Capsaicin and Dihydrocapsaicin Determination in Chili Pepper Genotypes Using Ultra-Fast Liquid Chromatography
<p>Structures of capsaicin (top) and dihydrocapsaicin (bottom).</p> "> Figure 2
<p>Chromatogram of capsaicin and dihydrocapsaicin (0.50 µg/g) using UV detection at 280 nm.</p> "> Figure 3
<p>Capsaicin and dihydrocapsaicin obtained using acetonitrile as extraction solvent.</p> ">
Abstract
:1. Introduction
- -
- (0–700 SHU) non-pungent
- -
- (700–3,000 SHU) mildly pungent
- -
- (25, 000–70,000 SHU) highly pungent
- -
- (3,000–25,000 SHU) moderately pungent
- -
- (>80,000 SHU) very highly pungent [24]
2. Results and Discussion
2.1. Optimization of UFLC Separation Condition
2.2. Method Validation
Capsaicinoids | Linear Range | R2 | Ret. Time | Average Peak Area | SD | % RSD |
---|---|---|---|---|---|---|
Capsaicin | 0.05–0.50 | 0.9999 | 7.665 | 4947.1 | 27.7 | 0.56 |
Dihydrocapsaicin | 0.05–0.50 | 0.9996 | 10.989 | 4229.6 | 58.1 | 1.37 |
AVPP0705 | AVPP0002 | AVPP0805 | C05573 | |||||
---|---|---|---|---|---|---|---|---|
No. Sample | Cap | Dihy | Cap | Dihy | Cap | Dihy | Cap | Dihy |
1 | 1908 (1) | 711 | 768 | 486 | 492 | 420 | 476 | 358 |
2 | 1868 | 690 | 811 | 485 | 502 | 433 | 466 | 360 |
3 | 1798 | 750 | 798 | 501 | 472 | 390 | 456 | 371 |
4 | 1867 | 701 | 779 | 499 | 501 | 387 | 500 | 350 |
5 | 1902 | 699 | 700 | 512 | 512 | 417 | 467 | 351 |
6 | 1998 | 680 | 801 | 501 | 511 | 401 | 480 | 354 |
7 | 1798 | 712 | 822 | 512 | 499 | 413 | 456 | 348 |
8 | 1811 | 718 | 783 | 493 | 518 | 429 | 489 | 359 |
9 | 1798 | 675 | 814 | 524 | 522 | 410 | 480 | 366 |
10 | 1928 | 700 | 780 | 505 | 498 | 386 | 457 | 379 |
11 | 1788 | 690 | 764 | 516 | 519 | 427 | 470 | 367 |
12 | 1901 | 721 | 817 | 507 | 510 | 388 | 469 | 346 |
13 | 1691 | 710 | 818 | 498 | 486 | 427 | 498 | 379 |
14 | 1800 | 724 | 808 | 509 | 532 | 430 | 481 | 380 |
15 | 1860 | 691 | 802 | 481 | 520 | 379 | 465 | 356 |
16 | 2198 | 736 | 821 | 521 | 472 | 424 | 488 | 345 |
17 | 1998 | 722 | 729 | 462 | 494 | 378 | 487 | 361 |
18 | 1878 | 716 | 813 | 481 | 514 | 415 | 497 | 344 |
19 | 1754 | 702 | 794 | 474 | 512 | 411 | 476 | 368 |
20 | 1791 | 683 | 765 | 535 | 508 | 402 | 486 | 376 |
21 | 1802 | 724 | 816 | 506 | 519 | 378 | 472 | 358 |
22 | 1855 | 731 | 807 | 527 | 481 | 367 | 459 | 364 |
23 | 1868 | 734 | 818 | 508 | 496 | 432 | 469 | 361 |
24 | 1801 | 745 | 799 | 487 | 477 | 421 | 480 | 357 |
25 | 1831 | 728 | 840 | 520 | 462 | 389 | 490 | 383 |
26 | 1808 | 767 | 788 | 491 | 530 | 398 | 487 | 377 |
27 | 1798 | 771 | 801 | 522 | 505 | 435 | 477 | 354 |
28 | 1818 | 747 | 810 | 502 | 528 | 426 | 485 | 362 |
29 | 1899 | 789 | 824 | 524 | 497 | 419 | 491 | 391 |
30 | 1861 | 724 | 775 | 515 | 474 | 399 | 475 | 365 |
Mean | 1855.44 | 719.71 | 795.50 | 503.47 | 502.10 | 407.70 | 477.63 | 363.00 |
SD | 92.37 | 27.50 | 29.31 | 17.29 | 18.76 | 19.45 | 12.53 | 11.99 |
RSD% | 4.98 | 3.82 | 3.68 | 3.43 | 3.74 | 4.77 | 2.62 | 3.30 |
AVPP0705 | AVPP0002 | AVPP0805 | C05573 | |||||
---|---|---|---|---|---|---|---|---|
No. Sample | Cap | Dihy | Cap | Dihy | Cap | Dihy | Cap | Dihy |
1 | 1778 (1) | 794 | 677 | 411 | 481 | 389 | 386 | 288 |
2 | 1801 | 789 | 687 | 401 | 488 | 367 | 381 | 298 |
3 | 1798 | 777 | 666 | 409 | 498 | 380 | 388 | 290 |
