Land Use Modeling and Predicted Ecosystem Service Value Under Different Development Scenarios: A Case Study of the Upper–Middle Yellow River Basin, China
<p>Geographic location of the upper and middle reaches of the Yellow River.</p> "> Figure 2
<p>Flow chart of the proposed methodology.</p> "> Figure 3
<p>Suitability map for different land types.</p> "> Figure 4
<p>Spatial and temporal distribution of land use types in the upper and middle reaches of the Yellow River in 2005, 2010, 2015, and 2020.</p> "> Figure 5
<p>Quantitative changes in land type transfer in the upper and middle reaches of the Yellow River, 2000–2020. <b>Note:</b> Different colored trajectory lines indicate the direction of flow of a site type during a specific period of time, and the thickness of the trajectory line represents the magnitude of the transformation.</p> "> Figure 6
<p>Spatial pattern of land use in the upper and middle reaches of the Yellow River in 2035 under different scenarios.</p> "> Figure 7
<p>Spatial distribution of the <span class="html-italic">ESV</span> in the upper and middle reaches of the Yellow River under multi-scenario simulation.</p> "> Figure 8
<p>Sensitivity coefficients of ecosystem service values for each category under different scenarios.</p> "> Figure 9
<p><span class="html-italic">ESV</span> based on land use type for different scenarios.</p> "> Figure A1
<p>Distribution of actual and modeled land use in the upper and middle reaches of the Yellow River in 2015 and 2020.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. CA Model
2.2.2. Markov Model
2.2.3. CA–Markov Models
2.2.4. Accuracy Verification
2.2.5. Scenario Settings
2.2.6. Estimating the Value of Ecosystem Services
2.2.7. ESV Sensitivity Analysis
3. Results
3.1. Spatial and Temporal Variations of LUCC
3.2. Projections of Future Land Use Change
3.3. Projections of Ecosystem Service Value Under Multiple Scenarios
3.4. Impacts of Land-Use Change on ESV
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Prediction Accuracy Test
References
- Xie, G.; Lu, C.; Leng, Y. Valuation of ecological assets on the Tibetan Plateau. J. Nat. Resour. 2023, 18, 189–196. [Google Scholar]
- Yang, D.; Zhu, C.; Li, J.; Li, Y.; Zhang, X.; Yang, C.; Chu, S. Exploring the supply and demand imbalance of carbon and carbon-related ecosystem services for dual carbon goal ecological management in the Huaihe River Ecological Economic Belt. Sci. Total Environ. 2024, 912, 169169. [Google Scholar] [CrossRef]
- Yu, S.; Zhou, W.; Wang, J. Impact of urbanization on regional ecosystem services---a case study in Guangdong-Hong Kong-Macao Greater Bay Area. Ecol. Indic. 2024, 159, 111633. [Google Scholar]
- Mooney, H.A.; Duraiappah, A.; Lariqauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110, 3665–3672. [Google Scholar] [CrossRef]
- Akhtar, M.; Zhao, Y.; Gao, G.; Gulzar, Q.; Hussain, A. Assessment of spatiotemporal variations of ecosystem service values and hotspots in a dryland: A case-study in Pakistan. Land Degrad. Dev. 2022, 33, 1383–1397. [Google Scholar] [CrossRef]
- Egoh, B.N.; Revers, B.; Rouget, M.; Richardson, D.M. Identifying priority areas for ecosystem service management in South African grasslands. J. Environ. Manag. 2011, 92, 1642–1650. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Sci. Total. Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Beroho, M.; Briak, H.; Cherif, E. Future Scenarios of Land Use/Land Cover (LULC) Based on a CA-Markov Simulation Model: Case of a Mediterranean Watershed in Morocco. Remote Sens. 2023, 15, 1162. [Google Scholar] [CrossRef]
