Plus-InVEST Study of the Chengdu-Chongqing Urban Agglomeration’s Land-Use Change and Carbon Storage
<p>Map of the study area.</p> "> Figure 2
<p>Main drivers behind land usage in the urban agglomeration of Chengdu and Chongqing.</p> "> Figure 3
<p>Chord diagram of land-use transfer.</p> "> Figure 4
<p>Comparison of simulation for 2020 and predictions of two scenarios in 2030.</p> "> Figure 5
<p>Ranking of various land-use probabilities and their driving factors.</p> "> Figure 5 Cont.
<p>Ranking of various land-use probabilities and their driving factors.</p> "> Figure 6
<p>Carbon storage and its changes over different periods.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.3. Research Methods
2.3.1. PLUS Model
2.3.2. Validation of Model Accuracy
2.3.3. Setting the Scene
2.3.4. InVEST Model
Land-Use Type | Aboveground Carbon Density | Underground Carbon Density | Density of Soil Carbon | Carbon Density of Dead Organic Materials | Sources |
---|---|---|---|---|---|
Cultivated land | 38.70 | 80.70 | 92.90 | 1.00 | [37,38,39] |
Forest | 55.56 | 144.87 | 206.45 | 3.50 | [39,40,41] |
Grassland | 29.30 | 52.90 | 135.00 | 1.00 | [37,38,39,40] |
Water | 21.40 | 73.10 | 113.00 | 1.00 | [41,42] |
Construction land | 3.30 | 87.30 | 115.30 | 0 | [42,43] |
Unused land | 22.60 | 136.90 | 171.80 | 0 | [38,42] |
3. Results
3.1. LUCC Dynamics during 2000–2020
3.2. Analysis of Prediction Results of Various Land Use Situations
3.3. Accuracy Verification and Driving Factor Contribution Analysis
3.4. Changes of Carbon Storage between 2000 and 2030
3.5. Characteristics of Change in Carbon Storage Caused by Land Type Conversion
4. Discussion
4.1. PLUS Analysis of Model Uncertainty
4.2. InVEST Model Uncertainty Analysis
4.3. Advantages and Limitations of the Linkage Model
4.4. Spatial Structure of Urban Agglomerations and Carbon Storage
4.5. Development Strategy for Urban Agglomeration and Carbon Storage
4.6. Contribution to Research
5. Conclusions
- (1)
- Land use in the Chengdu-Chongqing urban agglomeration has changed significantly between 2000 and 2020, primarily due to a continuous increase of forest land area, water area, construction land area, and unused land area, together with a decrease of cropland and grassland areas. The driving force behind this change mainly comes from urbanization and the implementation of the “returning farmland to forest” policy. Carbon storage in the urban agglomeration has increased by 24.490 × 106 t in the past 20 years.
- (2)
- In comparison, the accuracy of kappa is 0.83. According to the historical development trends from 2000 to 2020, the contribution of the probability impact factors of regional expansion have been calculated and ranked. The DEM exerts a significant influence, but other factors also contribute differently in specific situations.
- (3)
- From 2020 to 2030, the cultivated lands, forests, grasslands, water areas, and unused lands in Chengdu-Chongqing will decline continuously under the natural development scenario. The area of construction land will continue to grow. The urban agglomeration’s carbon storage will decrease from 5673.100 × 106 t in 2020 to 5623.099 × 106 t in 2030, i.e., a total decrease of 50.001 × 106 t.
- (4)
- In the scenario of ecological preservation, crop land, water area, and unoccupied land will all decrease, while woods, grassland, and building land would all continue to grow. In this scenario, the urban agglomeration’s carbon storage in 2020 will decrease from 5673.100 × 106 t to 5623.347 × 106 t in 2030, i.e., a total decrease of 49.753 × 106 t.
