Lipid-Based Niclosamide Delivery: Comparative Efficacy, Bioavailability, and Potential as a Cancer Drug
<p>Structures which have been employed in lipid-based niclosamide delivery. Niclosamide represented as a payload in five different lipid-based drug delivery systems: (<b>a</b>) LNE (lipid nanoemulsions): niclosamide solubilized within lipid droplets in an aqueous phase, (<b>b</b>) NLC (nanostructured lipid carriers): niclosamide enclosed in a hybrid core of solid and liquid lipids, (<b>c</b>) SLN (solid lipid nanoparticles): niclosamide encapsulated in a solid lipid core with a lipid bilayer, (<b>d</b>) liposome: niclosamide encapsulated in a spherical vesicle with a lipid bilayer, and (<b>e</b>) SMEDDS (self-microemulsifying drug delivery system): niclosamide in a solid molecular dispersion of oil, surfactants, and cosurfactants [<a href="#B17-lipidology-01-00010" class="html-bibr">17</a>,<a href="#B18-lipidology-01-00010" class="html-bibr">18</a>,<a href="#B19-lipidology-01-00010" class="html-bibr">19</a>,<a href="#B21-lipidology-01-00010" class="html-bibr">21</a>]. Created in BioRender.</p> "> Figure 2
<p>Schematic representation of a niclosamide loaded with SMEDDS formation, based on Liu et al. [<a href="#B76-lipidology-01-00010" class="html-bibr">76</a>]. Created using BioRender.</p> ">
Abstract
:1. Introduction
Lipid Based Delivery | Composition |
---|---|
Solid lipid nanoparticles (SLNs) | Solid lipid core w/surfactant [17,18,21] |
Nanostructured lipid carriers (NLCs) | Core of mixed solid and liquid lipid w/surfactant [17,18,21] |
Lipid prodrug | Conjugated with a lipid moiety [20] |
Lipid nanoemulsions (LNEs) | Oil droplets in water w/surfactants [17,18,21] |
Self-microemulsifying drug delivery system (SMEDDS) | Hydrophilic surfactant, lipophilic cosurfactant, and oil phase [19] |
Liposome | Lipid bilayer vesicle with an aqueous core [17,18,21] |
Formulation Name | Delivery Type | Composition | Size (nm) | Zeta Potential (mV) | DLC (%) | EE (%) | Cancer Type | IC50 (µM) | Free NIC IC50 (µM) |
---|---|---|---|---|---|---|---|---|---|
NIC-loaded liposomal thermogel system [23] | Liposome | Egg lecithin Cholesterol | 108.26–207.43 | −13 ± 9.71 | 7.00–20.00 | 58.21–94.16 | Melanoma (SK-MEL-28) | 1.828 | 3.210 |
Ncl-Lips [24] | Liposome | DSPE-PEG2000 Cholesterol | 136.97 ± 0.54 | −13.5 ± 0.98 | 32.25 ± 0.49 | 89.49 ± 2.40 | * Pulmonary Fibrosis | - | - |
Niclosamide-loaded liposomes [25] | Liposome | - | ~108 | - | - | - | Colon Cancer (CT26) | 4.4 | 2.5 |
Nic-loaded solid lipid nanoparticles (NIC-SLNs) [26] | SLN | Tween 80 Soya lecithin Glyceryl monostearate Stearyl amine | 197.3 ± 18.08 | +10 ± 3.43 | 8.16 | 75.64 | ** Phosphate buffer with dialysis membrane | - | - |
NFM-3 [27] | SLN | Stearic acid PEG-400 Tween 80 | 204.2 | −33.16 | 5.27 | 84.4 | - | *** AUC 16.74 (μg h mL−1) rabbit in vivo | *** AUC 1.51 (μg h mL−1) rabbit in vivo |
PBA-Niclo-SLNs [28] | SLN | Tween 80 Pluronic F-68 Stearylamine | 112.18 ± 1.73 | 23.8 ± 2.7 | 8.3 ± 0.42 | 82.21 ± 0.62 | TNBC | - | - |
Chitosan-coated NLC [29] | NLC | Precirol ATO 5 Compritol 888 ATO, Oleic acid Tween 80 Diacetyl phosphate | 189.6~334.5 | - | - | 98.8–99.7 | Breast (solid Ehrlich) | - | - |
NSPT [29] | Lipid prodrug | Stearate DSPC Cholesterol DSPE-PEG2000 | 30 ± 5 | - | - | - | Osteosarcoma (143B, MG63, U2OS, and SaOS2) | 0.2–2 μM | 1.16 μM |
NL-CSLE [30] | LNE | - | 307.8 | - | >9.0 | - | - | - | - |
NL-PSLE [30] | LNE | - | 162.2 | - | >9.0 | - | - | - | - |
Nano-NCL [31] | SLE | Miglyol® 812, Poloxamer 188 | ~200 | - | ~90 | Colorectal (HCT-116) | 1.259 (48 h) | 5.460 (48 h) DMSO | |
Coarse-NCL [31] | SLE | >1 μm | - | ~90 | Colorectal (HCT-116) | 4.504 (48 h) | 5.460 (48 h) DMSO | ||