- Mamat, A.; Halik, Ü.; Rouzi, A. Variations of ecosystem service value in response to land-use change in the Kashgar region, northwest China. Sustainability 2018, 10, 200. [Google Scholar] [CrossRef]
- Qu, Y.; Ding, J.; Bao, Q. Valuation of ecosystem services in Xinjiang under multi-scenario modeling. Environ. Sci. Technol. 2023, 46, 195–204. [Google Scholar]
- Xu, X.; Liu, H.; Lin, Z. Scenario analysis of coastal land use change in Jiangsu based on CA-MARKOV model. Res. Soil Water Conserv. 2017, 24, 213–218. [Google Scholar]
- Shawky, M.; Mohammed, A.B.; Talal, A.A. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy 2020, 91, 104414. [Google Scholar]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, M.; Gao, Y. Multi-scenario Simulation and Prediction of Land Use in Huaibei City Based on CLUE-S and PLUS Models. Appl. Sci. 2023, 13, 7142. [Google Scholar] [CrossRef]
- Stanley, C.O.L.O.; Lewis, S. Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model. Ecol. Model. 2023, 476, 110256. [Google Scholar]
- Qin, J.; Ye, H.; Lin, K. Assessment of water-related ecosystem services based on multi-scenario land use changes: Focusing on the Poyang Lake Basin of southern China. Ecol. Indic. 2024, 158, 111549. [Google Scholar] [CrossRef]
- Nasiakou, S.; Vrahnakis, M.; Chouvardas, D.; Mamanis, G.; Kleftoyanni, V. Land Use Changes for Investments in Silvoarable Agriculture Projected by the CLUE-S Spatio-Temporal Model. Land 2022, 11, 598. [Google Scholar] [CrossRef]
- Changyeon, L.; Sugie, L. Analyzing spatiotemporal land use change using an urban growth model based on multilevel logistic regression and future land demand scenarios. Appl. Geogr. 2023, 160, 103099. [Google Scholar]
- Jiang, M.; Wu, Z.; Guo, X. Study on the Contribution of Land Use and Climate Change to Available Water Resources in Basins Based on Vector Autoregression (VAR) Model. Water 2023, 15, 2130. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Scenario simulation of land system change in the Beijing-Tianjin-Hebei Region. Land Use Policy 2020, 96, 104677. [Google Scholar] [CrossRef]
- Manoj, D.; Nazrul, I.; Kumar, S.G. Prediction of spatio-temporal (2030 and 2050) land-use and land-cover changes in Koch Bihar urban agglomeration (West Bengal), India, using artificial neural network-based Markov chain model. Model. Earth Syst. Environ. 2023, 9, 3621–3642. [Google Scholar]
- Feng, Y.; Tong, X. A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods. Int. J. Geogr. Inf. Sci. 2020, 34, 74–97. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Costanza, R.; Anderson, S.; Sutton, P. The future value of ecosystem services: Global scenarios and national implications. Ecosyst. Serv. 2017, 26, 289–301. [Google Scholar] [CrossRef]
- Guo, M.; Liu, W. Analysis of land use and ecosystem service value in energy-rich areas of the Yellow River Basin. People’s Yellow River 2023, 45, 98–104+110. [Google Scholar]
- Li, Y.; Chang, J.; Wang, Y. Research on land use simulation prediction in the Yellow River Basin based on CA-Markov model. J. Northwest Agric. For. Univ. Nat. Sci. Ed. 2020, 48, 107–116. [Google Scholar]
- Zhang, Q.; Cui, B.; John, R. Spatiotemporal pattern of cropland change in the Yellow River Basin from 1985 to 2015. J. Geogr. Sci. 2018, 28, 767–786. [Google Scholar]
- Liu, J. Research on Macro-Survey and Dynamic Monitoring of National Resources and Environment by Remote Sensing. J. Remote Sens. 1997, 1, 225–230. [Google Scholar]
