Edaphic Diversity, Polychemical Soil Status of the Prinevskaya Lowland and Prospects for Soils Use
<p>Prinevskaya lowland (marked with green shading).</p> "> Figure 2
<p>Map of studied plots and soil pits within the Prinevskaya lowland.</p> "> Figure 3
<p>Sampling sites and soil profiles. Number of studying plots is given according to <a href="#land-14-00186-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>Electrical resistivity (ER, Ωm) of studied soils. Numbers indicate number of soil plots described in <a href="#land-14-00186-f002" class="html-fig">Figure 2</a> and <a href="#land-14-00186-f003" class="html-fig">Figure 3</a>.</p> "> Figure 5
<p>Variation of trace metals concentrations in studied soils s: (<b>a</b>)—forest soils; (<b>b</b>)—industrial soils; (<b>c</b>)—agricultural and fallow soils.</p> "> Figure 6
<p>Single pollution index (PI) in studied soils according to LULC: blue color—forest soils; red color—agricultural and fallow soils; green color—industrial soils.</p> "> Figure 7
<p>Heavy metal content relative to MPC in studied soils according to LULC: blue color—forest soils; red color—agricultural and fallow soils; green color—industrial soils.</p> ">
Abstract
:1. Introduction
- Agricultural and fallow soils of agrolandscapes;
- Forest soils;
- Soils of industrial areas.
2. Materials and Methods
The Total Soil Pollution Index (Zc) [46] | ||
1 | <16 | Permissible pollution |
2 | 16–32 | Moderately dangerous pollution |
3 | 32–128 | Dangerous pollution |
4 | >128 | Extremely dangerous pollution |
Geoaccumulation index (Igeo) [57] | ||
0 | ≤ 0 | Absence of pollution |
1 | ≤ 1 | From unpolluted to moderately polluted |
2 | ≤ 2 | Moderately polluted |
3 | ≤ 3 | From moderately to highly polluted |
4 | ≤ 4 | Highly polluted |
5 | ≤ 5 | From highly to extremely high polluted |
6 | > 5 | Extremely high polluted |
Pollution load index (PLI) [53,58] | ||
0 | PLI < 1 | Absence of pollution |
1 | PLI = 1 | Baseline levels of pollution |
2 | 1 < PLI ≤ 2 | Low pollution |
3 | 2 < PLI ≤ 3 | Moderate pollution |
4 | 3 < PLI ≤ 5 | High pollution |
5 | PLI > 5 | Strong pollution |
Potential ecological risk (RI) [55,56] | ||
1 | RI < 90 | Low potential ecological risk |
2 | 90 ≤ RI < 180 | Moderate potential ecological risk |
3 | 180 ≤ RI < 360 | High potential ecological risk |
4 | 360 ≤ RI < 720 | Strong potential ecological risk |
5 | RI ≥ 720 | Very strong potential ecological risk |
3. Results and Discussion
3.1. Edaphic Soil Diversity of Prinevskaya Lowland
3.2. The Physical and Chemical Soil Properties of Prinevskaya Lowland
3.3. The Content of Trace Elements in Soils of Prinevskaya Lowland
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.-L.; Zhang, G.-L. Formation, characteristics and eco-environmental implications of urban soils—A review. Soil Sci. Plant Nutr. 2015, 61, 30–46. [Google Scholar] [CrossRef]
- Pouyat, R.V. Urban Soils. In Forest and Rangeland Soils of the United States Under Changing Conditions; Pouyat, R., Page-Dumroese, D., Patel-Weynand, T., Geiser, L., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Pavao-Zuckerman, M. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 2008, 16, 642–649. [Google Scholar] [CrossRef]