4 | 1890 | 698 | 657 | 418 | 468 | 381 | 387 | 295 |
5 | 1870 | 650 | 689 | 399 | 470 | 385 | 370 | 280 |
6 | 1786 | 699 | 670 | 389 | 484 | 379 | 377 | 279 |
7 | 1832 | 730 | 697 | 388 | 479 | 370 | 376 | 281 |
8 | 1799 | 786 | 678 | 390 | 480 | 377 | 369 | 286 |
9 | 1875 | 756 | 680 | 400 | 485 | 384 | 380 | 291 |
10 | 1800 | 790 | 681 | 412 | 489 | 386 | 383 | 278 |
11 | 1776 | 769 | 699 | 408 | 500 | 378 | 379 | 299 |
12 | 1854 | 798 | 657 | 403 | 496 | 390 | 385 | 296 |
13 | 1831 | 766 | 673 | 398 | 477 | 391 | 397 | 285 |
14 | 1876 | 801 | 674 | 405 | 465 | 394 | 390 | 294 |
15 | 1894 | 799 | 660 | 410 | 478 | 387 | 389 | 284 |
16 | 1799 | 800 | 664 | 409 | 473 | 369 | 375 | 287 |
17 | 1876 | 811 | 675 | 420 | 476 | 388 | 367 | 287 |
18 | 1865 | 737 | 674 | 419 | 483 | 376 | 378 | 284 |
19 | 1745 | 788 | 679 | 396 | 454 | 395 | 394 | 280 |
20 | 1789 | 776 | 672 | 386 | 495 | 385 | 392 | 283 |
21 | 1699 | 781 | 669 | 397 | 475 | 380 | 386 | 278 |
22 | 1855 | 787 | 681 | 408 | 476 | 382 | 374 | 289 |
23 | 1866 | 780 | 679 | 415 | 476 | 375 | 384 | 300 |
24 | 1886 | 769 | 665 | 414 | 497 | 367 | 382 | 276 |
25 | 1876 | 770 | 671 | 402 | 469 | 366 | 372 | 288 |
26 | 1856 | 779 | 677 | 412 | 472 | 387 | 378 | 277 |
27 | 1767 | 784 | 686 | 397 | 486 | 386 | 379 | 286 |
28 | 1803 | 793 | 676 | 386 | 465 | 388 | 383 | 281 |
29 | 1896 | 764 | 654 | 399 | 490 | 374 | 371 | 284 |
30 | 1876 | 813 | 649 | 407 | 477 | 385 | 369 | 273 |
Mean | 1830.5 | 771.13 | 673.9 | 403.6 | 480.1 | 381.4 | 380.7 | 285.9 |
SD | 50.76 | 36.13 | 11.76 | 9.83 | 11.03 | 8.11 | 7.87 | 7.16 |
RSD% | 2.77 | 4.69 | 1.75 | 2.44 | 2.30 | 2.13 | 2.07 | 2.50 |
Component (1) | Spiked amount (µg/kg) | Intra-day (%) | Inter day (%) | Recovery (%) |
---|---|---|---|---|
Capsaicin | 1302 | 2.07 | 5.01 | 90.1 |
3009 | 4.81 | 3.27 | 89.4 | |
Dihydrocapsaicin | 807.6 | 5.81 | 9.89 | 95.2 |
3541 | 5.00 | 4.63 | 92.4 |
2.3. Analysis of Capsaicinoids in Samples
Genotypes | Capsaicin | Dihydrocapsaicin | Total Capsaicinoids |
---|---|---|---|
AVPP0705 | 13076 | 7155 | 20231 |
AVPP0506 | 5945 | 2999 | 8944 |
AVPP0104 | 4283 | 4698 | 8981 |
AVPP0002 | 4945 | 4346 | 9291 |
C05573 | 2989 | 4280 | 7269 |
AVPP0805 | 4230 | 3340 | 7570 |
AVPP9905 | 2054 | 2218 | 4272 |
AVPP0904 | 2012 | 1613 | 3625 |
AVPP0514 | 2468 | 1470 | 3938 |
AVPP9805 | 1248 | 1568 | 2816 |
AVPP0702 | 1524 | 850 | 2374 |
KULAI | 799 | 606 | 1405 |
AVPP0513 | 892 | 553 | 1445 |
AVPP0116 | 299 | 246 | 545 |
AVPP0804 | 191 | ND | 191 |
AVPP0201 | 186 | ND | 186 |
AVPP9703 | ND | ND | ND |
AVPP0512 | ND | ND | ND |
AVPP0307 | ND | ND | ND |
AVPP0803 | ND | ND | ND |
AVPP0102 | ND | ND | ND |
2.4. Percentage Capsaicin Content
Genotypes | % Capsaicin Content | Scoville Heat Unit | Degree of Pungency |
---|---|---|---|
AVPP0705 | 1.49 | 237245 | very highly pungent |
AVPP0506 | 0.66 | 104888 | very highly pungent |
AVPP0104 | 0.69 | 110796 | very highly pungent |
AVPP0002 | 0.65 | 104678 | very highly pungent |
C05573 | 0.57 | 91097 | very highly pungent |
AVPP0805 | 0.56 | 88906 | very highly pungent |
AVPP9905 | 0.30 | 47946 | highly pungent |
AVPP0904 | 0.30 | 47372 | highly pungent |
AVPP0514 | 0.28 | 44259 | highly pungent |
