PD-L1 Expression in Muscle Invasive Urothelial Carcinomas as Assessed via Immunohistochemistry: Correlations with Specific Clinical and Pathological Features, with Emphasis on Prognosis after Radical Cystectomy
<p>Representative examples of urothelial carcinoma cases (HE staining left) with a positive 22C3 PD-L1 status (right). (<b>A</b>,<b>B</b>) A case of urothelial carcinoma with squamous differentiation demonstrating moderate to intense, partial or complete membrane PD-L1 expression in most of the tumor cells, and a clumpy, less intense, cytoplasmic ± membrane positivity in the immune cells; the CPS for this case was set at 50. (<b>C</b>,<b>D</b>) A case of sarcomatoid variant urothelial carcinoma, revealing an intense, complete PD-L1 membrane positivity in all tumor cells; the CPS for this case was set at 100. (<b>E</b>,<b>F</b>) A case of conventional urothelial carcinoma showing complete membrane expression in the tumor cells and a clumpy, less intense, cytoplasmic ± membrane pattern of expression in the immune cells; the CPS for this case was set at 80.</p> "> Figure 2
<p>Kaplan-Meier plots for overall survival showing that patients with urothelial carcinoma and a positive PD-L1 status (orange line) had improved overall survival versus patients with urothelial carcinoma and a negative PD-L1 status (blue line).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographic and Tumor Characteristics
3.2. Association of PD-L1 Expression with Clinical and Tumor Features
3.3. Association of PD-L1 Expression with Clinical Outcome Following RC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.; Torre, L.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA J. Clin. 2018, 68, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Witjes, J.A.; Bruins, M.; Cathomas, R.; Compérat, E.; Cowan, N.C.; Gakis, G.; Hernández, V.; Lorch, A.; Ribal, M.J.; Thalmann, G.N.; et al. EAU Guidelines on Muscle-Invasive and Metastatic Bladder Cancer; Witjes, J.A., Bruins, M., Cathomas, R., Compérat, E., Cowan, N.C., Gakis, G., Hernández, V., Lorch, A., Ribal, M.J., Thalmann, G.N., et al., Eds.; EAU Guidelines Office: Arnhem, The Netherlands, 2020. [Google Scholar]
- Reis, H.; Serrette, R.; Posada, J.; Lu, V.; Chen, Y.-B.; Gopalan, A.; Fine, S.W.; Tickoo, S.K.; Sirintrapun, S.J.; Iyer, G.; et al. PD-L1 Expression in Urothelial Carcinoma with Predominant or Pure Variant Histology: Concordance Among 3 Commonly Used and Commercially Available Antibodies. Am. J. Surg. Pathol. 2019, 43, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Mullane, S.A.; Werner, L.; Fay, A.P.; Callea, M.; Leow, J.J.; Taplin, M.E.; Choueiri, T.K.; Hodi, F.S.; Freeman, G.J.; et al. Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Ann. Oncol. 2015, 26, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Tretiakova, M.; Fulton, R.; Kocherginsky, M.; Long, T.; Ussakli, C.; Antic, T.; Gown, A. Concordance study of PD-L1 expression in primary and metastatic bladder carcinomas: Comparison of four commonly used antibodies and RNA expression. Mod. Pathol. 2018, 31, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Hahn, A.W.; Sirohi, D.; Agarwal, N. The Role of PD-L1 Testing in Advanced Genitourinary Malignancies. Eur. Urol. Focus 2020, 6, 11–13. [Google Scholar] [CrossRef]
- European Medicines Agency. Keytruda (pembrolizumab): An overview of Keytruda and why it is authorised in the EU. Available online: https://www.ema.europa.eu/en/documents/overview/keytruda-epar-medicine-overview_en.pdf (accessed on 27 April 2021).
