Characteristics Mode Analysis-Inspired Compact UWB Antenna with WLAN and X-Band Notch Features for Wireless Applications
<p>UWB antenna. (<b>a</b>) Antenna evolution representing the radiator (<b>left</b>) and ground pane (<b>right</b>) in each antenna configuration. (<b>b</b>) Reflection coefficient curve.</p> "> Figure 2
<p>Geometry details of the proposed UWB antenna: (<b>a</b>) radiator, and (<b>b</b>) ground plane.</p> "> Figure 3
<p>Geometry details of the proposed UWB dual-band notch antenna.</p> "> Figure 4
<p>The simulated current distribution of the UWB antenna at (<b>a</b>) 4.5 GHz, (<b>b</b>) 8.5 GHz, and (<b>c</b>) 12.7 GHz.</p> "> Figure 5
<p>The simulated current distribution of UWB band notch antenna at (<b>a</b>) 5.4 GHz, and (<b>b</b>) 7.6 GHz.</p> "> Figure 6
<p>The length of the ground plane (p6) analyzed for optimal value.</p> "> Figure 7
<p>The width of the rectangular slot on the ground plane is varied from 0.1 mm to 0.5 mm.</p> "> Figure 8
<p>The parameter t1 of the inverted U-shaped slot on the feedline is varied for choosing the ideal values.</p> "> Figure 9
<p>The parameter t2 of the inverted U-shaped slot on the feedline is varied for choosing the ideal values.</p> "> Figure 10
<p>The parameter t3 of the inverted U-shaped slot on the feedline is varied for choosing the ideal values.</p> "> Figure 11
<p>The parameter t4 of the inverted U-shaped slot on the radiator is varied for choosing the ideal values.</p> "> Figure 12
<p>The parameter t5 of the inverted U-shaped slot on the radiator is varied for choosing the ideal values.</p> "> Figure 13
<p>The parameter t6 of the inverted U-shaped slot on the radiator is varied for choosing the ideal values.</p> "> Figure 14
<p>The antenna equivalent circuit using lumped elements. (<b>a</b>) UWB: resistors (Ω): R1 = 1, R2 = 21, R3 = 3 K, and R4 = 50; inductors (nH): L1 = 12.3, L2 = 1.4, L3 = 0.254, and L4 = 0.79; and capacitors (pF): C1 = 0.79, C2 = 2, C3 = 0.25, C4 = 0.2, and C5 = 0.09. (<b>b</b>) UWB band notch: resistors (Ω): R1 = 3.8 K, R2 = 5 K, R3 = 3 K, and R4 = 50; inductors (nH): L1 = 1.31, L2 = 1, L3 = 0.112, L4 = 0.032, and L4 = 0.5; and capacitors (pF): C1 = 1, C2 = 6.3, C3 = 0.63, and C4 = 0.78.</p> "> Figure 15
<p>The CMA of the proposed UWB antenna at the center frequency: (<b>a</b>) MS, (<b>b</b>) CA, and (<b>c</b>) the first four significant modes of the current distribution.</p> "> Figure 16
<p>Prototypes of the proposed antenna designs: (<b>a</b>) UWB antenna, and (<b>b</b>) UWB band notch antenna.</p> "> Figure 17
<p>S11 curves of the (<b>a</b>) UWB and (<b>b</b>) UWB band notch antennas.</p> "> Figure 18
<p>Impedance curves of the (<b>a</b>) UWB and (<b>b</b>) UWB band notch.</p> "> Figure 19
<p>Simulated and measured radiation patterns of the UWB antennas. (<b>a</b>) 4.5 GHz, (<b>b</b>) 8.5 GHz, and (<b>c</b>) 12.7 GHz, and (<b>d</b>) the measurement setup.</p> "> Figure 20
<p>Simulated and measured radiation patterns of the UWB notch antenna. (<b>a</b>) 4.2 GHz, (<b>b</b>) 7 GHz, and (<b>c</b>) 9.5 GHz, and (<b>d</b>) the measurement setup.</p> "> Figure 21