- (5)
- Carbon storage under the ecological protection scenario can be reduced by 0.248 × 106 t relative to the natural development model. This slower reduction rate is conducive to the stabilization of carbon sinks. Under the ecological protection scenario, carbon storage in northwest China with Chengdu as its core decreased by 27.840 × 106 t, i.e., 99.70% of the natural development scenario. Carbon storage in southeast China, with Chongqing as its core, also declined slightly.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schimel, D.S.; House, J.I.; Hibbard, K.A.; Bousquet, P.; Ciais, P.; Peylin, P.; Braswell, B.H.; Apps, M.J.; Baker, D.; Bondeau, A.; et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 2001, 414, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. UK 2015, 5, 10233. [Google Scholar] [CrossRef]
- Cantarello, E.; Newton, A.C.; Hill, R.A. Potential effects of future land-use change on regional carbon stocks in the UK. Environ. Sci. Policy 2011, 14, 40–52. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Su, M.; Guo, R.; Hong, W. Institutional transition and implementation path for cultivated land protection in highly urbanized regions: A case study of Shenzhen, China. Land Use Policy 2019, 81, 493–501. [Google Scholar] [CrossRef]
- Cai, W.; Peng, W. Exploring spatiotemporal variation of carbon storage driven by land use policy in the Yangtze river delta region. Land 2021, 10, 1120. [Google Scholar] [CrossRef]
- Erik, N.; Heather, S.; Peter, H.; Marc, C.; Driss, E.; Stacie, W.; Steven, M.; Stephen, P.; Maya, M.A. Projecting Global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar]
- Xu, Z.; Fan, W.; Wei, H.; Zhang, P.; Ren, J.; Gao, Z.; Ulgiati, S.; Kong, W.; Dong, X. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas river basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef]
- Han, J.; Meng, X.; Zhou, X.; Yi, B.; Liu, M.; Xiang, W. A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: A case study in China’s yangtze river delta region. J. Clean. Prod. 2017, 141, 1040–1050. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Thinh, N.; Xi, Y. Assessment of the effects of urban expansion on terrestrial carbon storage: A case study in Xuzhou City, China. Sustainability 2018, 10, 647. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, Q.; Gou, T.; Mo, J.; Wang, Z.; Gao, M. Spatial-temporal changes of urban areas and terrestrial carbon storage in the Three Gorges Reservoir in China. Ecol. Indic. 2018, 95, 343–352. [Google Scholar] [CrossRef]
- Brown, D.G.; Verburg, P.H.; Pontius, R.G.; Lange, M.D. Opportunities to improve impact, integration, and evaluation of land change models. Curr. Opin. Environ. Sustain. 2013, 5, 452–457. [Google Scholar] [CrossRef]
- Anputhas, M.; Janmaat, J.J.A.; Nichol, C.F.; Wei, X.A. Modelling spatial association in pattern based land use simulation models. J. Environ. Manag. 2016, 181, 465–476. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Modell. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash Aari, Z.H. Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an analytical hierarchy process and frequency ratio. Int. J. Appl. Earth Obs. 2017, 59, 65–78. [Google Scholar] [CrossRef]
- Etemadi, H.; Smoak, J.M.; Karami, J. Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA–Markov algorithms to monitor and predict future change. Environ. Earth Sci. 2018, 77, 208. [Google Scholar] [CrossRef]
- Liang, Y.; Hashimoto, S.; Liu, L. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [Google Scholar] [CrossRef]