- Savic Prince, S.; Bubendorf, L. Predictive potential and need for standardization of PD-L1 immunohistochemistry. Virchows Arch. 2019, 474, 475–484. [Google Scholar] [CrossRef]
- Lopez-Beltran, A.; Cimadamore, A.; Blanca, A.; Massari, F.; Vau, N.; Scarpelli, M.; Cheng, L.; Montironi, R. Immune Checkpoint Inhibitors for the Treatment of Bladder Cancer. Cancers 2021, 13, 131. [Google Scholar] [CrossRef]
- Pichler, R.; Heidegger, I.; Fritz, J.; Danzl, M.; Sprung, S.; Zelger, B.; Brunner, A.; Pircher, A. PD-L1 expression in bladder cancer and metastasis and its influence on oncologic outcome after cystectomy. Oncotarget 2017, 8, 66849–66864. [Google Scholar] [CrossRef] [Green Version]
- Pichler, R.; Fritz, J.; Lackner, F.; Sprung, S.; Brunner, A.; Horninger, W.; Loidl, W.; Pircher, A.; Heidegger, I. Prognostic Value of Testing PD-L1 Expression After Radical Cystectomy in High-risk Patients. Clin. Genitourin. Cancer 2018, 16, e1015–e1024. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.M.; Ng, T.L.; De Jong, F.C.; Zuiverloon, T.C.M.; Fazzari, F.G.T.; Theodorescu, D. Molecular Biomarkers of Response to PD-1/ PD-L1 Immune Checkpoint Blockade in Advanced Bladder Cancer. Bladder Cancer 2019, 5, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Moch, H.; Humphrey, P.A.; Ulbright, T.M.; Reuter, V.E. Tumours of the urinary tract. In WHO Classification of Tumors of the Urinary System and Male Genital Organs; Moch, H., Humphrey, P.A., Ulbright, T.M., Reuter, V.E., Eds.; International Agency for Research on Cancer (IARC): Lyon, France, 2016; pp. 81–99. [Google Scholar]
- Moschini, M.; D’Andrea, D.; Korn, S.; Irmak, Y.; Soria, F.; Compérat, E.; Shariat, S.F. Characteristics and clinical significance of histological variants of bladder cancer. Nat. Rev. Urol. 2017, 14, 651–668. [Google Scholar] [CrossRef] [PubMed]
- American Joint Committee on Cancer. AJCC Cancer Staging Manual, 8th ed.; Amin, M.B., Edge, S.B., Greene, F.L., Byrd, D.R., Brookland, R.K., Washington, M.K., Gershenwald, J.E., Compton, C.C., Hess, K.R., Sullivan, D.C., et al., Eds.; Spriger: Berlin/Heidelberg, Germany, 2017; ISBN 978-3319406176. [Google Scholar]
- Loghin, A.; Chibelean, C.; Orsolya, M.; Nechifor-Boilă, A.; Nechifor-Boilă, A.; Borda, A. Micropapillary urothelial carcinoma: An aggressive variant of urothelial carcinoma. Rom. J. Morphol. Embryol. 2014, 55, 939–945. [Google Scholar]
- Cseke, A. Privind Aprobarea Ghidurilor de Practică Medicală Pentru Specialitatea Urologie; Ordinul nr. 1323/2010; Ministerul Sănătăţii: Bucharest, Romania, 18 October 2010. [Google Scholar]
- Dako/Agilent. PD-L1 IHC 22C3 pharmDx Interpretation Manual – Urothelial Carcinoma. Online Progr. Educ. 2016, 1–76. Available online: https://www.agilent.com/cs/library/usermanuals/public/29276_22C3_pharmdx_uc_interpretation_manual_us.pdf (accessed on 28 April 2021).
