± 7.6 | |||||
Theophylline 37 * | Cardiovascular agent | 180.17 | 0.3 i | −2.14 j | 0.48 a | IPM/saturated | moderate | [80] |
38 | 326 | 2.6 i | −1.52 j | 3.62 a | ||||
Metoprolol tartrate 39 * | β-Adrenergic blocker | 684.82 | >1000 k | nd | 1.5 ± 0.17 a | 20% ethanol-acetate buffer pH 4/unsaturated | marginal | [81] |
40 | 309.41 | 8.3 k | 2.3 ± 0.17 a | |||||
41 | 323.43 | 5.9 k | 2.3 ± 0.17 a | |||||
Captopril 42 * | Anti-hypertensive | 217.29 | 66.7 | 0.02 a | PBS pH 7.4/saturated | highly significant | [82] | |
43 | 245.29 | 35.6 | 0.78 a | |||||
44 | 259.29 | 18.3 | 0.29 a | significant | ||||
45 | 273.29 | 18.0 | 0.26 a | significant | ||||
Hydroquinone 46 * | Anti-melasma | 110.11 | >50,000 l | 1.63 ± 0.01 | 12.55 ± 2.58 | 20% PEG400/PBC pH 7.4/saturated | moderate | [85] |
48 | 230.22 | 2425.4 l | 3.77 ±0.05 | 40.86 ± 9.31 | ||||
Haloperidol 49 * | anti-schizophrenic | 375.86 | 60.2 m | nd | 2.136 ± 0.316 | PBS/saturated | no | [87] |
50 | 417.90 | 10.8 m | 0.664 ± 0.123 |
6. Conclusions
Acknowledgments
Disclaimer
Conflicts of Interest
References
- Barry, B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001, 14, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.; Kalia, Y.N.; Guy, R.H. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm. Sci. Technol. Today 2000, 3, 318–325. [Google Scholar] [CrossRef]
- Chien, Y.W. Advances in transdermal systemic medication. In Transdermal Controlled Systemic Medications; Chien, Y.W., Ed.; Marcel Dekker: New York, NY, USA, 1987; pp. 1–22. [Google Scholar]
- Schiffman, S.S.; Zervakis, J.; Shaio, E.; Heald, A.E. Effect of nucleoside analogs zidovudine, didanosine, stavudine, and lamivudine on the sense of taste. Nutrition 1999, 15, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Mitragotri, S. In situ determination of partition and diffusion coefficients in the lipid bilayers of the stratum corneum. Pharm. Res. 2000, 17, 1026–1029. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.; Poulson, R.T. Absorption of drugs through the skin. In Handbook of Experimental Pharmacology: Concepts in Biomedical Pharmacology; Brodie, B.B., Gillette, J.R., Eds.; Springer Verslag: New York, NY, USA, 1971; Part 1; pp. 103–162. [Google Scholar]
- Williams, A.C. Transdermal and Topical Drug Delivery: From Theory to Clinical Practice; Pharmaceutical Press: London, UK, 2003; pp. 1–242. [Google Scholar]
- Ranade, V.V. Drug delivery systems. 6. Transdermal drug delivery. J. Clin. Pharmacol. 1991, 31, 401–418. [Google Scholar] [PubMed]
- Kadam, A.S.; Ratnaparkhi, M.P.; Chaudhary, S.P. Transdermal drug delivery: An overview. Int. J. Res. Dev. Pharm. Life Sci. 2014, 3, 1042–1053. [Google Scholar]
- Wertz, P.W.; Miethke, M.C.; Long, S.A.; Strauss, J.S.; Downing, D.T. The composition of the ceramides from human stratum corneum and from comedones. J. Investig. Dermatol. 1985, 84, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Lampe, M.A.; Burlingame, A.L.; Whitney, J.; William, M.L.; Brown, B.E.; Roitman, E.; Elias, P.M. Human stratum corneum lipids: Characterization and regional variations. J. Lipid Res. 1983, 24, 120–130. [Google Scholar]