- Schröder, A.; Schloter, M.; Roccotiello, E.; Weisser, W.W.; Schulz, S. Improving ecosystem services of urban soils—How to manage the microbiome of Technosols? Front. Environ. Sci. 2024, 12, 1460099. [Google Scholar] [CrossRef]
- Davies, F.T.; Garrett, B. Technology for sustainable urban food ecosystems in the developing world: Strengthening the nexus of food–water–energy–nutrition. Front. Sustain. Food Syst. 2018, 2, 84. [Google Scholar] [CrossRef]
- Gerasimova, M.I.; Ananko, T.V.; Konyushkov, D.E. Agrogenic soils on the updated version of the soil map of Russia, 1:2.5 M scale: Classification diversity and position in the soil cover. Eurasian Soil Sci. 2023, 56, 122–131. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E.; Shamilishvily, G.; Chebykina, E.; Lavrishchev, A. Agrosoils in the city of St. Petersburg: Anthropogenic evolution and current state. In Advances in Understanding Soil Degradation. Innovations in Landscape Research; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Alekseev, I.; Abakumov, E.; Maksimova, E. Agrochemical state and vertical organization of alluviated soils of Saint Petersburg’s 300th anniversary park, Russia. In Green Technologies and Infrastructure to Enhance Urban Ecosystem Services; Springer: Cham, Switzerland, 2020; pp. 76–87. [Google Scholar] [CrossRef]
- Dashko, R.E.; Aleksandrova, O.Y.; Kotyukov, P.V.; Shidlovskaya, A.V. Peculiarities of engineering-geological conditions of St. Petersburg. Urban Dev. Geotech. Constr. Issue 2011, 1, 1–47. [Google Scholar]
- Paranin, R.V. Problems of water protection zones of the rivers of the Prineva lowland. Geopolit. Ecogeodynamics Reg. 2023, 9, 299–304. [Google Scholar]
- Sheetov, M.V.; Dudanova, V.I.; Ruchkin, M.V.; Shukhvostov, R.S. New data on the quarter of Neva river area: Preliminary results of field work in 2021. Relief Quat. Form. Arct. Subarct. North-West Russ. 2021, 8, 359–364. [Google Scholar]
- Bakhmatova, K.A. Agrogenetic Characterisation of Soils of Prinevskaya Lowland. Ph.D. Thesis, St. Petersburg University, St. Petersburg, Russia, 1997; p. 26. [Google Scholar]
- Dolukhanov, P.M.; Subetto, D.A.; Arslanov, K.A.; Davydova, N.N.; Zaitseva, G.I.; Djinoridze, E.N.; Kuznetsov, D.D.; Ludikova, A.V.; Sapelko, T.V.; Savelieva, L.A. The Baltic Sea and Ladoga Lake transgressions and early human migrations in North-western Russia. Quat. Int. 2009, 203, 33–51. [Google Scholar] [CrossRef]
- Subetto, D.A. History of the formation of Lake Ladoga and its connection with the Baltic Sea. Soc. Environ. Dev. (Terra Humana) 2007, 1, 111–120. [Google Scholar]
- Rizpolozhensky, R.R. Description of Petrograd Province in Soil Respect; Printing House of the Imperial University: Kazan, Russia, 1922; p. 126. [Google Scholar]
- Prasolov, L.I. Natural Conditions of Agriculture in Petrogradskiy Sub-Stolichniy District. Soils of Shusharskaya Farm; State Publishing House: Petrograd, Russia, 1922; p. 23. [Google Scholar]
- Blagovidov, N.L. Soils of the Leningrad Region; Lenizdat: Leningrad, Russia, 1946. [Google Scholar]