AVPP9805 | 0.22 | 35769 | highly pungent |
AVPP0702 | 0.14 | 22146 | moderately pungent |
KULAI | 0.13 | 20564 | moderately pungent |
AVPP0513 | 0.13 | 20566 | moderately pungent |
AVPP0116 | 0.04 | 7170 | moderately pungent |
AVPP0804 | 0.02 | 2767 | mildly pungent |
AVPP0201 | 0.02 | 3020 | mildly pungent |
AVPP9703 | 0 | 0 | non-pungent |
AVPP0512 | 0 | 0 | non-pungent |
AVPP0307 | 0 | 0 | non-pungent |
AVPP0803 | 0 | 0 | non-pungent |
AVPP0102 | 0 | 0 | non-pungent |
3. Experimental
3.1. Instrument and Apparatus
3.2. UFLC Analytical Conditions
- Column: Purospher® STAR RP-18 e (150 mm × 4.6 mm × 5 µm)
- Mobile phase: 1.0% Acetic Acid aq./Acetonitrile = 1/1 (v/v)
- Flow rate: 1.2 mL
- Column Temp: 30 °C
- Detection: SPD-M20 A at 280 nm
- Injection Vol.: 2 µL
- Data acquisition time: Sampling = 6.25 Hz; Time constant = 0.160 s
3.3. Samples
Genotypes | Degree of tolerance * |
---|---|
AVPP0705 | Tolerant |
AVPP0506 | Tolerant |
AVPP0104 | Moderately Tolerant |
AVPP0002 | Sensitive |
C05573 | Tolerant |
AVPP0805 | Tolerant |
AVPP9905 | Tolerant |
AVPP0904 | Tolerant |
AVPP0514 | Tolerant |
AVPP9805 | Tolerant |
AVPP0702 | Tolerant |
KULAI | Moderately Tolerant |
AVPP0513 | Tolerant |
AVPP0116 | Tolerant |
AVPP0804 | Tolerant |
AVPP0201 | Tolerant |
AVPP9703 | Sensitive |
AVPP0512 | Tolerant |
AVPP0307 | Tolerant |
AVPP0803 | Tolerant |
AVPP0102 | Moderately Tolerant |
3.4. Reagents
3.5. Extraction of Capsaicinoids
3.6. Conversion to Scoville Heat Units (SHU)
(mL acetonitrile)/(Total capsaicin peak area of standard) (g sample)
3.7. Percentage Capsaicin Content
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Collins, M.D.; Mayer-Wasmund, L.; Bosland, P.W. Improved method for quantifying capsaicinoids in Capsicum using high performance liquid chromatography. HortScience 1995, 30, 137–139. [Google Scholar]
- Peña-Alvarez, A.; Ramírez-Maya, E.; Alvarado-Suárez, L.A. Analysis of capsaicin and dihydrocapsaicin in peppers and pepper sauces by solid phase microextraction–gas chromatography–mass spectrometry. J. Chromatogr. A 2009, 1216, 2843–2847. [Google Scholar]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heatactivated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Marti, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; asbaum, A.I.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288, 306–313. [Google Scholar]
- Chu, C.J.; Huang, S.M.; de Petrocellis, L.; Bisogno, T.; Ewing, S.A.; Miller, J.D.; Zipkin, R.E.; Daddario, N.; Appendino, G.; Di Marzo, V.; et al. N-Oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem. 2003, 278, 13633–13639. [Google Scholar]
- Lee, R.J.; Yolton, R.L.; Yolton, D.P.; Schnider, C.; Janin, M.L. Personal defense sprays: Effects and management of exposure. J. Am. Optom. Assoc. 1996, 67, 548–560. [Google Scholar]
- Iwai, K.; Suzuki, T.; Fujiwake, H. Formation and accumulation of pungent principle of hot pepper fruits, capsaicin, and its analogues, in Capsicum annuum var. annuum cv. Karayatsubusa at different stages of flowering. Agric. Biol. Chem. 1979, 43, 2493–2498. [Google Scholar] [CrossRef]
- Iida, T.; Moriyama, T.; Kobata, K. TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate. Neuropharmacology 2003, 44, 958–967. [Google Scholar]