<p>Gain versus frequency curves of the (<b>a</b>) UWB and (<b>b</b>) dual-band notch antennas.</p> "> Figure 22
<p>The transfer functions of the antennas: (<b>a</b>) UWB, and (<b>b</b>) UWB band notch.</p> "> Figure 23
<p>Phase responses of the antennas: (<b>a</b>) UWB, and (<b>b</b>) UWB band notch.</p> "> Figure 24
<p>The group delay of the antennas: (<b>a</b>) UWB, and (<b>b</b>) UWB band notch.</p> "> Figure 25
<p>Normalized inputs and outputs of the signals: (<b>a</b>) UWB, and (<b>b</b>) UWB band notch.</p> ">
Abstract
:1. Introduction
2. Antenna Design Methodology
3. Parametric Analysis
4. Antenna Modeling Using RLC Components
5. CMA
6. Results and Discussions
6.1. S-Parameters (S11) and Impedance (Z11)
6.2. Radiation Characteristics
6.3. Time-Domain Analysis
6.4. Comparative Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adame, B.O.; Salau, A.O. Genetic algorithm based optimum finger selection for adaptive minimum mean square error rake receivers discrete sequence-CDMA ultra-wide band systems. Wirel. Pers. Commun. 2022, 123, 1537–1551. [Google Scholar] [CrossRef]
- Ghosh, D.; De, A.; Taylor, M.C.; Sarkar, T.K.; Wicks, M.C.; Mokole, E.L. Transmission and reception by ultra-wideband (UWB) antennas. IEEE Antennas Propag. Mag. 2006, 48, 67–99. [Google Scholar] [CrossRef]
- Galvan-Tejada, G.M.; Peyrot-Solis, M.A.; Jardón Aguilar, H. Ultra Wideband Antennas: Design, Methodologies, and Performance; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Kumar, P.; Pai, M.M.; Ali, T. Ultrawideband antenna in wireless communication: A review and current state of the art. Telecommun. Radio Eng. 2020, 79, 929–942. [Google Scholar] [CrossRef]
- Rahman, M.; Haider, A.; Naghshvarianjahromi, M. A systematic methodology for the time-domain ringing reduction in UWB band-notched antennas. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 482–486. [Google Scholar] [CrossRef]
- Kumar, P.; Ali, T.; Mm, M.P. Characteristic mode analysis-based compact dual band-notched UWB MIMO antenna loaded with neutralization line. Micromachines 2022, 13, 1599. [Google Scholar] [CrossRef]
- Modak, S.; Khan, T.; Laskar, R.H. Penta-notched UWB monopole antenna using EBG structures and fork-shaped slots. Radio Sci. 2020, 55, 1–11. [Google Scholar] [CrossRef]
- Kumar, P.; Ali, T.; Pai, M.M. Electromagnetic Metamaterials: A New Paradigm of Antenna Design. IEEE Access 2021, 9, 18722–18751. [Google Scholar] [CrossRef]
- Awan, W.A.; Choi, D.M.; Hussain, N.; Elfergani, I.; Park, S.G.; Kim, N. A frequency selective surface loaded uwb antenna for high gain applications. CMC-Comput. Mater. Contin. 2022, 73, 6169–6180. [Google Scholar]
- Kumar, P.; Pai, M.M.M.; Ali, T. Design and analysis of multiple antenna structures for ultrawide bandwidth. Telecommun. Radio Eng. 2021, 80, 13. [Google Scholar] [CrossRef]
- Kumar, P.; Ali, T.; Pai, M.M. A compact highly isolated two-and four-port ultrawideband Multiple Input and Multiple Output antenna with Wireless LAN and X-band notch characteristics based on Defected Ground Structure. Int. J. Commun. Syst. 2022, 35, e5331. [Google Scholar] [CrossRef]