- Rimal, B.; Zhang, L.; Keshtkar, H.; Haack, B.N.; Rijal, S.; Zhang, P. Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and Markov chain. ISPRS Int. J. Geo Inf. 2018, 7, 154–221. [Google Scholar] [CrossRef]
- He, Y.; Wu, W.; Xie, X.; Ke, X.; Song, Y.; Zhou, C.; Li, W.; Li, Y.; Jing, R.; Song, P.; et al. Land Use/Cover Change Prediction Based on a New Hybrid Logistic-Multicriteria Evaluation-Cellular Automata-Markov Model Taking Hefei, China as an Example. Land 2023, 12, 1899. [Google Scholar] [CrossRef]
- Mohamed, A.; Worku, H. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Clim. 2020, 31, 100545. [Google Scholar] [CrossRef]
- Pontius, R.G. Quantification error versus location error in comparison of categorical maps. Photogramm. Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Zeng, H.; Gao, L.; Xia, J. Urban landscape dynamics based on the modified transfer probability method: A case study of Nanchang city. J. Ecol. 2003, 11, 2201–2209. [Google Scholar]
- Wang, Y.; Zhang, Z.; Chen, X. Spatiotemporal change in ecosystem service value in response to land use change in Guizhou Province, southwest China. Ecol. Indic. 2022, 144, 109514. [Google Scholar] [CrossRef]
- Li, Q.; Yang, L.; Jiao, H.; He, Q. Spatiotemporal Analysis of the Impacts of Land Use Change on Ecosystem Service Value: A Case from Guiyang, China. Land 2024, 13, 211. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, X.; Li, S. New insights of eco-environmental vulnerability in China’s Yellow River Basin: Spatio-temporal pattern and contributor identification. Ecol. Indic. 2024, 167, 112655. [Google Scholar] [CrossRef]
- Sun, H.; Di, Z.; Sun, P.; Wang, X.; Liu, Z.; Zhang, W. Spatiotemporal Differentiation and Its Attribution of the Ecosystem Service Trade-Off/Synergy in the Yellow River Basin. Land 2024, 13, 369. [Google Scholar] [CrossRef]
- An, S.; Zhang, S.; Hou, H.; Zhang, Y.; Xu, H.; Liang, J. Coupling Coordination Analysis of the Ecology and Economy in the Yellow River Basin under the Background of High-Quality Development. Land 2022, 11, 1235. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L. Improvement of ecosystem service valorization method based on unit area value equivalent factor. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Yao, S.; Li, Y.; Quan, X.; Xu, J. Applying the driver-pressure-state-impact-response model to eco-logical restoration: A case study of comprehensive zoning and benefit assessment in Zhejiang Province, China. Glob. Ecol. Conserv. 2024, 55, e03222. [Google Scholar]
- Han, X.; Yu, J.; Shi, L.; Zhao, X.; Wang, J. Spatiotemporal evolution of ecosystem service values in an area dominated by vegetation restoration: Quantification and mechanisms. Ecol. Indic. 2021, 131, 108191. [Google Scholar] [CrossRef]
- He, N.; Zhou, Y.; Wang, L.; Li, Q.; Zuo, Q.; Liu, J. Spatiotemporal differentiation and the coupling analysis of ecosystem service value with land use change in Hubei Province, China. Ecol. Indic. 2022, 145, 109693. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R.; Li, Y.; Zhang, Q. Comparison of various models for multi-scenario simulation of land use/land cover to predict ecosystem service value: A case study of Harbin-Changchun Urban Agglomeration, China. J. Clean. Prod. 2024, 478, 144012. [Google Scholar] [CrossRef]
- Yang, M.; Luo, J.; Zhu, L.; Lu, P. Impact of Land Use Change on the Spatiotemporal Evolution of Ecosystem Services in Tropical Islands: A Case Study of Hainan Island, China. Land 2024, 13, 1244. [Google Scholar] [CrossRef]