- Backonja, M.M.; Malan, T.P.; Vanhove, G.F.; Tobias, J.K. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: A randomized, double-blind, controlled study with an open-label extension. Pain Med. 2010, 11, 600–608. [Google Scholar]
- Tesfaye, S. Advances in the management of diabetic peripheral neuropathy. Curr. Opin. Support. Palliat. Care 2009, 3, 136–143. [Google Scholar]
- Derry, S.; Lloyd, R.; Moore, R.A.; McQuay, H.J. Topical capsaicin for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2009, 7, CD007393. [Google Scholar]
- Reyes-Escogido, M.L.; Gonzalez-Mondragon, E.G.; Vazquez-Tzompantzi, E. Chemical and Pharmacological Aspects of Capsaicin. Molecules 2011, 16, 1253–1270. [Google Scholar]
- DeWitt, D.; Bosland, P.W. The Pepper Garden; Ten Speed Press: Berkeley, CA, USA, 1993. [Google Scholar]
- Contreras-Padilla, M.; Yahia, E.M. Changes in capsaicinoids during development, maturation, and senescence of chili peppers and relation with peroxidase activity. J. Agric. Food Chem. 1998, 46, 2075–2079. [Google Scholar]
- Estrada, B.; Bernal, M.A.; Diaz, J.; Pomar, F.; Merino, F. Fruit development in Capsicum annuum: Changes in capsaicin, lignin, free phenolics, and peroxidase patterns. J. Agric. Food Chem. 2000, 48, 6234–6239. [Google Scholar]
- Estrada, B.; Bernal, M.A.; Diaz, J.; Pomar, F.; Merino, F. Capsaicinoids in vegetative organs of Capsicum annuum L. in relation to fruiting. J. Agric. Food Chem. 2002, 50, 1188–1191. [Google Scholar] [CrossRef]
- Harvell, K.; Bosland, P.W. The environment produces a significant effect on the pungency of chilis. HortScience 1997, 32, 1292. [Google Scholar]
- Estrada, B.; Diaz, J.; Merino, F.; Bernal, M.A. The effect of seasonal changes on the pungency level of Padron pepper fruits. Capsicum Eggplant Newsl. 1999, 18, 28–31. [Google Scholar]
- Garces-Claver, A.; Arnedo-Andre’s, M.S.; Abadia, J.; Gil-Ortega, R.; Alvarez-Fernandez, A. Determination of capsaicin and dihydrocapsaicin in Capsicum fruits by liquid chromatographyelectrospray/time-of-flight mass spectrometry. J. Agric. Food Chem. 2006, 54, 9303–9311. [Google Scholar]
- Reilly, C.A.; Crouch, D.J.; Yost, G.S.; Fatah, A.A. Determination of capsaicin, nonivamide, and dihydrocapsaicin in blood and tissue by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2002, 26, 313–319. [Google Scholar]
- Thompson, R.Q.; Phinney, K.W.; Welch, M.J.; White, V.E. Quantitative determination of capsaicinoids by liquid chromatography-electrospray mass spectrometry. Anal. Bioanal. Chem. 2005, 381, 1441–1451. [Google Scholar] [CrossRef]
- Schweiggert, U.; Carle, R.; Schieber, A. Characterization of major and minor capsaicinoids and related compounds in chili pods (Capsicum frutescens L.) by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Anal. Chim. Acta 2006, 557, 236–244. [Google Scholar]
- Scoville, W.L. Note on Capsicum. J. Am. Pharm. Assoc. 1912, 1, 453–454. [Google Scholar]
- Weiss, E.A. Spice Crops; CABI Publishing International: New York, NY, USA, 2002; p. 411. [Google Scholar]
- George, W.L. Official Methods of Analysis of AOAC International. Available onlin: http://www.aoac.org/iMIS15_Prod/AOAC/Publications/Official_Methods_of_Analysis.html (accessed on 20 January 2014).