- Schaefer, H.; Hensby, C. Skin permeability and models of percutaneous absorption. In Skin Pharmacology and Toxicology: Recent Advances; Galli, C.L., Hensby, C.N., Marinovich, M., Eds.; Plenum: New York, NY, USA, 1990; pp. 77–83. [Google Scholar]
- Cross, S.E.; Roberts, M.S. Subcutaneous absorption kinetics of interferon and other solutes. J. Pharm. Pharmacol. 1993, 45, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.A.A.; Savin, J.A.; Dahl, M.V. Clinical Dermatology, 2nd ed.; Blackwell Science: London, UK, 1995. [Google Scholar]
- Montaga, W. The skin. Sci. Am. 1965, 212, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Guy, R.H.; Hadgraft, J. Structure-activity correlations in percutaneous absorption. In Percutaneous Absorption: Mechanisms-Methodology-Drug Delivery; Bronaugh, R.L., Maibach, H.I., Eds.; Marcel Dekker: New York, NY, USA, 1989; pp. 95–109. [Google Scholar]
- Sloan, K.B.; Koch, S.A.M.; Siver, K.G. Mannich base derivatives of theophylline and 5-fluorouracil: Synthesis, properties and topical delivery characteristics. Int. J. Pharm. 1984, 21, 251–264. [Google Scholar] [CrossRef]
- Sloan, K.B. Prodrugs for dermal delivery. Adv. Drug Deliv. Rev. 1989, 3, 67–10. [Google Scholar] [CrossRef]
- Morrow, D.I.J.; McCarron, P.A.; Woolfson, A.D.; Donnelly, R.F. Innovative strategies for enhancing topical and transdermal drug delivery. Open Drug Deliv. J. 2007, 1, 36–59. [Google Scholar] [CrossRef]
- Potts, R.O.; Buras, E.M.; Chrisman, D.A. Changes with age in moisture content of human skin. J. Investig. Dermatol. 1984, 82, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Weigand, D.A.; Haygood, C.; Gaylor, J.R. Cell layers and density of Negro and Caucasian stratum corneum. J. Investig. Dermatol. 1974, 62, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Reinertson, R.P.; Wheatley, V.R. Studies on the chemical composition of human epidermal lipids. J. Investig. Dermatol. 1959, 32, 49–59. [Google Scholar] [PubMed]
- Sun, Y. Skin absorption enhancement by physical means: Heat, ultrasound and electricity. In Transdermal and Topical Drug Delivery Systems; Gosh, T.K., Pfister, W.R., Yum, S.I., Eds.; Interpharm Press: Buffalo Grove, IL, USA, 1997; pp. 327–355. [Google Scholar]
- Jackson, E.W. Toxicological aspects of percutaneous absorption. In Skin Permeation, Fundamentals and Application; Zats, J.L., Ed.; Allured Publishing Corporation: Wheaton, IL, USA, 1993; pp. 177–192. [Google Scholar]
- Li, X.; Chan, W.K. Transport, metabolism and elimination mechanisms of anti-HIV agents. Adv. Drug Deliv. Rev. 1999, 39, 81–103. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Sathyan, G.; Hwang, S.S. Clinical assessment of transdermal drug delivery systems. In Transdermal and Topical Drug Delivery Systems; Gosh, T.K., Pfister, W.R., Yum, S.I., Eds.; Interpharm Press: Buffalo Grove, IL, USA, 1997; pp. 215–248. [Google Scholar]
- Tojo, K. The prediction of transdermal permeation: Mathematical models. In Transdermal and Topical Drug Delivery Systems; Gosh, T.K., Pfister, W.R., Yum, S.I., Eds.; Interpharm Press: Buffalo Grove, IL, USA, 1997; pp. 113–138. [Google Scholar]
- Flynn, G.L. Mechanism of percutaneous absorption from physicochemical evidence. In Percutaneous Absorption: Mechanism-Methodology-Drug Delivery, 2nd ed.; Bronaugh, R.L., Maibach, H.I., Eds.; Marcel Dekker: New York, NY, USA, 1989; pp. 27–51. [Google Scholar]