- Holland, B.C.; Sood, A.; Delfino, K.; Dynda, D.I.; Ran, S.; Freed, N.; Alanee, S. Age and sex have no impact on expression levels of markers of immune cell infiltration and immune checkpoint pathways in patients with muscle-invasive urothelial carcinoma of the bladder treated with radical cystectomy. Cancer Immunol. Immunother. 2019, 68, 991–997. [Google Scholar] [CrossRef]
- Ding, X.; Chen, Q.; Yang, Z.; Li, J.; Zhan, H.; Lu, N.; Chen, M.; Yang, Y.; Wang, J.; Yang, D. Clinicopathological and prognostic value of PD-L1 in urothelial carcinoma: A meta-analysis. Cancer Manag. Res. 2019, 11, 4171–4184. [Google Scholar] [CrossRef] [Green Version]
- Xylinas, E.; Robinson, B.D.; Kluth, L.A.; Volkmer, B.G.; Hautmann, R.; Kufer, R.; Zerbib, M.; Kwon, E.; Thompson, R.H.; Boorjian, S.A.; et al. Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. Eur. J. Surg. Oncol. 2014, 40, 121–127. [Google Scholar] [CrossRef]
- Madersbacher, S.; Hochreiter, W.; Burkhard, F.; Thalmann, G.N.; Danuser, H.; Markwalder, R.; Studer, U.E. Radical cystectomy for bladder cancer today—A homogeneous series without neoadjuvant therapy. J. Clin. Oncol. 2003, 21, 690–696. [Google Scholar] [CrossRef]
- Marks, P.; Gild, P.; Soave, A.; Janisch, F.; Minner, S.; Engel, O.; Vetterlein, M.W.; Shariat, S.F.; Sauter, G.; Dahlem, R.; et al. The impact of variant histological differentiation on extranodal extension and survival in node positive bladder cancer treated with radical cystectomy. Surg. Oncol. 2019, 28, 208–213. [Google Scholar] [CrossRef]
- Torlakovic, E.; Lim, H.J.; Adam, J.; Barnes, P.; Bigras, G.; Chan, A.W.H.; Cheung, C.C.; Chung, J.-H.; Couture, C.; Fiset, P.O.; et al. “Interchangeability” of PD-L1 immunohistochemistry assays: A meta-analysis of diagnostic accuracy. Mod. Pathol. 2020, 33, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Zavalishina, L.; Tsimafeyeu, I.; Povilaitite, P.; Raskin, G.; Andreeva, Y.; Petrov, A.; Kharitonova, E.; Rumyantsev, A. RUSSCO-RSP comparative study of immunohistochemistry diagnostic assays for PD-L1 expression in urothelial bladder cancer. Virchows Arch. 2018, 719–724. [Google Scholar] [CrossRef]
- Zajac, M.; Scott, M.; Ratcliffe, M.; Scorer, P.; Barker, C.; Al-Masri, H.; Rebelatto, M.C.; Walker, J. Concordance among four commercially available, validated programmed cell death ligand-1 assays in urothelial carcinoma. Diagn. Pathol. 2019, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paver, E.C.; Cooper, W.A.; Colebatch, A.J.; Ferguson, P.M.; Hill, S.K.; Lum, T.; Shin, J.S.; O’Toole, S.; Anderson, L.; Scolyer, R.A.; et al. Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: A guide to immunohistochemistry implementation and interpretation. Pathology 2021, 53, 141–156. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total (n = 69) | PD-L1 Positive (CPS ≥ 10) n = 28 (40.6%) | PD-L1 Negative (CPS < 10) n = 41 (59.4%) | p |