- Emadian, S.R.; Ahmadi-Shokouh, J. Study on frequency and time domain properties of novel triple band notched UWB antenna in indoor propagation channel. Int. J. RF Microw. Comput.-Aided Eng. 2018, 28, e21428. [Google Scholar] [CrossRef]
- Ali, A.; Tong, J.; Iqbal, J.; Illahi, U.; Rauf, A.; Rehman, S.U.; Ghoniem, R.M. Mutual coupling reduction through defected ground structure in circularly polarized, dielectric resonator-based MIMO antennas for sub-6 GHz 5G applications. Micromachines 2022, 13, 1082. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Illahi, U.; Khan, M.A.; Rauf, A.; Ali, E.M.; Bari, I.; Dalarsson, M. A novel single-fed dual-band dual-circularly polarized dielectric resonator antenna for 5G Sub-6GHz applications. Appl. Sci. 2022, 12, 5222. [Google Scholar] [CrossRef]
- Guha, D.; Kumar, C. Microstrip Patch versus Dielectric Resonator Antenna Bearing All Commonly Used Feeds: An experimental study to choose the right element. IEEE Antennas Propag. Mag. 2016, 58, 45–55. [Google Scholar] [CrossRef]
- NejatiJahromi, M.; NagshvarianJahromi, M.; Rahman, M. A New Compact Planar Antenna for Switching between UWB, Narrow Band and UWB with Tunable-notch Behaviors for UWB and WLAN Applications. Appl. Comput. Electromagn. Soc. J. 2018, 33, 400–406. [Google Scholar]
- Gao, G.; Hu, B.; He, L.; Wang, S.; Yang, C. Investigation of a reconfigurable dual notched UWB antenna by conceptual circuit model and time-domain characteristics. Microw. Opt. Technol. Lett. 2017, 59, 1326–1332. [Google Scholar] [CrossRef]
- Mewara, H.S.; Deegwal, J.K.; Sharma, M.M. A slot resonators based quintuple band-notched Y-shaped planar monopole ultra-wideband antenna. AEU-Int. J. Electron. Commun. 2018, 83, 470–478. [Google Scholar] [CrossRef]
- Tang, Z.; Zhan, J.; Wu, X.; Xi, Z.; Chen, L.; Hu, S. Design of a compact UWB-MIMO antenna with high isolation and dual band-notched characteristics. J. Electromagn. Waves Appl. 2020, 34, 500–513. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, G.H.; Kim, D.H.; Mohyuddin, W.; Choi, H.C.; Kim, K.W. Multiple-input-multiple-output/diversity antenna with dual band-notched characteristics for ultra-wideband applications. Microw. Opt. Technol. Lett. 2020, 62, 336–345. [Google Scholar] [CrossRef]
- Liu, L.; Cheung, S.W.; Yuk, T.I. Compact MIMO antenna for portable UWB applications with band-notched characteristic. IEEE Trans. Antennas Propag. 2015, 63, 1917–1924. [Google Scholar] [CrossRef]
- Zhu, J.; Li, S.; Feng, B.; Deng, L.; Yin, S. Compact dual-polarized UWB quasi-self-complementary MIMO/diversity antenna with band-rejection capability. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 905–908. [Google Scholar] [CrossRef]
- Kang, L.; Li, H.; Wang, X.; Shi, X. Compact offset microstrip-fed MIMO antenna for band-notched UWB applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1754–1757. [Google Scholar] [CrossRef]
- Chattha, H.T.; Latif, F.; Tahir, F.A.; Khan, M.U.; Yang, X. Small-sized UWB MIMO antenna with band rejection capability. IEEE Access 2019, 7, 121816–121824. [Google Scholar] [CrossRef]