- Higuchi, T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J. Soc. Cosmet. Chem. 1960, 11, 85–97. [Google Scholar]
- Abdou, H.M. Dissolution, Bioavailability and Bioequivalence; Mack Publishing Company: Easton, PA, USA, 1989; pp. 52–73. [Google Scholar]
- Solomons, T.W. Organic Chemistry, 6th ed.; Wiley, J. & Sons Inc.: New York, NY, USA, 1996; pp. 452–453. [Google Scholar]
- Hadgraft, J.; Wolff, M. Physicochemical and pharmacokinetic parameters affecting percutaneous absorption. In Dermal and Transdermal Drug Delivery: New Insights and Perspectives, Proceedings of the 2nd International Symposium of the International Association for Pharmaceutical Technology, Frankfurt, Germany, 11–13 November 1991; Gurny, R., Teuber, A., Eds.; Wissenschaftliche Verlagsgesellschaft: Stuttgart, Germany, 1993. [Google Scholar]
- Tenjarla, S.N.; Puranajoti, P.; Kasina, R.; Mandal, T. Terbutaline transdermal delivery: Preformulation studies and limitations of in vitro predictive parameters. J. Pharm. Pharmacol. 1996, 48, 1138–1142. [Google Scholar] [CrossRef] [PubMed]
- Idson, B. Percutaneous absorption. J. Pharm. Sci. 1975, 64, 901–924. [Google Scholar] [CrossRef]
- Billich, A.; Vyplel, H.; Grassberger, M.; Schmook, F.P.; Steck, A.; Stuetz, A. Novel cyclosporin derivatives featuring enhanced skin penetration despite increased molecular weight. Bioorg. Med. Chem. 2005, 13, 3157–3167. [Google Scholar] [CrossRef] [PubMed]
- Barry, B.W. Dermatological formulations. In Percutaneous Absorption: Mechanisms-Methodology-Drug Delivery; Bronaugh, R.L., Maibach, H.I., Eds.; Marcel Dekker: New York, NY, USA, 1983; pp. 160–172. [Google Scholar]
- Pugh, W.J.; Roberts, M.S.; Hadgraft, J. Epidermal permeability: Penetrant structure relationships. 3. The effect of hydrogen bonding interactions and molecular size on diffusion through the stratum corneum. Int. J. Pharm. 1996, 138, 149–165. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Hadgraft, J.; Cordes, G.; Wolff, M. Prediction of the transdermal delivery of β-blockers. In Die Haut als Transportorgan Für Arzneistoffe; Rietbrock, N., Ed.; Steinkopff Verslag: Darmstadt, Germany, 1990; pp. 133–143. [Google Scholar]
- Stott, R.W.; Williams, A.C.; Barry, B.W. Transdermal delivery from eutectic systems: Enhanced permeation of a model drug, ibuprofen. J. Control. Release 1998, 50, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Sloan, K.B. Drugs and the pharmaceutical sciences. In Prodrugs: Topical and Ocular Drug Delivery; Sloan, K.B., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1992; pp. 221–297. [Google Scholar]
- Waranis, R.P.; Sloan, K.B. The effect of vehicle and prodrug properties and their interactions on the delivery of 6-mercaptopurine through skin: Bisacyloxymethyl-6-mercaptopurine prodrugs. J. Pharm. Sci. 1987, 76, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Veronese, F.M.; Pasut, G. PEGylation: Successful approach to drug delivery. Drug Discov. Today 2005, 10, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Global Report: UNAIDS Report on the Global AIDS epidemic. 2013. Available online: http://www.unaids.org/en/resources/campaigns/globalreport2013/globalreport/ (accessed on 20 October 2014).