- Vladimirova, M.N. Changes in the content and composition of humus in heavy loamy sod-podzolic soils at application of high doses of organic fertilisers. Notes Leningr. Agric. Inst. 1973, 206, 30–34. [Google Scholar]
- Pestryakov, V.K. Soils of the Leningrad Region; Lenizdat: Leningrad, Russia, 1973. [Google Scholar]
- Orelskaya, N.G. Soddy-Weekly Podzolic Gley Soils of Prinevskaya Lowland and Diagnostics of Their Waterlogging Degree. Ph.D. Thesis, Leningrad State University, Leningrad, Russia, 1974. [Google Scholar]
- Kozlov, A.V. Moisture and Density Regime of Sod-Podzolic Gley Loamy Soils of Prinevskaya Lowland in the Annual Cycle. Ph.D. Thesis, Leningrad State University, Leningrad, Russia, 1975. [Google Scholar]
- Litvinovich, A.B. Changes in the Composition and Properties of Sod-Podzolic Gley Soils and Their Fine Fractions Under Drainage and Long-Term Agricultural Use. Ph.D. Thesis, Leningrad Agricultural Institute, Leningrad, Russia, 1985; p. 16. [Google Scholar]
- Gagarina, E.I.; Matinyan, H.H.; Schastanaya, L.S.; Kasatkina, G.A. Soils and Soil Cover of the North-West of Russia; Publishing house of St. Petersburg State University: St. Petersburg, Russia, 1995; p. 236. [Google Scholar]
- Gagarina, E.I.; Shelemina, A.N.; Abakumov, E.V. Ontogenesis of soils on earthen belligerent structures of the Leningrad region. Vestn. St. Petersburg Univ. 2011, 3, 100–107. [Google Scholar]
- Administration of the Leningrad Region Committee for Natural Resources of the Leningrad Region. Report on the Environmental Situation in the Leningrad Region in 2023; Publishing house of the Committee for Natural Resources of the Leningrad Region: St. Petersburg, Russia, 2024; p. 216. [Google Scholar]
- German, A.V.; Serebritsky, I.A. (Eds.) Report on the Ecological Situation in St. Petersburg in 2023; Publishing House of the Committee for Nature Management of St. Petersburg: St. Petersburg, Russia, 2024; p. 221. [Google Scholar]
- Vedenin, O.L.; Ksenofontova, V.A. Changes in soil properties of the Leningrad region, under intensive farming. Scientific bases of soil protection of the Leningrad region. Bull. V.V. Dokuchaev Soil Inst. 1986, 38, 3–6. [Google Scholar]
- Kashchenko, A.S. Change of fertility indicators of arable soils of the Leningrad region. Bull. V.V. Dokuchaev Soil Inst. 1986, 38, 6–10. [Google Scholar]
- Lyuri, D.I.; Nekrich, A.S.; Karelin, D.V. Cropland dynamics in Russia in 1990–2015 and soil emission of carbon dioxide. Bull. Mosc. Univ. Ser. Geogr. 2018, 5, 70–76. [Google Scholar]
- Nefedova, T.G. Main tendencies of changes in the rural space of Russia. Izv. Russ. Acad. Sci. Ser. Geogr. 2012, 3, 7–13. [Google Scholar]
- Antropov, D.V.; Kirillov, R.A.; Chibirkina, E.A. Trends in the development of agricultural land use in Russia. Int. J. Agric. 2023, 66, 436–440. [Google Scholar]
- Franco, M.F.S.; Delgado, E.U.A. Relation of fertilization and the quality of agricultural products. Res. Soc. Dev. 2022, 11, e36311427562. [Google Scholar] [CrossRef]
- Komarova, A.A.; Lobasenko, B.A.; Pavsky, V.A.; Ivanova, S. Difficulties in determining the qualitative and quantitative characteristics of agricultural land. Afr. J. Bio. Sci. 2024, 6, 9046–9055. [Google Scholar]
