Assessing the Accuracy and Consistency of Cropland Products in the Middle Yangtze Plain
<p>The geographical and topographic characteristics of the study area (Projection: Krasovsky 1940 Albers; Geodetic System: WGS 84).</p> "> Figure 2
<p>The distribution of sample points.</p> "> Figure 3
<p>Consistency in cropland proportions across products (The blue points illustrate the percentage of cropland in small hexagons defined by the <span class="html-italic">x</span>-axis and <span class="html-italic">y</span>-axis. The black line represents the fitted regression line for these cropland percentage data points.).</p> "> Figure 4
<p>Consistency between GLAD and the CLCD (the distribution plot above and on the right illustrates the inconsistent area (in square kilometers) across longitude and latitude. Different colors represent varying slopes: blue corresponds to 0–2°, green to 2–6°, yellow to 6–15°, orange to 6–25°, and red to slopes greater than 25°).</p> "> Figure 5
<p>Comparison between different cropland scenarios and yearbook statistical data (The blue points represent the cropland area obtained by the <span class="html-italic">x</span>-axis and <span class="html-italic">y</span>-axis. The dotted line corresponds to the 1:1 relationship.).</p> "> Figure 6
<p>The changed area and proportion in counties and prefectures.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
3. Results
3.1. Accuracy Assessment
3.2. Consistency Evaluation
3.3. Cropland Distribution and Its Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, F.; Deng, L.; Zhang, Z.; Wang, Z.; Wu, Q.; Qiao, J. Multiscale Analysis of Factors Affecting Food Security in China, 1980–2017. Environ. Sci. Pollut. Res. 2022, 29, 6511–6525. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrod, F.; Beckmann, M.; Dunnett, S.; Graham, L.; Holland, R.A.; Meyfroidt, P.; Seppelt, R.; Song, X.-P.; Spake, R.; Václavík, T.; et al. Identifying Agricultural Frontiers for Modeling Global Cropland Expansion. One Earth 2020, 3, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Liu, S.; Han, K.; Guan, S.; Zhou, D. Conversion of Cropland to Forage Land and Grassland Increases Soil Labile Carbon and Enzyme Activities in Northeastern China. Agric. Ecosyst. Environ. 2017, 245, 83–91. [Google Scholar] [CrossRef]
- Cai, H.; Yang, X.; Xu, X. Spatiotemporal Patterns of Urban Encroachment on Cropland and Its Impacts on Potential Agricultural Productivity in China. Remote Sens. 2013, 5, 6443–6460. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zhao, X.; Wang, X.; Wu, W.; Yi, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S.; et al. The Changing Patterns of Cropland Conversion to Built-up Land in China from 1987 to 2010. J. Geogr. Sci. 2018, 28, 1595–1610. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhou, L.; Sun, D.; Hu, F. Impacts of Urban Expansion on the Loss and Fragmentation of Cropland in the Major Grain Production Areas of China. Land 2022, 11, 130. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The Effects of China’s Cultivated Land Balance Program on Potential Land Productivity at a National Scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Xu, J.-Y.; Chen, L.-D.; Lu, Y.-H.; Fu, B.-J. Sustainability Evaluation of the Grain for Green Project: From Local People’s Responses to Ecological Effectiveness in Wolong Nature Reserve. Environ. Manag. 2007, 40, 113–122. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.-P.; Pickens, A.; Shen, Q.; Cortez, J. Global Maps of Cropland Extent and Change Show Accelerated Cropland Expansion in the Twenty-First Century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Yao, J.; Zhang, X.; Zhang, H. Mapping the Annual Dynamics of Cultivated Land in Typical Area of the Middle-Lower Yangtze Plain Using Long Time-Series of Landsat Images Based on Google Earth Engine. Int. J. Remote Sens. 2020, 41, 1625–1644. [Google Scholar] [CrossRef]