Nic-SMEDDS [32] | SMEDDS | Labrasol ALF Plural oleique Labrafac lipophile WL1349 | ~150 | −6.8 | >75 | - | HCC-PDX | - | - |
2. Lipid-Based Drug Delivery of Niclosamide
2.1. Liposomes
Recent Liposome Utilization
2.2. Solid Lipid Nanoparticles (SLNs)
Recent SLN Utilization
2.3. Nanostructured Lipid Carriers (NLCs)
2.4. Lipid Prodrug
2.5. Lipid Nanoemulsions
2.6. Self-Microemulsifying Drug Delivery System (SMEDDS)
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, H.; Li, A.M.; Ye, J. The magic bullet: Niclosamide. Front. Oncol. 2022, 12, 1004978. [Google Scholar] [CrossRef]
- Arend, R.C.; Londoño-Joshi, A.I.; Gangrade, A.; Katre, A.A.; Kurpad, C.; Li, Y.; Samant, R.S.; Li, P.; Landen, C.N.; Yang, E.S.; et al. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget 2016, 7, 86803–86815. [Google Scholar] [CrossRef]
- Kaushal, J.B.; Bhatia, R.; Kanchan, R.K.; Raut, P.; Mallapragada, S.; Ly, Q.P.; Batra, S.K.; Rachagani, S. Repurposing Niclosamide for Targeting Pancreatic Cancer by Inhibiting Hh/Gli Non-Canonical Axis of Gsk3β. Cancers 2021, 13, 3105. [Google Scholar] [CrossRef]
- Suliman, M.A.; Zhang, Z.; Na, H.; Ribeiro, A.L.L.; Zhang, Y.; Niang, B.; Hamid, A.S.; Zhang, H.; Xu, L.; Zuo, Y. Niclosamide inhibits colon cancer progression through downregulation of the Notch pathway and upregulation of the tumor suppressor miR-200 family. Int. J. Mol. Med. 2016, 38, 776–784. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Kim, N.H.; Lee, K.; Cha, Y.H.; Yang, J.H.; Cha, S.Y.; Cho, E.S.; Lee, Y.; Cha, J.S.; Cho, H.S.; et al. Niclosamide is a potential therapeutic for familial adenomatosis polyposis by disrupting Axin-GSK3 interaction. Oncotarget 2017, 8, 31842–31855. [Google Scholar] [CrossRef]
- Ren, X.; Duan, L.; He, Q.; Zhang, Z.; Zhou, Y.; Wu, D.; Pan, J.; Pei, D.; Ding, K. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 2010, 1, 454–459. [Google Scholar] [CrossRef]
- Ng, M.Y.; Song, Z.J.; Tan, C.H.; Bassetto, M.; Hagen, T. Structural investigations on the mitochondrial uncouplers niclosamide and FCCP. FEBS Open Bio 2024, 14, 1057–1071. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Li, H.; Ding, X.; Zhang, Q. Contributions of Hepatic and Intestinal Metabolism to the Disposition of Niclosamide, a Repurposed Drug with Poor Bioavailability. Drug Metab. Dispos. 2019, 47, 756–763. [Google Scholar] [CrossRef]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef]
- Whitesell, J.K. The Merck Index, 12th Edition, CD-ROM (Macintosh): An Encyclopedia of Chemicals, Drugs & Biologicals Edited by S. Budavari, M. O’Neill, A.; Smith, P. Heckelman, and J. Kinneary (Merck & Co., Inc.). Chapman & Hall: New York. 1997. $250.00. ISBN 0-412-75940-3. J. Am. Chem. Soc. 1998, 120, 2209. [Google Scholar]
- Schweizer, M.T.; Haugk, K.; McKiernan, J.S.; Gulati, R.; Cheng, H.H.; Maes, J.L.; Dumpit, R.F.; Nelson, P.S.; Montgomery, B.; McCune, J.S.; et al. A phase I study of niclosamide in combination with enzalutamide in men with castration-resistant prostate cancer. PLoS ONE 2018, 13, e0198389. [Google Scholar] [CrossRef] [PubMed]
- Mito, S.; Cheng, B.; Garcia, B.A.; Ooi, X.Y.; Gonzalez, D.; Ruiz, T.C.; Elisarraras, F.X.; Tsin, A. SAR study of niclosamide derivatives for neuroprotective function in SH-SY5Y neuroblastoma. Bioorg. Med. Chem. Lett. 2023, 96, 129498. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Z.; Ding, C.; Chu, L.; Zhang, Y.; Terry, K.; Liu, H.; Shen, Q.; Zhou, J. Discovery of O-Alkylamino Tethered Niclosamide Derivatives as Potent and Orally Bioavailable Anticancer Agents. ACS Med. Chem. Lett. 2013, 4, 180–185. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, M.; Ye, W.; Zhou, W. Discovery of degradable niclosamide derivatives able to specially inhibit small cell lung cancer (SCLC). Bioorg. Chem. 2021, 107, 104574. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.K.; Prabhuraj, R.S.; Bavya, M.C.; Prasad, R.; Bandyopadhyaya, R.; Naidu, V.G.M.; Srivastava, R. Niclosamide encapsulated polymeric nanocarriers for targeted cancer therapy. RSC Adv. 2019, 9, 26572–26581. [Google Scholar] [CrossRef] [PubMed]