---|---|---|---|---|
Age (mean ± SD) | 67.35 ± 9.98 | 69.11 ± 9.25 | 66.15 ± 10.4 | 0.22 ‡ |
Gender (n (%)) | ||||
Male | 57 (82.6) | 25 (89.3) | 32 (78.0) | 0.33 † |
Female | 12 (17.4) | 3 (10.7) | 9 (22.0) | |
Histology. n (%) | ||||
UC conventional | 36 (52.2) | 11 (39.3) | 25(61.0) | |
UC nonconventional (variants): | ||||
Poorly differentiated | 11 (15.9) | 4 (14.3) | 7 (17.1) | |
Micropapillary | 5 (7.2) | 2 (7.1) | 3 (7.3) | |
Squamous differentiation | 5 (7.2) | 5 (17.9) | 0 | |
Glandular differentiation | 1 (1.4) | 1 (3.6) | 0 | |
Plasmocitoid | 3 (4.3) | 0 | 3 (7.3) | |
Sarcomatoid | 4 (5.8) | 3 (10.7) | 2 (4.8) | |
Nested | 1 (1.4) | 0 | 1 (2.4) | |
Others (mixed) | 3 (4.3) | 2 (7.1) | 1 (2.4) | |
Assoc. papillary component (n (%)) | ||||
Absent | 49 (71.0) | 22 (78.6) | 27 (65.9) | 0.29 † |
Present | 20 (29.0) | 6 (21.4) | 14 (34.1) | |
Concomitant CIS (n (%)) | ||||
Absent | 45 (65.2) | 16 (57.1) | 29 (70.7) | 0.30 † |
Present | 24 (34.8) | 12 (42.9) | 12 (29.3) | |
Surgical margins status (n (%)) | ||||
Negative | 61 (88.4) | 27 (96.4) | 34 (82.9) | 0.13 † |
Positive | 8 (11.6) | 1 (3.6) | 7 (17.1) | |
Primary tumour (pT) (n (%)) | ||||
pT2 | 15 (21.7) | 5 (17.9) | 10 (24.4) | |
pT3 | 34 (49.3) | 15 (53.6) | 19 (46.3) | 0.72 † |
pT4 | 20 (29.0) | 8 (28.6) | 12(29.3) | |
Lymph node involvement (n (%)) | ||||
Nx | 20 (29.0) | 7 (25.0) | 13 (31.7) | |
N0 | 25 (36.2) | 12 (42.9) | 13 (31.7) | 0.67 † |
N+ (including N1, N2, N3) | 24 (34.8) | 9 (32.1) | 15 (36.6) | |
Distant metastasis (n (%)) | ||||
M0 | 56 (81.2) | 23 (82.1) | 33 (80.5) | 0.86 † |
M1 | 13 (18.8) | 5 (17.9) | 8 (19.5) | |
Follow-up data (median months) | 10 (0–83) | 10.5 (1–69) | 9 (0–83) | 0.68 ^ |
Tumor recurrence (n (%)) | ||||
Absent | 66 (95.7) | 27 (96.4) | 39 (95.1) | 0.79 † |
Present | 3 (4.3) | 1 (3.6) | 2 (4.9) | |
Death (n (%)) | ||||
No | 29 (42.0) | 14 (50.0) | 15 (36.6) | 0.26 † |
Yes | 40 (58.0) | 14 (50.0) | 26 (63.4) |
PD-L1-Positive Group (CPS ≥ 10) | PD-L1-Negative Group (CPS < 10) | |||||||
---|---|---|---|---|---|---|---|---|
Clinical Factors | p-Value | Hazard Ratio (HR) | 95.0% CI for HR | p-Value | Hazard Ratio (HR) | 95.0% CI for HR | ||
Lower | Upper | Lower | Upper | |||||
Gender | 0.699 | 0.666 | 0.085 | 5.217 | 0.246 | 1.679 | 0.700 | 4.028 |
Age | 0.924 | 0.997 | 0.940 | 1.058 | 0.280 | 1.020 | 0.984 | 1.057 |
T stage | 0.021 | 2.910 | 1.175 | 7.210 | 0.439 | 1.239 | 0.720 | 2.131 |
N stage | 0.599 | 1.189 | 0.625 | 2.261 | 0.007 | 1.982 | 1.205 | 3.263 |
M stage | 0.347 | 1.752 | 0.544 | 5.647 | 0.227 | 1.710 | 0.717 | 4.082 |
Carcinoma in situ | 0.208 | 1.974 | 0.685 | 5.685 | 0.674 | 1.190 | 0.529 | 2.679 |