- Yao, X.; Wu, D. Spatiotemporal Changes and Influencing Factors of Rural Settlements in the Middle Reaches of the Yangtze River Region, 1990–2020. Land 2023, 12, 1741. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal Characteristics, Patterns, and Causes of Land-Use Changes in China since the Late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Feng, Z. Agricultural Development Potential in the Lake Region of the Middle Yangtze Plain. Resour. Environ. Yangtze Basin 1994, 2, 114–120. [Google Scholar]
- Wang, L.; Zhang, S.; Liu, Y.; Liu, Y. Interaction between Construction Land Expansion and Cropland Expansion and Its Socioeconomic Determinants: Evidence from Urban Agglomeration in the Middle Reaches of the Yangtze River, China. Front. Environ. Sci. 2022, 10, 882582. [Google Scholar] [CrossRef]
- Xie, C.; Huang, X.; Mu, H.; Yin, W. Impacts of Land-Use Changes on the Lakes across the Yangtze Floodplain in China. Environ. Sci. Technol. 2017, 51, 3669–3677. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable Classification with Limited Sample: Transferring a 30-m Resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2 and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S. ESA WorldCover 10 m 2021 V200. 2022. Available online: https://zenodo.org/records/7254221 (accessed on 27 February 2024). [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, S.; Chen, B.; Weng, Q.; Gong, P.; Bai, Y.; Yang, J.; Yu, L.; Xu, B. A 30 m Annual Cropland Dataset of China from 1986 to 2021. Earth Syst. Sci. Data Discuss. 2023, 1–34, [preprint], in review. [Google Scholar] [CrossRef]
- Xu, X.; Li, B.; Liu, X.; Li, X.; Shi, Q. Mapping Annual Global Land Cover Changes at a 30 m Resolution from 2000 to 2015. Yaogan Xuebao/J. Remote Sens. 2021, 25, 1896–1916. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- China National Knowledge Infrastructure (CNKI). Available online: https://www.cnki.net/index/ (accessed on 14 February 2024).
- Stehman, S.V. Estimating Area and Map Accuracy for Stratified Random Sampling When the Strata Are Different from the Map Classes. Int. J. Remote Sens. 2014, 35, 4923–4939. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, H.; Li, Y. Consistency Analysis and Accuracy Asssessment of Multi-Source Land Cover Products in the Yangyze River Delta. Trans. Chin. Soc. Agric. Eng. 2021, 37, 142–150. [Google Scholar]
- Liu, L.; Zhang, X.; Gao, Y.; Chen, X.; Shuai, X.; Mi, J. Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. J. Remote Sens. 2021, 2021, 5289697. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Gong, P. Improving 30 m Global Land-Cover Map FROM-GLC with Time Series MODIS and Auxiliary Data Sets: A Segmentation-Based Approach. Int. J. Remote Sens. 2013, 34, 5851–5867. [Google Scholar] [CrossRef]
- Foody, G.M.; Arora, M.K. An Evaluation of Some Factors Affecting the Accuracy of Classification by an Artificial Neural Network. Int. J. Remote Sens. 1997, 18, 799–810. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, X.; Chen, S.; Hu, B.; Wang, N.; Shi, Z. Quantifying the Agreement and Accuracy Characteristics of Four Satellite-Based LULC Products for Cropland Classification in China. J. Integr. Agric. 2023, 23, 283–297. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, J.; Ge, Q. Quantifying the Accuracies of Six 30-m Cropland Datasets over China: A Comparison and Evaluation Analysis. Comput. Electron. Agric. 2022, 197, 106946. [Google Scholar] [CrossRef]
- Yu, S.; Li, C.; Yu, D.; He, Q.; Luo, W.; Xiang, F. Land Cover Change on Beach of Dongting Lake’s Beach. Earth Sci. 2020, 45, 1918–1927. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, T.; Wang, S.; Liu, K.; Yang, J. Cropland Abandonment Mapping at Sub-Pixel Scales Using Crop Phenological Information and MODIS Time-Series Images. Comput. Electron. Agric. 2023, 208, 107763. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Wu, L.; Tang, Y.; Meng, Y. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sens. 2019, 11, 1234. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Zhang, E.; Chen, J.; Tan, Q. Dynamics and Driving Mechanisms of Cultivated Land at County Level in China. Acta Geogr. Sin. 2023, 78, 2105–2127. [Google Scholar]