- Sadat, M.; Zoghi, M.; Malekmohammadi, B. Spatiotemporal modeling of urban land cover changes and carbon storage ecosystem services: Case study in Qaem Shahr County, Iran. Environ. Dev. Sustain. 2020, 22, 8135–8158. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Deng, Y.; Yao, S.; Hou, M.; Zhang, T.; Lu, Y.; Gong, Z.; Wang, Y. Assessing the effects of the green for grain program on ecosystem carbon storage service by linking the InVEST and FLUS models: A case study of Zichang county in hilly and gully region of Loess Plateau. Nat. Resour. 2020, 35, 826–844. [Google Scholar]
- Liu, X.; Wang, S.; Wu, P.; Feng, K.; Hubacek, K.; Li, X.; Sun, L. Impacts of urban expansion on terrestrial carbon storage in china. Environ. Sci. Technol. 2019, 53, 6834–6844. [Google Scholar] [CrossRef]
- Gao, J.; Wang, L. Embedding spatiotemporal changes in carbon storage into urban agglomeration ecosystem management: A case study of the Yangtze River Delta, China. J. Clean. Prod. 2019, 237, 117764. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput Environ Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting urban land use change based on cellular automata and the PLUS model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
- Maanan, M.; Maanan, M.; Karim, M.; Ait Kacem, H.; Ajrhough, S.; Rueff, H.; Snoussi, M.; Rhinane, H. Modelling the potential impacts of land use/cover change on terrestrial carbon stocks in north-west Morocco. Int. J. Sust. Dev. World. 2019, 26, 560–570. [Google Scholar] [CrossRef]
- Etemadi, N.; Rickard, J.; Anderton, H.; Spall, S.; Hall, C.; Vaux, D.; Nachbur, U.; Silke, J. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the middle reaches of the Yangtze river economic belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 2020, 701, 134690. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gong, J.; Tang, W.; Liu, C. Patch-based cellular automata model of urban growth simulation: Integrating feedback between quantitative composition and spatial configuration. Comput. Environ. Urban Syst. 2020, 79, 101402. [Google Scholar] [CrossRef]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Rodríguez-Echeverry, J.; Echeverría, C.; Oyarzún, C.; Morales, L. Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landsc. Ecol. 2018, 33, 439–453. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Chen, T.; Peng, L.; Wang, Q. Scenario decision of ecological security based on the trade-off among ecosystem services. China Environ. Sci. 2021, 41, 3956–3968. [Google Scholar]
- Nie, X.; Lu, B.; Chen, Z.; Yang, Y.; Chen, S.; Chen, Z.; Wang, H. Increase or decrease? Integrating the CLUMondo and InVEST models to assess the impact of the implementation of the major function oriented zone planning on carbon storage. Ecol. Indic. 2020, 118, 106708. [Google Scholar] [CrossRef]
- Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, Z.P.; Li, A.B. Organic carbon density and storage in soils of China and spatial analysis. Acta Ecol. Sin. 2004, 41, 35–43. [Google Scholar]
- Li, K.; Wang, S.; Cao, M. Vegetation and soil carbon storage in China. Sci. China 2004, 47, 49–57. [Google Scholar] [CrossRef]
- Huang, M.; Ji, J.; Cao, M.; Li, K. Modeling study of vegetation shoot and root biomass in China. Acta Ecol. Sin. 2006, 26, 4156–4163. [Google Scholar]
- Li, W.; Zhang, C.; Li, S. Forest carbon storage in Guangxi Province estimated by 8th forest inventory data. Southwest For. Univ. (Nat. Sci. Ed.). 2017, 37, 127–133. [Google Scholar]
- Zhang, M.; Lai, L.; Huang, X.; Chuai, X.; Tan, J. The carbon emission intensity of land use conversion in different regions of China. Resour. Sci. 2013, 35, 792–7999. [Google Scholar]
- Chen, L.; Liu, G.; Li, H. Estimating net primary productivity of terrestrial vegetation in China using remote sensing. Remote Sens. 2002, 2, 129–135. [Google Scholar]
- Pontius, R.G.; Boersma, W.; Castella, J.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B Chem. Phys. Meteorol. 2003, 55, 378–390. [Google Scholar]