- Isachenko, A.G.; Dashkevich, Z.V.; Karnaukhova, E.V. Physico-Geographical Zoning of the North-West of the USSR; St. Petersburg University Publishing House: St. Petersburg, Russia, 1965; p. 248. [Google Scholar]
- Guryanov, D.A. Variability of Climatic Seasons of the Year and Extreme Characteristics of Air Temperature in St. Petersburg and on the Territory of the Leningrad Region Under the Conditions of Modern Climate Change. Ph.D. Thesis, Russian State Hydrometeorological University (RSHU), St. Petersburg, Russia, 2016; p. 22. [Google Scholar]
- Sidorenko, A.V. (Ed.) Geology of the USSR. Leningrad, Pskov and Novgorod Regions. Part 1. Geological description; Nedra: Moscow, Russia, 1971; Volume 1, p. 504. [Google Scholar]
- Ananyev, G.S.; Andreeva, T.S.; Varushchenko, S.I.; Voskresensky, S.S.; Leontiev, O.K.; Lukyanova, S.A.; Spasskaya, I.I.; Spiridonov, A.I.; Ulyanova, N.S. Geomorphological Zoning of the USSR and Adjacent Seas; Vysshaya Shkola: Moscow, Russia, 1980; p. 343. [Google Scholar]
- Shishov, L.L.; Tonkonogov, V.D.; Lebedeva, I.I.; Gerasimova, M.I. Classification and Diagnostics of Soils in Russia; Ojkumena: Smolensk, Russia, 2004; p. 342. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Vorobyova, L.A. Theory and Practice of Soil Chemical Analysis; GEOS: Moscow, Russia, 2006; p. 400. [Google Scholar]
- Rastvorova, O.G.; Andreev, D.P.; Gagarina, E.I. Soil Chemical Analysis. Workbook; Publishing House of Saint-Petersburg State University: Saint-Petersburg, Russia, 1995; p. 263. [Google Scholar]
- GOST R 54650-2011; Soils. Determination of Mobile Compounds of Phosphorus and Potassium Using the Kirsanov Method as Modified by CINAO. The Federal Agency on Technical Regulating and Metrology (GOST R): Moscow, Russia, 2013.
- Ananyeva, N.D. Microbiological Aspects of Self-Purification and Soil Stability; Nauka: Moscow, Russia, 2003; p. 222. [Google Scholar]
- Anderson, J.P.E.; Domsch, K.H. A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol. Biochem. 1978, 10, 215–221. [Google Scholar] [CrossRef]
- Panova, E.G.; Akhmedov, A.M. Geochemical Indicators of Terrigenous Rocks Genesis: Textbook; St. Petersburg State University: St. Petersburg, Russia, 2011; p. 64. [Google Scholar]
- SanPiN 1.2.3685-21; Sanitary Regulations and Standards of Russian Federation. Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Habitat Factors to Humans. GOST R: Moscow, Russia, 2021.
- Muller, G. Schwermetalle in den Sedimenten des Rheins: Veranderungen seit 1971. Umschau 1979, 79, 778–783. [Google Scholar]
- Jiang, F.; Ren, B.; Hursthouse, A.; Deng, R.; Wang, Z. Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China). Environ. Sci. Pollut. Res. 2019, 26, 16556–16567. [Google Scholar] [CrossRef] [PubMed]