- Lodagekar, A.; Borkar, R.M.; Thatikonda, S.; Chavan, R.B.; Naidu, V.G.M.; Shastri, N.R.; Srinivas, R.; Chella, N. Formulation and evaluation of cyclodextrin complexes for improved anticancer activity of repurposed drug: Niclosamide. Carbohydr. Polym. 2019, 212, 252–259. [Google Scholar] [CrossRef]
- Patel, P.; Garala, K.; Singh, S.; Prajapati, B.G.; Chittasupho, C. Lipid-Based Nanoparticles in Delivering Bioactive Compounds for Improving Therapeutic Efficacy. Pharmaceuticals 2024, 17, 329. [Google Scholar] [CrossRef]
- Gbian, D.L.; Omri, A. Lipid-Based Drug Delivery Systems for Diseases Managements. Biomedicines 2022, 10, 2137. [Google Scholar] [CrossRef]
- Rajpoot, K.; Tekade, M.; Pandey, V.; Nagaraja, S.; Youngren-Ortiz, S.R.; Tekade, R.K. Chapter 9—Self-microemulsifying drug-delivery system: Ongoing challenges and future ahead. In Drug Delivery Systems; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 393–454. [Google Scholar]
- Markovic, M.; Ben-Shabat, S.; Aponick, A.; Zimmermann, E.M.; Dahan, A. Lipids and Lipid-Processing Pathways in Drug Delivery and Therapeutics. Int. J. Mol. Sci. 2020, 21, 3248. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C. Lipid Nanoparticles for Drug Delivery. Adv. Nano Biomed. Res. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Patel, D.; Solanki, J.; Kher, M.M.; Azagury, A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. Small 2024, 20, 2401990. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Famta, P.; Fernandes, V.; Bagasariya, D.; Charankumar, K.; Khatri, D.K.; Singh, S.B.; Srivastava, S. Quality by design steered development of Niclosamide loaded liposomal thermogel for Melanoma: In vitro and Ex vivo evaluation. Eur. J. Pharm. Biopharm. 2022, 180, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, H.; Yuan, L.; Pan, M.; Bei, Z.; Ye, T.; Qian, Z. Niclosamide—Encapsulated lipid nanoparticles for the reversal of pulmonary fibrosis. Mater. Today Bio 2024, 25, 100980. [Google Scholar] [CrossRef] [PubMed]
- Hatamipour, M.; Jaafari, M.R.; Momtazi-Borojeni, A.A.; Ramezani, M.; Sahebkar, A. Evaluation of the Anti-Tumor Activity of Niclosamide Nanoliposomes Against Colon Carcinoma. Curr. Mol. Pharmacol. 2020, 13, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.K.; Srivastava, R.; Naidu, V.G.M. Niclosamide loaded cationic Solid Lipid Nanoparticles for treatment of Cancer. In Proceedings of the 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), Sendai, Japan, 22–25 August 2016; pp. 245–248. [Google Scholar] [CrossRef]
- Rehman, M.U.; Khan, M.A.; Khan, W.S.; Shafique, M.; Khan, M. Fabrication of Niclosamide loaded solid lipid nanoparticles: In vitro characterization and comparative in vivo evaluation. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1926–1934. [Google Scholar] [CrossRef]
- Gowda, D.; Praveen, S.; Srivastava, A.; Osmani, R. Formulation and Evaluation of Nanostructured Lipid Carrier (NLC) For Glimepiride. Der Pharm. Lett. 2016, 8, 304–309. [Google Scholar]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Zhang, T.; Zhang, J.; Wu, B. Significantly enhanced bioavailability of niclosamide through submicron lipid emulsions with or without PEG-lipid: A comparative study. J. Microencapsul. 2015, 32, 496–502. [Google Scholar] [CrossRef]