- Luo, W.; Yi, H.; Li, H.; Jia, W.; Feng, Z. Spatiotemporal variability of land use and its impact on the value of ecological service functions in the Yanghe River Basin. J. Ecol. 2017, 37, 5342–5351. [Google Scholar]
- Yang, S.; Su, H.; Zhao, G. Multi-scenario simulation of urban ecosystem service value based on the PLUS model—A case study of Hanzhong City. Arid Zone Resour. Environ. 2022, 36, 86–95. [Google Scholar]
- Lin, Q.; Su, H.; Sammonds, P.; Xu, M.; Yan, C.; Zhu, Z. Evaluation and Prediction of Ecosystem Services Value in Urban Agglomerations Using Land Use/Cover Change Analysis: Case Study of Wuhan in China. Land 2024, 13, 1154. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, F.; Wang, H. The response of ecosystem service value to land use change in the middle and lower Yellow River: A case study of the Henan section. Ecol. Indic. 2022, 140, 109019. [Google Scholar] [CrossRef]
- Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Tan, Y. Spatiotemporal pattern and influencing mechanism of the flood-regulating ecosystem service capacity and demand in China’s Yellow River basin, 2000–2020. J. Hydrol. Reg. Stud. 2023, 45, 101312. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Lombardi, G.V.; Yang, Z. Attribution of upstream-downstream transitive natural and human imprint on watershed ecosystem services variations. J. Clean. Prod. 2023, 413, 137421. [Google Scholar] [CrossRef]
- Wu, C.; Ma, G.; Yang, W.; Zhou, Y.; Peng, F.; Wang, J.; Yu, F. Assessment of Ecosystem Service Value and Its Differences in the Yellow River Basin and Yangtze River Basin. Sustainability 2021, 13, 3822. [Google Scholar] [CrossRef]
Data Type | Data Description | Data Resolution | Source of Data |
---|---|---|---|
Land data | Land use | 1 km | Data Centre for Resource and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn, accessed on 10 November 2023) |
DEM | 30 m | Geospatial data cloud (http://www.gscloud.cn, accessed on 10 November 2023) | |
Slope | 30 m | Obtained from DEM data using ArcGIS | |
Food data | Grain production per unit area | / | Statistical Yearbook of the Provinces in the Upper and Middle Reaches of the Yellow River |
Crop sown area | / | Statistical Yearbook of the Provinces in the Upper and Middle Reaches of the Yellow River | |
Unit cost of crops | / | National Compendium of Cost–Benefit Information on Agricultural Products | |
Spatial data | Road data | / | OpenStreetMap (https://www.openstreetmap.org, accessed on 27 November 2023) |
Kappa Factor | 0.00~0.20 | 0.20~0.40 | 0.40~0.60 | 0.60~0.80 | 0.80~1.00 |
---|---|---|---|---|---|
Analogue accuracy | Mediocre | Common | Medium | Preferably | Rare |
Level 1 Type | Secondary Type | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
Supply service | Food production | 1724.88 | 588.49 | 771.12 | 1623.42 | 0.00 | 0.00 |
Raw material production | 811.71 | 1339.32 | 1136.39 | 466.73 | 0.00 | 0.00 | |
Water supply | 40.59 | 689.95 | 629.07 | 16,822.68 | 0.00 | 0.00 | |
Regulatory services | Gas regulation | 1359.61 | 4403.52 | 3997.67 | 1562.54 | 0.00 | 40.59 |
Climate regulation | 730.54 | 13,190.28 | 10,572.52 | 4647.04 | 0.00 | 0.00 | |
Clean up the environment | 202.93 | 3916.50 | 3490.35 | 11,262.47 | 0.00 | 202.93 | |
Hydrological regulation | 547.90 | 9618.76 | 7751.83 | 207,472.95 | 0.00 | 60.88 | |
Support services | Soil conservation | 2090.15 | 5377.58 | 4870.26 | 1887.22 | 0.00 | 40.59 |