- Matinyan, N.N.; Reimann, K.; Bakhmatova, K.A.; Rusakov, A.V. Background content of heavy metals and arsenic in arable soils of North-West Russia (based on the materials of the International Geochemical Atlas). Vestn. St.-Petersburg Univ. 2007, 3, 123–134. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Neyestani, M.R.; Bastami, K.D.; Esmaeilzadeh, M.; Shemirani, F.; Khazaali, A.; Molamohyeddin, N.; Afkhami, M.; Nourbakhsh, S.; Dehghani, M.; Aghaei, S.; et al. Geochemical speciation, ecological risk assessment of selected metals in the surface sediments of the northern Persian Gulf. Mar. Pollut. Bull. 2016, 109, 603–611. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries, the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gasiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control—A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhu, H.; Yuan, X.; Zeng, G.; Jiang, M.; Liang, J.; Zhang, C.; Yin, J.; Huang, H.; Liu, Z.; Jiang, H. Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Trans. Nonferrous Met. Soc. China 2012, 22, 1470–1477. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Jorfi, S.; Maleki, R.; Jaafarzadeh, N.; Ahmadi, M. Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran. Data Brief 2017, 15, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Pozdnyakov, A.I.; Pozdnyakova, L.A.; Pozdnyakova, D.A. Constant Electric Fields in Soils; KMK Scientific Press: Moscow, Russia, 1996; p. 360. [Google Scholar]
- Pozdnyakov, A.I. Electrical parameters of soils and pedogenesis. Eurasian Soil Sci. 2008, 10, 1050–1058. [Google Scholar] [CrossRef]
- Matinyan, N.N.; Rastvorova, O.G. Anthropogenic dynamics of soil processes on ribbon clays. In Proceedings of the Second Congress of the All-Russian Society of Soil Scientists, Saint-Petersburg, Russia, 27–30 June 1996; Volume 2, p. 314. [Google Scholar]
- Antsiferova, O.A.; Safonova, D.N. Ecological and hydrological state and productivity of drained soils in the agricultural landscape of the Sambian plain. Agrophysics 2022, 1, 1–10. [Google Scholar]
- Prudnikova, E.Y.; Savin, I.Y.; Lebedeva, M.P. Transformation of the surface layer in the arable soil horizon under the impact of atmospheric precipitation. Eurasian Soil Sci. 2021, 54, 1770–1781. [Google Scholar] [CrossRef]
- Amézquita, E.; Rao, I.; Hoyos, P.; Molina, D.; Chavez, L.; Bernal, J. Development of an arable layer: A key concept for better management of infertile tropical savanna soils. In Advances in Integrated Soil Fertility Management in Sub-Saharan Africa: Challenges and Opportunities; Bationo, A., Waswa, B., Kihara, J., Kimetu, J., Eds.; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef]
- Sharma, P.; Chouhan, R.; Bakshi, P.; Gandhi, S.G.; Kaur, R.; Sharma, A.; Bhardwaj, R. Amelioration of chromium-induced oxidative stress by combined treatment of selected plant-growth-promoting Rhizobacteria and earthworms via modulating the expression of genes related to reactive oxygen species metabolism in Brassica juncea. Front. Microbiol. 2022, 13, 802512. [Google Scholar] [CrossRef]
- Abirami, R.; Jothimani, S.; Leninraja, D. Mechanism of redox reaction in soil chemistry. Biol. Forum—Int. J. 2023, 15, 1317–1321. [Google Scholar]
- Schwertmann, U. Occurrence and formation of iron oxides in various pedoenvironments. In Iron in Soils and Clay Minerals; Stucki, J.W., Goodman, B.A., Schwertmann, U., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1988; Volume 217. [Google Scholar] [CrossRef]