- Barbosa, E.J.; Fukumori, C.; de Araújo Sprengel, S.; Barreto, T.L.; Ishida, K.; de Araujo, G.L.B.; Bou-Chacra, N.A.; Lopes, L.B. Niclosamide nanoemulsion for colorectal cancer: Development, physicochemical characterization, and in vitro anticancer activity. J. Nanoparticle Res. 2024, 26, 221. [Google Scholar] [CrossRef]
- Nekkanti, V.; Karatgi, P.; Prabhu, R.; Pillai, R. Solid self-microemulsifying formulation for candesartan cilexetil. AAPS Pharm. Sci. Tech. 2010, 11, 9–17. [Google Scholar] [CrossRef]
- Rodríguez, F.; Caruana, P.; De la Fuente, N.; Español, P.; Gámez, M.; Balart, J.; Llurba, E.; Rovira, R.; Ruiz, R.; Martín-Lorente, C.; et al. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022, 12, 784. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Hatamipour, M.; Jaafari, M.R.; Momtazi-Borojeni, A.A.; Ramezani, M.; Sahebkar, A. Nanoliposomal Encapsulation Enhances In Vivo Anti-Tumor Activity of Niclosamide against Melanoma. Anticancer Agents Med. Chem. 2019, 19, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Munster, P.; Krop, I.E.; LoRusso, P.; Ma, C.; Siegel, B.A.; Shields, A.F.; Molnár, I.; Wickham, T.J.; Reynolds, J.; Campbell, K.; et al. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: A phase 1 dose-escalation study. Br. J. Cancer 2018, 119, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- MM-302 Misses Endpoint in Phase II HER2+ Breast Cancer Trial. Available online: https://www.targetedonc.com/view/mm302-misses-endpoint-in-phase-ii-her2-breast-cancer-trial (accessed on 27 October 2024).
- Chelliah, R.; Khan, I.; Daliri, E.B.; Tamizhini, L.; Pravitha, K.S.; Begum, M.; Saravanakumar, K.; Wang, M.; Oh, D.H. Liposomes for Drug Delivery: Progress and Problems. In Smart Nanomaterials in Biomedical Applications; Kim, J., Alle, M., Husen, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 425–447. [Google Scholar]
- Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 587997. [Google Scholar] [CrossRef]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef]
- Waheed, I.; Ali, A.; Tabassum, H.; Khatoon, N.; Lai, W.; Zhou, X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front. Oncol. 2024, 14, 1296091. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54, S131–S155. [Google Scholar] [CrossRef]
- Nguyen, T.; Duong, V. Solid Lipid Nanoparticles. Encyclopedia 2022, 2, 973. [Google Scholar] [CrossRef]
- Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, R.; Rasul, A.; Asghar, S.; Kovács, A.; Berkó, S.; Budai-Szűcs, M. Lipid Nanoparticles: An Effective Tool to Improve the Bioavailability of Nutraceuticals. Int. J. Mol. Sci. 2023, 24, 15764. [Google Scholar] [CrossRef] [PubMed]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Monpara, J.; Swaminathan, S.; Kalhapure, R. Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up. Pharmaceutics 2024, 16, 131. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, M.; Padilha, C.; Radaic, A.; Garcia-Fossa, F.; da Cruz-Höfling, M.A.; Vinolo, M.A.R.; de Jesus, M.B. The in vivo toxicological profile of cationic solid lipid nanoparticles. Drug Deliv. Transl. Res. 2020, 10, 34–42. [Google Scholar] [CrossRef]
- Krstić, M.; Medarević, Đ.; Đuriš, J.; Ibrić, S. Chapter 12—Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. In Lipid Nanocarriers for Drug Targeting; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 473–508. [Google Scholar]
- Basso, J.; Mendes, M.; Cova, T.; Sousa, J.; Pais, A.; Fortuna, A.; Vitorino, R.; Vitorino, C. A Stepwise Framework for the Systematic Development of Lipid Nanoparticles. Biomolecules 2022, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Subroto, E.; Andoyo, R.; Indiarto, R. Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants 2023, 12, 633. [Google Scholar] [CrossRef]
- Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics 2023, 15, 1593. [Google Scholar] [CrossRef]
- Thomas, N.L.; Windle, A.H. A theory of case II diffusion. Polymer 1982, 23, 529–542. [Google Scholar] [CrossRef]
- Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- SS Pindiprolu, S.K.; Krishnamurthy, P.T.; Ghanta, V.R.; Chintamaneni, P.K. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine 2020, 15, 1551–1565. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Fang, X.; Zhou, Y.; Wang, J.; Guo, F.; Li, F.; Peng, X. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int. J. Nanomed. 2011, 6, 683–692. [Google Scholar] [CrossRef]
- Lee, S.; Griffiths, J.R. How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular pH. Cancers 2020, 12, 1616. [Google Scholar] [CrossRef] [PubMed]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Garg, J.; Pathania, K.; Sah, S.P.; Pawar, S.V. Nanostructured lipid carriers: A promising drug carrier for targeting brain tumours. Future J. Pharm. Sci. 2022, 8, 25. [Google Scholar] [CrossRef]
- Shahzadi, I.; Fürst, A.; Knoll, P.; Bernkop-Schnürch, A. Nanostructured Lipid Carriers (NLCs) for Oral Peptide Drug Delivery: About the Impact of Surface Decoration. Pharmaceutics 2021, 13, 1312. [Google Scholar] [CrossRef]
- Elkholy, N.E.; Sultan, A.A.; Abu-Risha, S.E.; El Maghraby, G.M. Chitosan coated lipid carriers as nanoplatform for repurposed anti-breast cancer activity of niclosamide. J. Drug Deliv. Sci. Technol. 2024, 93, 105414. [Google Scholar] [CrossRef]
- Markovic, M.; Ben-Shabat, S.; Keinan, S.; Aponick, A.; Zimmermann, E.M.; Dahan, A. Prospects and Challenges of Phospholipid-Based Prodrugs. Pharmaceutics 2018, 10, 210. [Google Scholar] [CrossRef]
- Reddy, G.B.; Kerr, D.L.; Spasojevic, I.; Tovmasyan, A.; Hsu, D.S.; Brigman, B.E.; Somarelli, J.A.; Needham, D.; Eward, W.C. Preclinical Testing of a Novel Niclosamide Stearate Prodrug Therapeutic (NSPT) Shows Efficacy Against Osteosarcoma. Mol. Cancer Ther. 2020, 19, 1448–1461. [Google Scholar] [CrossRef]
- Hörmann, K.; Zimmer, A. Drug delivery and drug targeting with parenteral lipid nanoemulsions—A review. J. Control. Release 2016, 223, 85–98. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Mneimneh, A.T. Formulation and Applications of Lipid-Based Nanovehicles: Spotlight on Self-emulsifying Systems. Adv. Pharm. Bull. 2021, 11, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, R.; Sasso, J.M.; Zhou, Q.A. PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjugate Chem. 2023, 34, 941–960. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.J.; Li, Y.; Yang, G.; Zhao, C. Nanoemulsions for drug delivery. Particuology 2022, 64, 85–97. [Google Scholar] [CrossRef]
- Elkateb, H.; Cauldbeck, H.; Niezabitowska, E.; Hogarth, C.; Arnold, K.; Rannard, S.; McDonald, T.O. High drug loading solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsions for the dual drug delivery of the HIV drugs darunavir and ritonavir. JCIS Open 2023, 11, 100087. [Google Scholar] [CrossRef]
- Imada, C.; Takahashi, T.; Kuramoto, M.; Masuda, K.; Ogawara, K.; Sato, A.; Wataya, Y.; Kim, H.; Higaki, K. Improvement of Oral Bioavailability of N-251, a Novel Antimalarial Drug, by Increasing Lymphatic Transport with Long-Chain Fatty Acid-Based Self-Nanoemulsifying Drug Delivery System. Pharm. Res. 2015, 32, 2595–2608. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Høy, C.E. Effects of different medium-chain fatty acids on intestinal absorption of structured triacylglycerols. Lipids 2000, 35, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Caliph, S.M.; Charman, W.N.; Porter, C.J. Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J. Pharm. Sci. 2000, 89, 1073–1084. [Google Scholar] [CrossRef]
