Adaptive Sampling for WSAN Control Applications Using Artificial Neural Networks
<p>WSAN control system with induced delays.</p> "> Figure 2
<p>Network delay propagation timing diagram.</p> "> Figure 3
<p>Prediction of delay sequence using <span class="html-italic">BPNN(d)<sub>6,8</sub></span>.</p> "> Figure 4
<p>Prediction of delay sequence using <span class="html-italic">BPNN(dt)<sub>6,8</sub>.</span></p> "> Figure 5
<p>Prediction of delay sequence using <span class="html-italic">TDNN(d)<sub>8,5</sub>.</span></p> "> Figure 6
<p>Prediction of delay sequence using <span class="html-italic">TDNN(dt)<sub>8,5</sub>.</span></p> "> Figure 7
<p>Prediction of delay sequence using <span class="html-italic">NARXNN(d)<sub>10,8</sub>.</span></p> "> Figure 8
<p>Prediction of delay sequence using <span class="html-italic">NARXNN(dt)<sub>10,8</sub>.</span></p> "> Figure 9
<p>Prediction of delay sequence using <span class="html-italic">RBFNN(d)<sub>1,3</sub>.</span></p> "> Figure 10
<p>Prediction of delay sequence using <span class="html-italic">RBFNN(dt)<sub>1,3</sub>.</span></p> "> Figure 11
<p>(<b>a</b>) Variable sampling with inadequate delay prediction (<b>b</b>) Real <span class="html-italic">vs.</span> predicted time delay.</p> "> Figure 12
<p>(<b>a</b>) Variable sampling with adequate prediction (<b>b</b>) Real <span class="html-italic">vs.</span> predicted time delay.</p> ">
Abstract
:1. Introduction
2. WSAN Network Model
2.1. Delay and Wireless Control Systems
- Computational, processing and transmission delays are absorbed by τsc or τca.
- Sensors data is time-stamped prior to transmission to the controller.
- The controller has information on last time controller to actuator delay (using the 802.15.4 data acknowledgement mechanism). This information is used by the neural network to compute the delay τca that is going to happen.
2.2. Stability Analysis
3. Artificial Neural Network Models and Related Work
3.1. Neural Network Models
3.2. Related Work
4. Neural Network Based Adaptive Sampling Mechanism
4.1. Prediction Target
4.2. Simulation Data
4.3. Neural Network Model
5. Experimental Analysis
5.1. ANN Results
i/h | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | 0.99771 | 1 | 0.99394 | 0.99972 | 0.99749 | 0.99049 | 0.99763 | 0.99025 | 0.94882 | 0.97005 |
2 | 0.99782 | 0.99995 | 0.99831 | 0.99999 | 0.99853 | 0.99992 | 0.99982 | 0.99931 | 0.99968 | 0.99995 |
3 | 0.99662 | 0.99202 | 0.99778 | 0.99979 | 0.99942 | 0.97385 | 0.99937 | 0.99979 | 0.99946 | 0.99974 |
4 | 0.99557 | 0.99871 | 0.99932 | 0.9991 | 0.99824 | 0.99951 | 0.98813 | 0.85575 | 0.99998 | 0.99601 |
5 | 0.99508 | 0.99704 | 0.99762 | 1 | 0.96259 | 1 | 0.99953 | 1 | 0.99997 | 0.99992 |
6 | 0.99994 | 0.93792 | 0.99997 | 0.99947 | 0.99947 | 1 | 0.99986 | 1 | 0.99795 | 0.99265 |
7 | 0.9844 | 0.99933 | 0.99963 | 0.96674 | 0.99967 | 0.9999 | 1 | 0.9992 | 1 | 0.97413 |
8 | 0.99211 | 0.99725 | 0.99997 | 0.9994 | 0.99521 | 0.99939 | 1 | 0.99997 | 1 | 1 |
9 | 0.99765 | 0.99261 | 0.9998 | 0.99879 | 0.99999 | 0.99996 | 1 | 0.99664 | 1 | 1 |
10 | 0.99704 | 0.99232 | 1 | 0.96654 | 1 | 0.99964 | 1 | 0.99975 | 0.99985 | 0.99999 |
i/h | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | 0.99713 | 0.99749 | 0.99333 | 0.99642 | 0.99546 | 0.99684 | 0.98664 | 0.9949 | 0.98915 | 0.99394 |
2 | 0.99842 | 0.99254 | 0.99948 | 0.99999 | 0.98435 | 0.98885 | 0.98885 | 0.99356 | 0.99418 | 0.99646 |
3 | 0.99877 | 0.98948 | 0.99619 | 0.99864 | 0.9991 | 0.99993 | 0.99658 | 0.99352 | 0.92443 | 0.99786 |
4 | 0.99929 | 0.95056 | 0.99799 | 0.99977 | 0.9938 | 0.99777 | 0.98805 | 0.98998 | 0.99 | 0.99886 |