- Tang, T.C.; Lin, K.H. An ultrawideband MIMO antenna with dual band-notched function. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1076–1079. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K. A compact UWB MIMO antenna with neutralization line for WLAN/ISM/mobile applications. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21907. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Meena, M.L.; Kumar, M.; Parmar, G.; Meena, R.S. Design analysis and modeling of directional UWB antenna with elliptical slotted ground structure for applications in C-& X-bands. Prog. Electromagn. Res. C 2016, 63, 193–207. [Google Scholar]
- Garbacz, R.J. Modal expansions for resonance scattering phenomena. Proc. IEEE 1965, 53, 856–864. [Google Scholar] [CrossRef]
- Adams, J.J.; Genovesi, S.; Yang, B.; Antonino-Daviu, E. Antenna Element Design Using Characteristic Mode Analysis: Insights and research directions. IEEE Antennas Propag. Mag. 2022, 64, 32–40. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, A.; Sharma, N. Sprocket gear wheel shaped printed monopole ultra-wideband antenna with band notch characteristics: Design and measurement. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e22989. [Google Scholar] [CrossRef]
- Kumar, G.; Singh, D.; Kumar, R. A planar CPW fed UWB antenna with dual rectangular notch band characteristics incorporating U-slot, SRRs, and EBGs. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22676. [Google Scholar] [CrossRef]
- Abbas, A.; Hussain, N.; Jeong, M.J.; Park, J.; Shin, K.S.; Kim, T.; Kim, N. A rectangular notch-band UWB antenna with controllable notched bandwidth and centre frequency. Sensors 2020, 20, 777. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, P.; Kumar, A. Circularly polarized ultra–wide band filtering antenna with controllable band-notch for wireless communication system. AEU-Int. J. Electron. Commun. 2021, 135, 153738. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, A.; Sharma, N. Split Ring Slot Loaded Compact CPW-Fed Printed Monopole Antennas for Ultra-Wideband Applications with Band Notch Characteristics. Prog. Electromagn. Res. C 2021, 110, 39–54. [Google Scholar] [CrossRef]
- Devana, V.N.; Satyanarayana, V.; Lakshmi, A.V.; Sukanya, Y.; Kumar, C.; Ponnapalli, V.L.N.; Jagadeesh Babu, K. A novel compact fractal UWB antenna with dual band notched characteristics. Analog. Integr. Circuits Signal Process. 2022, 110, 349–360. [Google Scholar] [CrossRef]
- Puri, S.C.; Das, S.; Tiary, M.G. UWB monopole antenna with dual-band-notched characteristics. Microw. Opt. Technol. Lett. 2020, 62, 1222–1229. [Google Scholar] [CrossRef]
- Koteswara Rao Devana, V.N.; Maheswara Rao, A. A compact fractal dual high frequency band notched UWB antenna with a novel SC-DGS. Analog. Integr. Circuits Signal Process. 2021, 107, 145–153. [Google Scholar] [CrossRef]
- Medkour, H.; Cheniti, M.; Narbudowicz, A.; Das, S.; Vandelle, E.; Vuong, T.P. Coplanar waveguide-based ultra-wide band antenna with switchable filtering of WiMAX 3.5 GHz and WLAN 5 GHz signals. Microw. Opt. Technol. Lett. 2020, 62, 2398–2404. [Google Scholar] [CrossRef]
Parameters/Antenna Design | WS | LS | p1 | p2 | p3 | p4 | p5 | p6 | p7 | p8 | p9 |
---|---|---|---|---|---|---|---|---|---|---|---|
UWB | 11 | 16 | 3 | 6 | 1.6 | 2 | 5 | 1.9 | 0.2 | 4.7 | 2.7 |