- Li, D.; Duo, L.; Bao, C.; Zhang, X.; Zou, Z. Spatiotemporal Distribution and Fragmentation Driving Mechanism in Paddy Fields and Dryland of Urban Agglomeration in the Middle Reaches of the Yangtze River. Land 2024, 13, 58. [Google Scholar] [CrossRef]
- Li, S.; Li, X. Economic Characteristics and the Mechanism of Farmland Marginalization in Mountainous Areas of China. Acta Geogr. Sin. 2018, 73, 803–817. [Google Scholar]
- Zhong, H.; Liu, Z.; Wang, J. Understanding Impacts of Cropland Pattern Dynamics on Grain Production in China: An Integrated Analysis by Fusing Statistical Data and Satellite-Observed Data. J. Environ. Manag. 2022, 313, 114988. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Gong, P. Google Earth as a Virtual Globe Tool for Earth Science Applications at the Global Scale: Progress and Perspectives. Int. J. Remote Sens. 2012, 33, 3966–3986. [Google Scholar] [CrossRef]
- Potere, D. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive. Sensors 2008, 8, 7973–7981. [Google Scholar] [CrossRef] [PubMed]
- Pulighe, G.; Baiocchi, V.; Lupia, F. Horizontal Accuracy Assessment of Very High Resolution Google Earth Images in the City of Rome, Italy. Int. J. Digit. Earth 2016, 9, 342–362. [Google Scholar] [CrossRef]
Dataset | Time Period | Reference Products | Classification Method | Features | Accuracy | Source |
---|---|---|---|---|---|---|
GLAD | 2003, 2007, 2011, 2015, 2019 | Global Food-and-Water Security-support Analysis Data (GFSAD) | Bagging Decision Trees (1° × 1°) | Bands and their linear combinations, phenological features, topographical features | 98.3% ± 1.1% (OA) | https://glad.umd.edu/dataset/croplands (accessed on 25 February 2024) |
AGLC | 2000–2015 | FROM-GLC, Globeland30, FROM-GLC, GLC-FCS30, GAUD, GFC, GSW, ESA CCI-LC | Random forest (4° × 4°) | Bands and their linear combinations | 76.1% (AGLC-2015 OA); Cropland UA85.3%, PA74.23% | https://code.earthengine.google.com/?asset=users/xxc/GLC_2000_2015 (accessed on 25 February 2024) |
CLCD | 1990–2019 | CLUDs | Random forest (0.5° hexagonal grid) | Bands and their linear combinations, time features, topographical features, location features | 79.30% ± 1.99% (OA); Cropland UA77.73%, PA73.66% | https://zenodo.org/records/5816591 (accessed on 25 February 2024) |
CACD | 1986–2021 | CLCD, CLUD, GSW, GAIA | Random forest (0.8° × 0.8°) | Bands and their linear combinations, topographical features | OA (93% ± 1%) | https://zenodo.org/records/7936885 (accessed on 25 February 2024) |
Labeled | True | False | |
---|---|---|---|
Predicted | |||
True | TP | FP (error of commission) | |
False | FN (error of omission) | TN |
Scenario | User’s Accuracy (UA) | Producer’s Accuracy (PA) | Overall Accuracy (OA) | F1 Score |
---|---|---|---|---|
GLAD | 96.09% | 83.95% | 88.80% | 89.61% |
AGLC | 85.81% | 95.28% | 88.22% | 90.30% |
CLCD | 80.73% | 98.41% | 85.57% | 88.69% |
CACD | 85.16% | 97.10% | 88.60% | 90.74% |
(1) | 97.64% | 81.63% | 88.30% | 88.92% |
(2) | 89.84% | 95.57% | 91.23% | 92.62% |
(3) | 84.05% | 98.29% | 88.29% | 90.61% |
(4) | 97.45% | 81.92% | 88.37% | 89.01% |
(5) | 97.65% | 81.72% | 88.35% | 88.98% |
(6) | 96.74% | 83.49% | 88.89% | 89.63% |
(7) | 90.51% | 93.34% | 90.53% | 91.90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Jiang, L.; Liu, Y. Assessing the Accuracy and Consistency of Cropland Products in the Middle Yangtze Plain. Land 2024, 13, 301. https://doi.org/10.3390/land13030301
Xu H, Jiang L, Liu Y. Assessing the Accuracy and Consistency of Cropland Products in the Middle Yangtze Plain. Land. 2024; 13(3):301. https://doi.org/10.3390/land13030301
Chicago/Turabian StyleXu, Haixia, Luguang Jiang, and Ye Liu. 2024. "Assessing the Accuracy and Consistency of Cropland Products in the Middle Yangtze Plain" Land 13, no. 3: 301. https://doi.org/10.3390/land13030301
APA StyleXu, H., Jiang, L., & Liu, Y. (2024). Assessing the Accuracy and Consistency of Cropland Products in the Middle Yangtze Plain. Land, 13(3), 301. https://doi.org/10.3390/land13030301