- Han, J.; Kim, M.; Ro, H.M. Factors modifying the structural configuration of oxyanions and organic acids adsorbed on iron (hydr)oxides in soils. A review. Environ. Chem. Lett. 2020, 18, 631–662. [Google Scholar] [CrossRef]
- Wen, Y.; Xiao, J.; Goodman, B.A.; He, X. Effects of organic amendments on the transformation of Fe (oxyhydr)oxides and soil organic carbon storage. Front. Earth Sci. 2019, 7, 257. [Google Scholar] [CrossRef]
- Korotkov, A.A. Humus substances in sod-podzolic soils. Notes Leningr. Agric. Inst. 1970, 142, 198–213. [Google Scholar]
- Abakumov, E.V. Elemental composition and structural features of humic substances in young podzols developed on sand quarry dumps. Eurasian Soil Sci. 2009, 42, 616–622. [Google Scholar] [CrossRef]
- Brocka, O.; Kalbitza, K.; Absalaha, S.; Jansena, B. Effects of development stage on organic matter transformation in Podzols. Geoderma 2020, 378, 114625. [Google Scholar] [CrossRef]
- Leonicheva, E.V.; Stolyarov, M.E.; Roeva, T.A. The effect of soil nutrition and foliar fertilizers on the soil potassium regime and potassium status of apple trees in a rainfed Orchard. Moscow Univ. Soil Sci. Bull. 2024, 79, 65–77. [Google Scholar] [CrossRef]
- Soumare, A.; Sarr, D.; Diédhiou, A.G. Potassium sources, microorganisms and plant nutrition: Challenges and future research directions. Pedosphere 2023, 33, 105–115. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Lavado, R.S.; Rodríguez, M.B.; Scheiner, J.D.; Taboada, M.A.; Rubio, G.; Alvarez, R.; Alconada, M.; Zubillaga, M.S. Heavy metals in soils of Argentina: Comparison between urban and agricultural soils. Commun. Soil Sci. Plant Anal. 1998, 29, 1913–1917. [Google Scholar] [CrossRef]
- Matinyan, N.N.; Gagarina, E.I.; Schastnaya, L.S.; Saprykin, F.Y.; Kulachkova, A.F. Geochemical characterization of the soil cover of the North-West of the Non-Black Earth Zone of the RSFSR. Bull. Pushkin Leningr. State Univ. 1985, 10, 91–99. [Google Scholar]
- Dudás, F.Ö.; Zhang, H.; Shen, S.-Z.; Bowring, S.A. Major and trace element geochemistry of the permian-triassic boundary section at Meishan, South China. Front. Earth Sci. 2021, 9, 637102. [Google Scholar] [CrossRef]
- Dupla, X.; Möller, B.; Baveye, P.C.; Grand, S. Potential accumulation of toxic trace elements in soils during enhanced rock weathering. Eur. J. Soil Sci. 2023, 74, e13343. [Google Scholar] [CrossRef]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2010, 160, 83–89. [Google Scholar] [CrossRef]
- Srivastava, V.; Sarkar, A.; Singh, S.; Singh, P.; de Araujo, A.S.F.; Singh, R.P. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front. Environ. Sci. 2017, 5, 64. [Google Scholar] [CrossRef]
- Pogrzeba, M.; Rusinowski, S.; Krzyżak, J. Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—Case studies on autumn harvest. Environ. Sci. Pollut. Res. 2018, 25, 12096–12106. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Shukla, A.K.; Bhattacharyya, P.; Tripathi, R.; Mohanty, S.; Kumar, A.; Lal, B.; Gautam, P.; Raja, R.; Panda, B.B.; et al. Micronutrients (Fe, Mn, Zn and Cu) balance under long-term application of fertilizer and manure in a tropical rice-rice system. J. Soils Sediments 2016, 16, 737–747. [Google Scholar] [CrossRef]