Positive surgical margins | 0.333 | 2.795 | 0.349 | 22.405 | 0.463 | 1.445 | 0.541 | 3.861 |
Tumor recurrence | 0.624 | 0.046 | 0 | 10,387.347 | 0.443 | 0.455 | 0.061 | 3.400 |
PD-L1-Positive Group | PD-L1-Negative Group | |||||||
---|---|---|---|---|---|---|---|---|
Clinical Factors | p-Value | Hazard Ratio (HR) | 95.0% CI for HR | p-Value | Hazard Ratio (HR) | 95.0% CI for HR | ||
Lower | Upper | Lower | Upper | |||||
Gender | 0.750 | 0.671 | 0.058 | 7.812 | 0.402 | 1.538 | 0.562 | 4.213 |
Age (years) | 0.481 | 0.973 | 0.903 | 1.049 | 0.193 | 1.029 | 0.986 | 1.074 |
T stage | 0.027 | 3.018 | 1.132 | 8.046 | 0.659 | 0.870 | 0.469 | 1.613 |
N stage | 0.441 | 1.375 | 0.612 | 3.091 | 0.008 | 2.601 | 1.287 | 5.260 |
M stage | 0.547 | 1.527 | 0.385 | 6.052 | 0.098 | 2.625 | 0.837 | 8.234 |
Tumor recurrence | 0.991 | 0 | 0 | 0 | 0.819 | 0.766 | 0.078 | 7.508 |
Positive surgical margins | 0.898 | 1.174 | 0.100 | 13.745 | 0.977 | 0.981 | 0.269 | 3.572 |
Carcinoma in situ | 0.767 | 1.346 | 0.189 | 9.589 | 0.881 | 1.076 | 0.413 | 2.807 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechifor-Boilă, I.A.; Loghin, A.; Nechifor-Boilă, A.; Decaussin-Petrucci, M.; Voidăzan, S.; Chibelean, B.C.; Martha, O.; Borda, A. PD-L1 Expression in Muscle Invasive Urothelial Carcinomas as Assessed via Immunohistochemistry: Correlations with Specific Clinical and Pathological Features, with Emphasis on Prognosis after Radical Cystectomy. Life 2021, 11, 404. https://doi.org/10.3390/life11050404
Nechifor-Boilă IA, Loghin A, Nechifor-Boilă A, Decaussin-Petrucci M, Voidăzan S, Chibelean BC, Martha O, Borda A. PD-L1 Expression in Muscle Invasive Urothelial Carcinomas as Assessed via Immunohistochemistry: Correlations with Specific Clinical and Pathological Features, with Emphasis on Prognosis after Radical Cystectomy. Life. 2021; 11(5):404. https://doi.org/10.3390/life11050404
Chicago/Turabian StyleNechifor-Boilă, Ioan Alin, Andrada Loghin, Adela Nechifor-Boilă, Myriam Decaussin-Petrucci, Septimiu Voidăzan, Bogdan Călin Chibelean, Orsolya Martha, and Angela Borda. 2021. "PD-L1 Expression in Muscle Invasive Urothelial Carcinomas as Assessed via Immunohistochemistry: Correlations with Specific Clinical and Pathological Features, with Emphasis on Prognosis after Radical Cystectomy" Life 11, no. 5: 404. https://doi.org/10.3390/life11050404
APA StyleNechifor-Boilă, I. A., Loghin, A., Nechifor-Boilă, A., Decaussin-Petrucci, M., Voidăzan, S., Chibelean, B. C., Martha, O., & Borda, A. (2021). PD-L1 Expression in Muscle Invasive Urothelial Carcinomas as Assessed via Immunohistochemistry: Correlations with Specific Clinical and Pathological Features, with Emphasis on Prognosis after Radical Cystectomy. Life, 11(5), 404. https://doi.org/10.3390/life11050404