- Ha, J.; Seo, H.Y.; Shim, Y.S.; Seo, D.W.; Seog, H.; Ito, M.; Nakagawa, H. Determination of capsaicinoids in foods using ultra high performance liquid chromatography. Food Sci. Biotechnol. 2010, 19, 1005–1009. [Google Scholar]
- Nwokem, C.O.; Agbaji, E.B.; Kagbu, J.A.; Ekanem, E.J. Determination of capsaicin content and pungency level of five different peppers grown in Nigeria. NY Sci. J. 2010, 3, 17–21. [Google Scholar]
- Othman, Z.A.A.; Ahmed, Y.B.H.; Habila, M.A.; Ghafar, A.A. Determination of capsaicin and Dihydrocapsaicin in Capsicum Fruit samples using High Performance Liquid Chromatography. Molecules 2011, 16, 8919–8929. [Google Scholar]
- Sanatombi, K.; Sharma, G.J. Capsaicin content and pungency of different Capsicum spp. cultivars. Not. Bot. Horti. Agrobot. Cluj. Napoca. 2008, 36, 89–90. [Google Scholar]
- Mathur, R.; Dangi, R.S.; Das, S.C.; Malhotra, R.C. The hottest chilli variety inIndia. Curr. Sci. India 2000, 79, 287–288. [Google Scholar]
- Pharmaceutical Society of Great Britain. British Pharmaceutical Codex; The Pharmaceutical Press: London, UK, 1973. [Google Scholar]
- American Spice Trade Association. Official Analytical Methods of the American Spice Trade Association, 3rd ed.; American Spice Trade Association: Englewood Cliffs, NJ, USA, 2004. [Google Scholar]
- Pepper Enforcement. Available online: http://www.pepperenforcement.com/capsaicin.html (accessed on 20 January 2014).
- Sample Availability: Samples of the compounds are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Usman, M.G.; Rafii, M.Y.; Ismail, M.R.; Malek, M.A.; Latif, M.A. Capsaicin and Dihydrocapsaicin Determination in Chili Pepper Genotypes Using Ultra-Fast Liquid Chromatography. Molecules 2014, 19, 6474-6488. https://doi.org/10.3390/molecules19056474
Usman MG, Rafii MY, Ismail MR, Malek MA, Latif MA. Capsaicin and Dihydrocapsaicin Determination in Chili Pepper Genotypes Using Ultra-Fast Liquid Chromatography. Molecules. 2014; 19(5):6474-6488. https://doi.org/10.3390/molecules19056474
Chicago/Turabian StyleUsman, Magaji G., Mohd Y. Rafii, Mohd R. Ismail, Md. Abdul Malek, and Mohammad Abdul Latif. 2014. "Capsaicin and Dihydrocapsaicin Determination in Chili Pepper Genotypes Using Ultra-Fast Liquid Chromatography" Molecules 19, no. 5: 6474-6488. https://doi.org/10.3390/molecules19056474
APA StyleUsman, M. G., Rafii, M. Y., Ismail, M. R., Malek, M. A., & Latif, M. A. (2014). Capsaicin and Dihydrocapsaicin Determination in Chili Pepper Genotypes Using Ultra-Fast Liquid Chromatography. Molecules, 19(5), 6474-6488. https://doi.org/10.3390/molecules19056474