- Agapkina, G.I.; Chikov, P.A.; Shelepchikov, A.A.; Brodskii, E.S.; Feshin, D.B.; Bukhanko, N.G.; Balashova, S.P. Polycyclic aromatic hydrocarbons in soils of Moscow. Mosc. Univ. Soil Sci. Bull. 2007, 62, 149–158. [Google Scholar] [CrossRef]
LULC | Number of Study Plot * | Horizon, Depth, cm | Soil Moisture Content, % | pHH2O | pHKCl | Ctotal, % | Basal Respiration, µgC-CO2/g Per hour | K2O, mg/kg | Particle Size Distribution |
---|---|---|---|---|---|---|---|---|---|
Forest | 1 | AYe 0–10 | 1.60 | 6.3 | 3.9 | 1.74 | 1.62 | 36.9 | Sandy loam |
AYe 10–15 | 1.00 | 5.6 | 3.9 | 1.13 | 2.55 | 39.1 | Sandy loam | ||
BF 15–44 | 1.13 | 4.9 | 4.5 | 0.48 | 1.14 | 29.0 | Sandy loam | ||
C 44–80 | 1.10 | 6.3 | 5.8 | 0.19 | - | 12.6 | Medium-grained sand | ||
Forest | 2 | AУ 0–18 | 6.62 | 5.4 | 3.5 | 1.90 | 2.37 | 67.1 | Coarse sandy loam |
BF 18–40 | 4.62 | 5.2 | 3.7 | 1.20 | 1.12 | 25.2 | Coarse sandy loam | ||
Cff 40–80 | 3.33 | 5.5 | 3.5 | 0.24 | 0.73 | 22.6 | Coarse sandy loam | ||
Agricultural and fallow | 3 | P1 0–25 | 10.98 | 5.4 | - | 2.55 | 1.28 | 111.8 | Light loam |
P2 25–42 | 5.79 | 5.7 | 5.4 | 1.12 | 0.45 | 206.8 | Medium coarse loam | ||
Cff 42–75 | 3.03 | 6.2 | 5.3 | 0.05 | 0.04 | 177.1 | Sandy loam | ||
Industrial | 4 | 0–65 | 2.50 | 5.2 | - | 0.83 | 1.12 | 450.1 | Medium silty clay |
65–75 | 0.75 | 5.8 | 4.3 | 0.30 | 1.18 | 28.5 | Light loam | ||
75–80 | 0.22 | 5.8 | 4.4 | 0.07 | 0.42 | 26.3 | Fine-grained sand | ||
80–85 | 0.76 | 5.4 | 4.4 | 0.23 | 0.87 | 50.1 | Sandy loam | ||
85–110 | 1.51 | 5.3 | 4.4 | 1.19 | 1.24 | 117.8 | Fine clay | ||
Rock material (cambrian clay) | 2.78 | 5.8 | - | 0.36 | - | 571.4 | Fine clay | ||
Agricultural and fallow | 5 | PY1 0–25 | 4.78 | 6.2 | 5.6 | 2.49 | 1.37 | 110.2 | Medium coarse loam |
PУ 25–40 | 4.79 | 5.9 | 5.1 | 2.18 | 0.69 | 119.4 | Medium coarse loam | ||
BEL 40–65 | 4.05 | 6.1 | 5.3 | 0.67 | 1.54 | 15.4 | Fine loam | ||
C 65–80 | 11.15 | 5.8 | 4.7 | 0.12 | 0.04 | 46.8 | Medium coarse loam | ||
C 80–110 | 3.26 | 6.2 | 5.5 | 0.18 | 0.54 | 33.1 | Light clay | ||
Industrial | 6 | 0–5 | 3.46 | 6.0 | - | 0.44 | 1.36 | 426.0 | Medium coarse loam |
5–25 | 1.01 | 6.2 | - | 0.30 | 0.94 | 79.9 | Sandy loam | ||
25–45 | 1.04 | 6.1 | - | 0.38 | 1.15 | 108.6 | Sandy loam | ||
Agricultural and fallow | 7 | AEL 0–20 | 13.54 | 6.0 | 4.9 | 4.94 | 1.46 | 70.4 | Medium coarse loam |
EL 20–35 | 1.79 | 5.5 | 3.8 | 0.57 | 0.87 | 79.3 | Light clay | ||
BEL 35–75 | 2.87 | 5.1 | 3.9 | 0.19 | 0.41 | 66.2 | Medium silty clay | ||
Agricultural and fallow | 8 | AYe,pa 0–25 | 21.68 | 4.9 | 3.1 | 10.61 | 2.27 | 112.0 | Medium coarse loam |
C 25–60 | 1.12 | 6.4 | 4.2 | 0.12 | 0.86 | 9.1 | Medium-grained sand | ||
D 60–100 | 10.49 | 5.8 | 4.3 | 0.15 | - | 12.5 | Medium-grained sand | ||
Agricultural and fallow | 9 | P 0–27 | 6.76 | 5.5 | 4.6 | 8.07 | 2.89 | 58.4 | Light loam |
C 27–50 | 2.88 | 6.2 | 4.9 | 0.13 | 0.12 | 8.9 | Sandy loam | ||
D 50–110 | 0.80 | 5.8 | 4.7 | 0.18 | 0.04 | 20.6 | Sandy loam | ||
Agricultural and fallow | 10 | AYpa 0–25 | 3.62 | 6.2 | 4.1 | 1.49 | 2.21 | 94.6 | Medium-grained sand |
BF 25–35 | 0.98 | 5.9 | 4.8 | 0.22 | 0.08 | 21.9 | Sandy loam | ||