- N’Da, D.D.; Breytenbach, J.C. Synthesis of methoxypoly(ethylene glycol) carbonate prodrugs of zidovudine and penetration through human skin in vitro. J. Pharm. Pharmacol. 2009a, 61, 721–731. [Google Scholar] [CrossRef]
- N’Da, D.D.; Breytenbach, J.C.; Legoabe, L.J.; Breytenbach, W.J. Synthesis and in vitro transdermal penetration of methoxypoly(ethylene glycol) carbonate derivatives of stavudine. Med. Chem. 2009, 5, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Gerber, M.; Breytenbach, J.C.; du Plessis, J. Transdermal penetration of zalcitabine, lamivudine and synthesised N-acyl lamivudine esters. Int. J. Pharm. 2008, 351, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Van Heerden, J.; Breytenbach, J.C.; N’Da, D.D.; du Plessis, J.; Breytenbach, W.J.; du Preez, J.L. Synthesis and in vitro transdermal penetration of methoxypoly(ethylene glycol) carbonate and carbamate derivatives of lamivudine (3TC). Med. Chem. 2010, 6, 91–99. [Google Scholar]
- Rustum, Y.M.; Raymakers, R.A. 1-β-arabinofuranosylcytosine in therapy of leukemia: Preclinical and clinical overview. Pharmacol. Ther. 1992, 56, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Hamada, A.; Kawaguchi, T.; Nakano, M. Clinical pharmacokinetics of cytarabine formulations. Clin. Pharmacokinet. 2002, 41, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Legoabe, L.J.; Breytenbach, J.C.; N’Da, D.D.; Breytenbach, W.J. In-vitro transdermal penetration of cytarabine and its N4-alkylamide derivatives. J. Pharm. Pharmacol. 2010, 62, 756–761. [Google Scholar] [PubMed]
- Legoabe, L.J.; N’Da, D.D.; Breytenbach, J.C.; du Preez, J.L.; du Plessis, J. Synthesis and transdermal permeation of novel N4-methoxypoly(ethylene glycol) carbamates of cytarabine. Drug Dev. Ind. Pharm. 2010, 36, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Legoabe, L.J.; Breytenbach, J.C.; N’Da, D.D.; Breytenbach, W.J. Transdermal absorption of cytarabine and its 5’-O- alkyl ester derivatives. Med. Chem. 2010, 6, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Lugo, R.A.; Kern, S.E. Clinical pharmacokinetics of morphine. J. Pain Palliat. Care Pharmacother. 2002, 16, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Grond, S.; Radbruch, L.; Lehmann, K.A. Clinical pharmacokinetics of transdermal opioids. Clin. Pharmacokinet. 2000, 38, 59–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Sung, K.C.; Huang, J.F.; Yeh, C.H.; Fang, J.Y. Ester prodrugs of morphine improve transdermal drug delivery: A mechanistic study. J. Pharm. Pharmacol. 2007, 59, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Terenius, L. Rational treatment of addiction. Curr. Opin. Chem. Biol. 1998, 2, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Rothenberg, J.L.; Sullivan, M.A.; Church, S.H.; Seracini, A.; Collins, E.; Kleber, H.D.; Nunes, E.V. Behavioral naltrexone therapy: an integrated treatment for opiate dependence. J. Subst. Abuse Treat. 2002, 23, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Kranzler, H.R.; Lowe, V.M.; Kirk, J.V. Naltrexone vs. nefazodone for treatment of alcohol dependence: A placebo controlled trial. Neuropyschopharmacology 2000, 22, 493–503. [Google Scholar] [CrossRef]
- Wall, M.; Brine, D.R.; Perez-Reyes, M. Metabolism and disposition of naltrexone in man after oral and intravenous administration. Drug Metab. Dispos. 1981, 9, 369–375. [Google Scholar]
- Stinchcomb, A.I.; Swaan, P.W.; Ekabo, O.; Harris, K.K.; Browe, J.; dana c. Hammell, D.C.; Cooperman, T.A.; Pearsall, M. Straight-chain naltrexone ester prodrugs: Diffusion and concurrent esterase biotransformation in human skin. J. Pharm. Sci. 2002, 91, 2571–2578. [Google Scholar] [CrossRef] [PubMed]