Maintaining nutrient cycling | 243.51 | 405.85 | 365.27 | 142.05 | 0.00 | 0.00 | |
Biodiversity | 263.81 | 4890.55 | 4423.82 | 5174.65 | 0.00 | 40.59 | |
Cultural service | Aesthetic landscape | 121.76 | 2151.03 | 1948.10 | 3835.33 | 0.00 | 20.29 |
Land Use Type | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land | |
---|---|---|---|---|---|---|---|
2000 | Area (km2) | 195,516 | 102,591 | 376,461 | 12,353 | 14,408 | 70,373 |
Proportion | 25.34% | 13.29% | 48.78% | 1.60% | 1.87% | 9.12% | |
2005 | Area (km2) | 191,851 | 104,842 | 374,768 | 12,532 | 15,426 | 72,283 |
Proportion | 24.86% | 13.59% | 48.56% | 1.62% | 2.00% | 9.37% | |
2010 | Area (km2) | 191,373 | 105,138 | 375,113 | 12,556 | 15,887 | 71,635 |
Proportion | 24.80% | 13.62% | 48.61% | 1.63% | 2.06% | 9.28% | |
2015 | Area (km2) | 190,075 | 105,220 | 373,901 | 12,854 | 19,476 | 70,176 |
Proportion | 24.63% | 13.63% | 48.45% | 1.67% | 2.52% | 9.09% | |
2020 | Area (km2) | 183,377 | 106,272 | 381,585 | 13,137 | 25,005 | 62,326 |
Proportion | 23.76% | 13.77% | 49.45% | 1.70% | 3.24% | 8.08% |
Land Use Type | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land | |
---|---|---|---|---|---|---|---|
2000–2010 | Outflow | 6056 | 545 | 5562 | 782 | 64 | 1596 |
Inflow | 1915 | 3092 | 4214 | 984 | 1543 | 2857 | |
2010–2020 | Outflow | 82,338 | 41,262 | 107,044 | 6956 | 10,792 | 32,112 |
Inflow | 74,331 | 42,401 | 113,505 | 7544 | 19,921 | 22,802 | |
2000–2020 | Outflow | 86,094 | 39,726 | 109,335 | 7002 | 10,125 | 32,265 |
Inflow | 73,946 | 43,412 | 114,448 | 7792 | 20,733 | 24,216 |
Land Use Type | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
2020 | 183,377 | 106,272 | 381,585 | 13,137 | 25,005 | 62,326 |
Business As Usual Scenario (BAU) | 192,088 | 111,207 | 363,065 | 14,649 | 31,137 | 59,556 |
Ecological Protection Scenario (EPS) | 136,069 | 129,636 | 401,515 | 15,235 | 24,717 | 64,530 |
Highly Urbanization Scenario (HUS) | 191,872 | 110,262 | 359,055 | 14,454 | 36,968 | 59,091 |
Land Use Type | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land | Total |
---|---|---|---|---|---|---|---|
2020 ESV | 1492.21 | 4949.28 | 15,246.76 | 3348.58 | 0 | 25.30 | 25,062.13 |
BAU ESV | 1563.09 | 5179.11 | 14,506.77 | 3733.99 | 0 | 24.17 | 25,007.14 |
EPS ESV | 1107.25 | 6037.39 | 16,043.09 | 3883.36 | 0 | 26.19 | 27,097.27 |
HUS ESV | 1561.34 | 5135.10 | 14,346.55 | 3684.28 | 0 | 23.98 | 24,751.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; He, Y.; Sun, Y.; Cui, H.; Zang, H. Land Use Modeling and Predicted Ecosystem Service Value Under Different Development Scenarios: A Case Study of the Upper–Middle Yellow River Basin, China. Land 2025, 14, 115. https://doi.org/10.3390/land14010115
Ma M, He Y, Sun Y, Cui H, Zang H. Land Use Modeling and Predicted Ecosystem Service Value Under Different Development Scenarios: A Case Study of the Upper–Middle Yellow River Basin, China. Land. 2025; 14(1):115. https://doi.org/10.3390/land14010115
Chicago/Turabian StyleMa, Mingwei, Yuhuai He, Yanwei Sun, Huijuan Cui, and Hongfei Zang. 2025. "Land Use Modeling and Predicted Ecosystem Service Value Under Different Development Scenarios: A Case Study of the Upper–Middle Yellow River Basin, China" Land 14, no. 1: 115. https://doi.org/10.3390/land14010115
APA StyleMa, M., He, Y., Sun, Y., Cui, H., & Zang, H. (2025). Land Use Modeling and Predicted Ecosystem Service Value Under Different Development Scenarios: A Case Study of the Upper–Middle Yellow River Basin, China. Land, 14(1), 115. https://doi.org/10.3390/land14010115