BC 35–53 | 1.80 | 5.8 | 4.3 | 0.31 | 0.67 | 27.4 | Light loam | ||
C 53–90 | 1.25 | 6.1 | 4.6 | 0.24 | 0.46 | 24.8 | Fine loam | ||
Post hoc test Forest–Agricultural–Industrial | 0.20 | p << 0.05 | 0.14 | p << 0.05 | p << 0.05 | p << 0.05 | |||
Significance of differences | Insign. | Sign. | Insign. | Sign. | Sign. | Sign. |
Trace Element | Mean | Max | Min | CV | SD |
---|---|---|---|---|---|
Sr | 180.0 | 242.0 | 16.0 | 24.8 | 44.6 |
Pb | 22.5 | 57.0 | 1.0 | 41.8 | 9.4 |
As | 7.5 | 13.0 | 5.0 | 23.1 | 1.7 |
Zn | 47.3 | 132.0 | 6.0 | 59.4 | 28.1 |
Cu | <0.10 | <0.10 | <0.10 | 0.0 | 0.0 |
Ni | 21.1 | 72.0 | 4.0 | 65.4 | 13.8 |
Co | 10.0 | 31.0 | 0.0 | 59.9 | 6.0 |
Fe2O3, % | 3.0 | 6.9 | 0.9 | 48.8 | 1.4 |
MnO | 591.8 | 1839.0 | 115.0 | 66.2 | 392.0 |
Cr | 65.3 | 176.0 | 32.0 | 46.8 | 30.6 |
V | 61.1 | 133.0 | 6.0 | 52.9 | 32.3 |
TiO2, % | 0.6 | 1.0 | 0.2 | 38.4 | 0.2 |
LULC | No. of Study Plot | Zc | PLI | RI | |||||
---|---|---|---|---|---|---|---|---|---|
Value | Pollution Status | Value | Pollution Status | Value | Pollution Status | Value | Potential Ecological Risk | ||
Forest | 1 | 4.49 | Permissible | 0 | Absence | 0.99 | Absence | 36.44 | Low |
Forest | 2 | 8.41 | Permissible | 0–1 | Unpolluted to moderately polluted | 1.63 | Low | 45.64 | Low |
Agricultural and fallow | 3 | 8.47 | Permissible | 0–1 | Unpolluted to moderately polluted | 1.78 | Low | 56.80 | Low |
Industrial | 4 | 16.33 | Moderately dangerous | 1–2 | Moderately polluted | 2.00 | Moderate | 75.59 | Low |
Agricultural and fallow | 5 | 12.40 | Permissible | 0–1 | Unpolluted to moderately polluted | 1.56 | Low | 63.21 | Low |
Industrial | 6 | 20.74 | Moderately dangerous | 1–2 | Moderately polluted | 2.85 | Moderate | 90.51 | Moderate |
Agricultural and fallow | 7 | 7.47 | Permissible | 0–1 | Unpolluted to moderately polluted | 1.56 | Low | 46.53 | Low |
Agricultural and fallow | 8 | 3.77 | Permissible | 0 | Absence | 0.84 | Absence | 51.09 | Low |
Agricultural and fallow | 9 | 4.93 | Permissible | 0 | Absence | 1.40 | Low | 39.11 | Low |
Agricultural and fallow | 10 | 5.09 | Permissible | 0 | Absence | 1.43 | Low | 42.66 | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chebykina, E.Y.; Nizamutdinov, T.I.; Abakumov, E.V.; Dinkelaker, N.V. Edaphic Diversity, Polychemical Soil Status of the Prinevskaya Lowland and Prospects for Soils Use. Land 2025, 14, 186. https://doi.org/10.3390/land14010186
Chebykina EY, Nizamutdinov TI, Abakumov EV, Dinkelaker NV. Edaphic Diversity, Polychemical Soil Status of the Prinevskaya Lowland and Prospects for Soils Use. Land. 2025; 14(1):186. https://doi.org/10.3390/land14010186
Chicago/Turabian StyleChebykina, Ekaterina Yu., Timur I. Nizamutdinov, Evgeny V. Abakumov, and Natalia V. Dinkelaker. 2025. "Edaphic Diversity, Polychemical Soil Status of the Prinevskaya Lowland and Prospects for Soils Use" Land 14, no. 1: 186. https://doi.org/10.3390/land14010186
APA StyleChebykina, E. Y., Nizamutdinov, T. I., Abakumov, E. V., & Dinkelaker, N. V. (2025). Edaphic Diversity, Polychemical Soil Status of the Prinevskaya Lowland and Prospects for Soils Use. Land, 14(1), 186. https://doi.org/10.3390/land14010186