- Vaddi, H.K.; Hamad, M.O.; Chen, J.; Banks, S.L.; Crooks, P.A.; Stinchcomb, A.L. Human skin permeation of branched-chain 3-O-alkyl ester and carbonate prodrugs of naltrexone. Pharm. Res. 2005, 22, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Vaddi, H.K.; Banks, S.L.; Chen, J.; Hammell, D.C.; Crooks, P.A.; Stinchcomb, A.L. Human skin permeation of 3-O-alkyl carbamate prodrugs of naltrexone. J. Pharm. Sci. 2009, 98, 2611–2625. [Google Scholar] [CrossRef] [PubMed]
- Kokki, H. Nonsteroidal anti-inflammatory drugs for postoperative pain: A focus on children. Paediatr. Drugs 2003, 5, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Buckley, M.M.; Brogden, R.N. Ketorolac: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 1990, 39, 86–109. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, D.I. Minimizing the adverse effects of ketorolac. Drug Saf. 2000, 22, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Qandil, A.; Al-Nabulsi, S.; Al-Taani, B.; Tashtoush, B. Synthesis of piperazinylalkyl ester prodrugs of ketorolac and their in vitro evaluation for transdermal delivery. Drug Dev. Ind. Pharm. 2008, 34, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Puglia, C.; Filosa, R.; Peduto, A.; de Caprariis, P.; Rizza, L.; Bonina, F.; Blasi, P. Evaluation of alternative strategies to optimize ketorolac transdermal delivery. AAPS PharmSciTech 2006, 7, E1–E9. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.S.; Hsieh, P.W.; Aljuffali, I.A.; Lin, Y.K.; Chang, S.H.; Wang, J.J.; Fang, J.Y. The impact of ester promoieties on the transdermal delivery of ketorolac. J. Pharm. Sci. 2014, 103, 974–986. [Google Scholar] [CrossRef] [PubMed]
- Lobo, S.; Li, H.; Farhan, N.; Yan, G. Evaluation of diclofenac prodrugs for enhancing transdermal delivery. Drug Dev. Ind. Pharm. 2014, 40, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Lobo, S.; Li, H. Can diclofenac ester prodrug promote direct penetration across the skin? J. Chem. Pharm. Res. 2014, 6, 2701–2713. [Google Scholar]
- Pawar, V.; Thosani, R.; Kanhed, A.; Giridhar, R.; Yadav, M.R. Potential of piperazinylalkylester prodrugs of 6-methoxy-2-Naphthylacetic Acid (6-MNA) for percutaneous drug delivery. AAPS PharmSciTech 2014, 2014, 1–10. [Google Scholar]
- Subramony, J.A. Apomorphine in dopaminergic therapy. Mol. Pharm. 2006, 3, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Danhof, M.; van der Geest, R.; van Laar, T.; Boddé, H.E. An integrated pharmacokinetic-pharmacodynamic approach to optimization of rapomorphine delivery in Parkinson’s disease. Adv. Drug Deliv. Rev. 1998, 33, 203–263. [Google Scholar] [CrossRef]
- Liu, K.S.; Sung, K.C.; Al-Suwayeh, S.A.; Ku, M.C.; Chu, C.C.; Wang, J.J.; Fang, J.Y. Enhancement of transdermal apomorphine delivery with a diester prodrug strategy. Eur. J. Pharm. Biopharm. 2011, 78, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.; Berkel, H.J.; Parish, R.C.; Simar, M.R.; Syed, A.; Bocchini, J.A., Jr.; Wilson, J.T.; Manno, J.E. Single-dose pharmacokinetics of bupropion in adolescents: Effects of smoking status and gender. J. Clin. Pharmacol. 2001, 41, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, G.; Velez, L.I.; Keyes, D.C. Intentional bupropion overdoses. J. Emerg. Med. 2004, 27, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Kiptoo, P.K.; Paudel, K.S.; Hammell, D.C.; Pinninti, R.R.; Chen, J.; Crooks, P.A.; Stinchcomb, A.L. Transdermal delivery of bupropion and its active metabolite, hydroxybupropion: A prodrug strategy as an alternative approach. J. Pharm. Sci. 2009, 98, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Sloan, K.B.; Bodor, N. Hydroxymethyl and acyloxymethyl prodrugs of theophylline: Enhanced delivery of polar drugs through skin. Int. J. Pharm. 1982, 12, 299–313. [Google Scholar] [CrossRef]