- Wang, Z.; Zeng, J.; Chen, W. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 45507–45526. [Google Scholar] [CrossRef]
- Pliscoff, P.; Luebert, F.; Hilger, H.H.; Guisan, A. Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecol. Model. 2014, 288, 166–177. [Google Scholar] [CrossRef]
- Fang, C. Progress and the future direction of research into urban agglomeration in China. ACTA Geogr. Sin. 2014, 69, 1130–1144. [Google Scholar]
- Zhu, Z.; Zhu, X.; Li, S. Evolution process and characteristics of spatial structure of urban agglomeration in the middle reaches of the Yangtze River. ACTA Geogr. Sin. 2021, 76, 799–817. [Google Scholar]
- Long, H. Land use transition and land management. Geogr. Res. 2015, 34, 1607–1618. [Google Scholar]
- Nyamari, N.; Cabral, P. Impact of land cover changes on carbon stock trends in Kenya for spatial implementation of REDD+ policy. Appl. Geogr. 2021, 133, 102479. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, J.; Qi, Y.; Peng, F. Review of ecosystem management based on the InVEST model. Chin. J. Ecol. 2015, 34, 3526–3532. [Google Scholar]
- Zhu, L.; Li, L.; Liu, S.; Li, Y. The evolution of village land-use function in the metropolitan suburbs and its in spiration to rural revitalization: A case study of Jiangjiayan Village in Chengdu City. Geogr. Res. 2019, 38, 535–549. [Google Scholar]
- Zhu, W.; Zhang, J.; Cui, Y.; Zheng, H.; Zhu, L. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin. Acta Geogr. Sin. 2019, 74, 446–459. [Google Scholar]
- Zuo, Y.; Cheng, J.; Fu, M. Analysis of Land Use Change and the Role of Policy Dimensions in Ecologically Complex Areas: A Case Study in Chongqing. Land 2022, 11, 627. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zhang, C.; Yu, L.; Wang, J.; Wu, X.; Hu, Z.; Zhai, Z.; Li, Q.; Wu, G. Assessing spatiotemporal variations and predicting changes in ecosystem service values in the Guangdong–Hong Kong–Macao Greater Bay Area. Gisci. Remote Sens. 2022, 59, 184–199. [Google Scholar] [CrossRef]
- Yang, S.; Su, H.; Zhao, G. Multi-scenario simulation of urban ecosystem service value based on PLUS model: A case study of Hanzhong city. J. Arid. Land Resour. Environ. 2022, 36, 86–95. [Google Scholar]
- Bao, S.; Yang, F. Spatio-Temporal Dynamic of the Land Use/Cover Change and Scenario Simulation in the Southeast Coastal Shelterbelt System Construction Project Region of China. Sustainability 2022, 14, 8952. [Google Scholar] [CrossRef]
Land Use Type | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Natural development neighborhood factor | 0.07 | 0.11 | 0.01 | 0.29 | 1 | 0.09 |
Ecological protection neighborhood factor | 0.07 | 0.31 | 0.10 | 0.34 | 0.95 | 0.09 |
Land Use Type | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Cultivated land | 1 | 1 | 0 | 0 | 1 | 0 |
Forest | 1 | 1 | 0 | 0 | 1 | 0 |
Grassland | 1 | 1 | 1 | 0 | 1 | 0 |
Water | 1 | 1 | 0 | 1 | 1 | 0 |
Construction land | 1 | 0 | 0 | 0 | 1 | 0 |
Unused land | 1 | 1 | 1 | 1 | 1 | 1 |
Type of Land Usage | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Cultivated land | 1 | 1 | 0 | 0 | 1 | 0 |
Forest | 1 | 1 | 1 | 1 | 1 | 1 |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 |
Water | 1 | 1 | 0 | 1 | 1 | 0 |
Construction land | 1 | 0 | 0 | 0 | 1 | 0 |
Unused land | 1 | 1 | 1 | 1 | 1 | 1 |
Land Use Type | 2000 | 2010 | 2020 | Area Change (km2) | |||
---|---|---|---|---|---|---|---|
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | ||
Cultivated land | 122,591 | 58.84 | 121,014 | 58.08 | 118,982 | 57.10 | −3609 |
Forest | 60,696 | 29.13 | 61,812 | 29.66 | 62,169 | 29.84 | 1473 |
Grassland | 18,944 | 9.09 | 17,021 | 8.17 | 16,096 | 7.73 | −2848 |
Water | 2839 | 1.36 | 3080 | 1.48 | 3334 | 1.60 | 495 |
Construction land | 3076 | 1.48 | 5120 | 2.46 | 7469 | 3.58 | 4393 |
Unused land | 211 | 0.10 | 310 | 0.15 | 307 | 0.15 | 96 |