- Mall, J.; Naseem, N.; Haider, M.F.; Rahman, M.A.; Khan, S.; Siddiqui, S.N. Nanostructured lipid carriers as a drug delivery system: A comprehensive review with therapeutic applications. Intell. Pharm. 2024, in press. [Google Scholar] [CrossRef]
- Pandey, V.; Kohli, S. Self micro emulsifying drug delivery systems (smedds): As a promising approach in enhancing bioavailability of poorly aqueous soluble drugs. J. Med. Pharm. Allied Sci. 2013, 4, 75–83. [Google Scholar]
- Dokania, S.; Joshi, A.K. Self-microemulsifying drug delivery system (SMEDDS)—Challenges and road ahead. Drug Deliv. 2015, 22, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guerrero, D.Q.; Lechuga-Ballesteros, D.; Tan, M.; Ahmad, F.; Aleiwi, B.; Ellsworth, E.L.; Chen, B.; Chua, M.S.; So, S. Lipid-Based Self-Microemulsion of Niclosamide Achieved Enhanced Oral Delivery and Anti-Tumor Efficacy in Orthotopic Patient-Derived Xenograft of Hepatocellular Carcinoma in Mice. Int. J. Nanomed. 2024, 19, 2639–2653. [Google Scholar] [CrossRef] [PubMed]
- Pouton, C.W.; Porter, C.J.H. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv. Drug Deliv. Rev. 2008, 60, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Anandharamakrishnan, C.; Parthasarathi, S. Food Nanotechnology: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Parul, J.; Aggarwal, G.; Sl, H.; Kaur, A. Bioavailability Enhancdement of Poorly Soluble Drugs by Smedds: A Review. J. Drug Deliv. Ther. 2013, 3, 98. [Google Scholar]
- Katona, M.T.; Nagy-Katona, L.; Szabó, R.; Borbás, E.; Tonka-Nagy, P.; Takács-Novák, K. Multi-Compartmental Dissolution Method, an Efficient Tool for the Development of Enhanced Bioavailability Formulations Containing Poorly Soluble Acidic Drugs. Pharmaceutics 2023, 15, 753. [Google Scholar] [CrossRef]
- Backer, V.; Sjöbring, U.; Sonne, J.; Weiss, A.; Hostrup, M.; Johansen, H.K.; Becker, V.; Sonne, D.P.; Balchen, T.; Jellingsø, M.; et al. A randomized, double-blind, placebo-controlled phase 1 trial of inhaled and intranasal niclosamide: A broad spectrum antiviral candidate for treatment of COVID-19. Lancet Reg. Health-Eur. 2021, 4, 100084. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, J.; Du, J.; Wang, H.; Liu, J.; Wang, G. Niclosamide as a Promising Therapeutic Player in Human Cancer and Other Diseases. Int. J. Mol. Sci. 2022, 23, 16116. [Google Scholar] [CrossRef]
- Wiggins, R.; Woo, J.; Mito, S. Optimizing Niclosamide for Cancer Therapy: Improving Bioavailability via Structural Modification and Nanotechnology. Cancers 2024, 16, 3548. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, J.; Wiggins, R.W.; Mito, S. Lipid-Based Niclosamide Delivery: Comparative Efficacy, Bioavailability, and Potential as a Cancer Drug. Lipidology 2024, 1, 134-149. https://doi.org/10.3390/lipidology1020010
Woo J, Wiggins RW, Mito S. Lipid-Based Niclosamide Delivery: Comparative Efficacy, Bioavailability, and Potential as a Cancer Drug. Lipidology. 2024; 1(2):134-149. https://doi.org/10.3390/lipidology1020010
Chicago/Turabian StyleWoo, Jihoo, Russell W. Wiggins, and Shizue Mito. 2024. "Lipid-Based Niclosamide Delivery: Comparative Efficacy, Bioavailability, and Potential as a Cancer Drug" Lipidology 1, no. 2: 134-149. https://doi.org/10.3390/lipidology1020010
APA StyleWoo, J., Wiggins, R. W., & Mito, S. (2024). Lipid-Based Niclosamide Delivery: Comparative Efficacy, Bioavailability, and Potential as a Cancer Drug. Lipidology, 1(2), 134-149. https://doi.org/10.3390/lipidology1020010