Parameters/Antenna Design | t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 |
---|---|---|---|---|---|---|---|---|
UWB dual-band notch | 0.2 | 0.2 | 8 | 0.5 | 0.4 | 2 | 8.2 | 0.6 |
Significance | ||
---|---|---|
Capacitive (electric energy) | ||
Resonating point | ||
Inductive (magnetic energy) |
Antennas | Orientation | Fidelity Factor (%) |
---|---|---|
UWB | Side-to-side | 93.49 |
Face-to-face | 92.6 | |
UWB band notch | Side-to-side | 94.32 |
Face-to-face | 93.9 |
Ref. | Dimension (λ3) | Bandwidth (GHz) | Notching Techniques | No. of Notches | Center Frequency of the Notches (GHz) | FF | |
---|---|---|---|---|---|---|---|
[31] | 0.28 × 0.28 × 0.02 | 3.1–10.6 | Slots on a radiating plane | 2 | 3.5 and 5.5 | Constant except band notch | - |
[32] | 0.22 × 0.22 × 0.01 | 2.63–10.87 | U slot and rectangular split-ring resonator (SRR) on a radiating plane | 2 | 6.72 and 9.24 | <1 | 0.94 |
[33] | 0.26 × 0.17 × 0.02 | 3.1–12.5 | Electromagnetic bandgap on the back of a radiating plane | 1 | 5.5 | - | - |
[34] | 0.33 × 0.28 × 0.02 | 3.08–10.55 | Bandpass filter of the T-shape | 1 | 6.205 | <1 | - |
[35] | 0.18 × 0.18 × 0.02 | 3–12 | Circular SRR on a radiating plane | 2 | 5.3 and 7.4 | - | - |
[36] | 0.20 × 0.26 × 0.02 | 3.77–11.64 | S-shaped slot and a pair of inverted L-shaped stubs on a radiating plane | 2 | 5.71 and 7.69 | Average of 1.36 | 0.78 |
[37] | 0.29 × 0.28 × 0.02 | 2.76–11 | Four circular stubs on a radiating plane and two complementary SRRs on a ground plane | 2 | 4.4 and 5.8 | <3.2 | - |
[38] | 0.20 × 0.26 × 0.02 | 3.73–16.74 | A pair of inverted L-shaped stubs on a radiating plane and a C-shaped stub on a ground plane | 2 | 7.54 and 10.35 | <1.2 | 0.86 |
[39] | 0.33 × 0.21 × 0.02 | 3–10.6 | Two slits are engraved on a radiating plane | 2 | 3.5 and 5 | - | - |
Proposed | 0.19 × 0.13 × 0.01 | 3.7–13.3 | Two inverted U-shaped slots on the radiator | 2 | 5.4 and 7.6 | <1 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; MM, M.P.; Kumar, P.; Ali, T.; Alsath, M.G.N.; Suresh, V. Characteristics Mode Analysis-Inspired Compact UWB Antenna with WLAN and X-Band Notch Features for Wireless Applications. J. Sens. Actuator Netw. 2023, 12, 37. https://doi.org/10.3390/jsan12030037
Kumar P, MM MP, Kumar P, Ali T, Alsath MGN, Suresh V. Characteristics Mode Analysis-Inspired Compact UWB Antenna with WLAN and X-Band Notch Features for Wireless Applications. Journal of Sensor and Actuator Networks. 2023; 12(3):37. https://doi.org/10.3390/jsan12030037
Chicago/Turabian StyleKumar, Praveen, Manohara Pai MM, Pradeep Kumar, Tanweer Ali, M. Gulam Nabi Alsath, and Vidhyashree Suresh. 2023. "Characteristics Mode Analysis-Inspired Compact UWB Antenna with WLAN and X-Band Notch Features for Wireless Applications" Journal of Sensor and Actuator Networks 12, no. 3: 37. https://doi.org/10.3390/jsan12030037
APA StyleKumar, P., MM, M. P., Kumar, P., Ali, T., Alsath, M. G. N., & Suresh, V. (2023). Characteristics Mode Analysis-Inspired Compact UWB Antenna with WLAN and X-Band Notch Features for Wireless Applications. Journal of Sensor and Actuator Networks, 12(3), 37. https://doi.org/10.3390/jsan12030037