Land Use Type | 2020 | 2030 | Change from 2020 to 2030 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
NDS | EPS | NDS | EPS | |||||||
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Rate (%) | Area (km2) | Rate (%) | |
Cultivated land | 118,982 | 57.10 | 118,621 | 56.93 | 116,882 | 56.10 | −361 | −0.30 | −2100 | −1.77 |
Forest | 62,169 | 29.84 | 61,570 | 29.55 | 62,270 | 29.89 | −599 | −0.96 | 101 | 0.16 |
Grassland | 16,096 | 7.73 | 15,658 | 7.52 | 16,441 | 7.89 | −438 | −2.72 | 345 | 2.14 |
Water | 3334 | 1.60 | 2846 | 1.37 | 3102 | 1.49 | −488 | −14.64 | −232 | −6.96 |
Construction land | 7469 | 3.58 | 9375 | 4.50 | 9375 | 4.50 | 1906 | 25.52 | 1906 | 25.52 |
Unused land | 307 | 0.15 | 287 | 0.13 | 287 | 0.13 | −20 | −6.52 | −20 | −6.52 |
Land Use Type | Area (km2) | Change in Carbon Stock (×106 t) | Total (×106 t) | ||||
---|---|---|---|---|---|---|---|
Converted from | Converted to | NDS Natural Development Scenario | EPS Ecological Protection Scenario | NDS Natural Development Scenario | EPS Ecological Protection Scenario | NDS Natural Development Scenario | EPS Ecological Protection Scenario |
Cultivated land | Forest | 411.76 | 380.44 | −8.115 | −7.498 | −6.970 | −6.341 |
Grassland | 32.08 | 26.89 | −0.016 | −0.013 | |||
water | 22.48 | 12.75 | 0.011 | 0.006 | |||
Construction land | 1557.73 | 1576.12 | 1.153 | 1.166 | |||
Unused land | 0.23 | 0.24 | −0.003 | −0.003 | |||
Forest | Cultivated land | 215.28 | 203.13 | 4.243 | 400.321 | 5.395 | 401.655 |
Grassland | 50.17 | 59.49 | 0.964 | 1.143 | |||
water | 1.16 | 1.09 | 0.023 | 0.022 | |||
Construction land | 7.68 | 7.87 | 0.157 | 0.161 | |||
Unused land | 1.00 | 1.01 | 0.008 | 0.008 | |||
Grassland | Cultivated land | 42.01 | 28.14 | 0.021 | 0.014 | −1.362 | −2.230 |
Forest | 88.56 | 119.67 | −1.702 | −2.300 | |||
water | 270.12 | 0.70 | 0.262 | 0.001 | |||
Construction land | 54.92 | 53.23 | 0.068 | 0.065 | |||
Unused land | 0.92 | 0.87 | −0.010 | −0.010 | |||
Water | Cultivated land | 23.16 | 21.05 | −0.011 | −0.010 | 0.071 | 0.067 |
Forest | 1.49 | 1.49 | −0.030 | −0.030 | |||
Grassland | 1.00 | 0.71 | −0.001 | −0.001 | |||
Construction land | 458.90 | 442.21 | 0.119 | 0.115 | |||
Unused land | 0.53 | 0.54 | −0.006 | −0.007 | |||
Construction land | Cultivated land | 72.96 | 72.88 | −0.054 | −0.054 | −0.118 | −0.121 |
Forest | 3.02 | 3.16 | −0.062 | −0.065 | |||
Grassland | 0.76 | 0.75 | −0.001 | −0.001 | |||
water | 2.38 | 2.45 | −0.001 | −0.001 | |||
Unused land | 0.06 | 0.04 | −0.001 | 0.000 | |||
Unused land | Cultivated land | 0.19 | 0.21 | 0.002 | 0.002 | 0.030 | 0.026 |
Forest | 1.81 | 2.08 | −0.014 | −0.016 | |||
Grassland | 0.89 | 0.85 | 0.010 | 0.010 | |||
water | 1.66 | 1.46 | 0.020 | 0.018 | |||
Construction land | 0.89 | 0.99 | 0.011 | 0.012 | |||
Total (×106 t) | −2.955 | 393.057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Li, T.; Guo, X.; Xia, L.; Lu, C.; Wang, C. Plus-InVEST Study of the Chengdu-Chongqing Urban Agglomeration’s Land-Use Change and Carbon Storage. Land 2022, 11, 1617. https://doi.org/10.3390/land11101617
Wang C, Li T, Guo X, Xia L, Lu C, Wang C. Plus-InVEST Study of the Chengdu-Chongqing Urban Agglomeration’s Land-Use Change and Carbon Storage. Land. 2022; 11(10):1617. https://doi.org/10.3390/land11101617
Chicago/Turabian StyleWang, Chaoyue, Tingzhen Li, Xianhua Guo, Lilin Xia, Chendong Lu, and Chunbo Wang. 2022. "Plus-InVEST Study of the Chengdu-Chongqing Urban Agglomeration’s Land-Use Change and Carbon Storage" Land 11, no. 10: 1617. https://doi.org/10.3390/land11101617
APA StyleWang, C., Li, T., Guo, X., Xia, L., Lu, C., & Wang, C. (2022). Plus-InVEST Study of the Chengdu-Chongqing Urban Agglomeration’s Land-Use Change and Carbon Storage. Land, 11(10), 1617. https://doi.org/10.3390/land11101617