- Kerr, D.; Roberts, W.; Tebbett, I.; Sloan, K.B. 7-Alkylcarbonyloxymethyl prodrugs of theophylline: Topical delivery of theophylline. Int. J. Pharm. 1998, 167, 37–48. [Google Scholar] [CrossRef]
- Majumdar, S.; Mueller-Spaeth, M.; Sloan, K.B. Prodrugs of theophylline incorporating ethyleneoxy groups in the promoiety: Synthesis, characterization, and transdermal delivery. AAPS PharmSciTech 2012, 13, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Anroop, B.; Ghosh, B.; Parcha, V.; Khanam, J. Comparative skin permeability of metoprolol tartrate and its ester prodrugs by passive permeation and iontophoresis. Asian J. Pharm. Sci. 2008, 3, 47–57. [Google Scholar]
- Moss, G.P.; Gullick, D.R.; Cox, P.A.; Alexander, C.; Ingram, M.J.; Smart, J.D.; Pugh, W.J. Design, synthesis and characterization of captopril prodrugs for enhanced percutaneous absorption. J. Pharm. Pharmacol. 2006, 58, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.D.; Sung, J.H.; Lee, D.W.; Kim, J.S.; Jeon, E.M.; Kim, D.D.; Kim, D.W.; Kim, J.O.; Piao, M.G.; Li, D.X.; et al. Evaluation of physicochemical properties, skin permeation and accumulation profiles of salicylic acid amide prodrugs as sunscreen agent. Int. J. Pharm. 2011, 419, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, H.B.; Nguyen, S.L.; Williams, R.; Ottomeyer, T.; Wortzman, M.; Jeffers, M.; Moy, R.L. Efficacy of hydroquinone cream (USP 4%) used alone or in combination with salicylic acid peels in improving photodamage on the neck and upper chest. Dermatol. Surg. 2000, 26, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.-W.; Aljuffali, I.A.; Fang, C.-L.; Chang, S.-H.; Fang, J.-Y. Hydroquinone-salicylic acid conjugates as novel anti-melasma actives show superior skin targeting compared to the parent drugs. J. Dermatol. Sci. 2014, 76, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Hamann, G.L.; Egan, T.M.; Wells, B.G.; Grimmig, J.E. Injection site reactions after intramuscular administration of haloperidol decanoate 100 mg/mL. J. Clin. Psychiatry 1990, 51, 502–504. [Google Scholar] [PubMed]
- Morris, A.P.; Brain, K.R.; Heard, C.M. Skin permeation and ex vivo skin metabolism of O-acyl haloperidol ester prodrugs. Int. J. Pharm. 2009, 367, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Juntunen, J.; Majumdar, S.; Sloan, K.B. The effect of water solubility of solutes on their flux through human skin in vitro: A prodrug database integrated into the extended Flynn database. Int. J. Pharm. 2008, 351, 92–103. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
N'Da, D.D. Prodrug Strategies for Enhancing the Percutaneous Absorption of Drugs. Molecules 2014, 19, 20780-20807. https://doi.org/10.3390/molecules191220780
N'Da DD. Prodrug Strategies for Enhancing the Percutaneous Absorption of Drugs. Molecules. 2014; 19(12):20780-20807. https://doi.org/10.3390/molecules191220780
Chicago/Turabian StyleN'Da, David D. 2014. "Prodrug Strategies for Enhancing the Percutaneous Absorption of Drugs" Molecules 19, no. 12: 20780-20807. https://doi.org/10.3390/molecules191220780
APA StyleN'Da, D. D. (2014). Prodrug Strategies for Enhancing the Percutaneous Absorption of Drugs. Molecules, 19(12), 20780-20807. https://doi.org/10.3390/molecules191220780