5 | 0.99657 | 0.99961 | 0.99999 | 1 | 0.99651 | 0.99974 | 0.99978 | 0.9945 | 0.98714 | 0.97938 |
6 | 0.99995 | 0.99429 | 0.99905 | 0.99656 | 0.99473 | 0.97471 | 0.99848 | 0.99858 | 0.99783 | 0.97157 |
7 | 0.99928 | 0.99209 | 0.99997 | 0.99989 | 0.99886 | 0.99989 | 0.99982 | 0.9998 | 0.99981 | 0.99792 |
8 | 0.99665 | 0.99401 | 0.99963 | 0.92658 | 1 | 0.9993 | 0.98412 | 0.99956 | 1 | 0.99444 |
9 | 0.98997 | 0.99735 | 1 | 1 | 0.98889 | 0.99964 | 0.99988 | 0.99742 | 0.99547 | 0.82498 |
10 | 0.99754 | 0.99985 | 0.9856 | 0.99975 | 0.99806 | 0.99998 | 0.99994 | 0.99602 | 0.99823 | 0.84556 |
i/h | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | 0.67563 | 0.70139 | 0.16444 | 0.62261 | 0.09675 | 0.37677 | 0.78767 | 0.34238 | 0.28678 | 0.222 |
2 | 0.71451 | 0.83411 | 0.73071 | 0.82169 | 0.63463 | 0.19166 | 0.6893 | 0.38353 | 0.14549 | 0.81205 |
3 | 0.69679 | 0.21447 | 0.78564 | 0.14763 | 0.59608 | 0.15593 | 0.4955 | 0.28168 | 0.04855 | 0.86435 |
4 | 0.47557 | 0.35143 | 0.60278 | 0.18833 | 0.24992 | 0.34382 | 0.60802 | 0.46657 | 0.26551 | 0.59912 |
5 | 0.7848 | 0.76433 | 0.63474 | 0.67272 | 0.44231 | 0.09158 | 0.62777 | 0.54616 | 0.65428 | 0.61139 |
6 | 0.62871 | 0.55258 | 0.56243 | 0.75613 | 0.47594 | 0.15447 | 0.64026 | 0.78239 | 0.24806 | 0.7588 |
7 | 0.78214 | 0.6706 | 0.48063 | 0.64128 | 0.04806 | 0.44459 | 0.78072 | 0.86537 | 0.49045 | 0.36757 |
8 | 0.71624 | 0.78585 | 0.09391 | 0.35222 | 0.65947 | 0.74706 | 0.81969 | 0.64936 | 0.77512 | 0.06884 |
9 | 0.85177 | 0.63294 | 0.78136 | 0.65603 | 0.68281 | 0.62178 | 0.29884 | 0.11818 | 0.04215 | 0.06341 |
10 | 0.76553 | 0.37205 | 0.51179 | 0.37349 | 0.73053 | 0.53513 | 0.50677 | 0.90871 | 0.14541 | 0.71483 |
i/s | 0.01 | 0.05 | 0.1 | 0.25 | 0.50 | 0.70 | 0.90 | 1 | 2 | 3 |
1 | 0.96164 | 0.96164 | 0.99832 | 0.99969 | 0.99992 | 0.99996 | 0.99998 | 0.99998 | 1 | 1 |
2 | 0.96129 | 0.9563 | 0.9563 | 0.9994 | 0.99984 | 0.99992 | 0.99995 | 0.99996 | 0.99999 | 1 |
3 | 0.96059 | 0.99219 | 0.99634 | 0.99913 | 0.99977 | 0.99988 | 0.99993 | 0.99994 | 0.99999 | 0.99999 |
4 | 0.96233 | 0.98208 | 0.99677 | 0.99887 | 0.99969 | 0.99984 | 0.9999 | 0.99992 | 0.99998 | 0.99999 |
5 | 0.96303 | 0.97637 | 0.99814 | 0.99862 | 0.99962 | 0.9998 | 0.99988 | 0.9999 | 0.99998 | 0.99999 |
6 | 0.96166 | 0.97367 | 0.99861 | 0.99838 | 0.99954 | 0.99976 | 0.99986 | 0.99988 | 0.99997 | 0.99999 |
7 | 0.96171 | 0.97323 | 0.99661 | 0.99816 | 0.99947 | 0.99972 | 0.99983 | 0.99986 | 0.99997 | 0.99998 |
8 | 0.96147 | 0.96763 | 0.99393 | 0.99794 | 0.9994 | 0.99969 | 0.99981 | 0.99984 | 0.99996 | 0.99998 |
9 | 0.9614 | 0.96758 | 0.98769 | 0.99774 | 0.99933 | 0.99965 | 0.99978 | 0.99982 | 0.99996 | 0.99998 |
10 | 0.96432 | 0.96758 | 0.98152 | 0.99755 | 0.99926 | 0.99961 | 0.99976 | 0.99981 | 0.99995 | 0.99998 |
Topology | Validation RMSE | Epochs | Validation Regression | Testing Regression |
---|---|---|---|---|
BPNN(d)6,8 | 4.49E-06 | 5 | 0.999999999 | 0.999999999 |
TDNN(d)8,5 | 2.25E-05 | 9 | 0.999999702 | 0.999999980 |
NARXNN(d)10,8 | 8.55E-05 | 7 | 0.858126729 | 0.908709757 |
RBFNN(d)1,3 | 1.00E-06 | 3 | 0.999998120 | 0.999997805 |
Topology | Validation RMSE | Epochs | Validation Regression | Testing Regression |
---|---|---|---|---|
BPNN(dp)6,8 | 8.45E-04 | 6 | 0.999685553 | 0.999285754 |
BPNN(dt)6,8 | 2.34E-05 | 6 | 0.999994186 | 0.999996961 |
TDNN(dp)8,5 | 8.26E-04 | 9 | 0.9993673310 | 0.991370462 |
TDNN(dt)8,5 | 5.15E-04 | 9 | 0.9999325536 | 0.999974604 |
NARXNN(dp)10,8 | 3.97E-03 | 7 | 0.22702980098 | 0.81293043617 |
NARXNN(dt)10,8 | 1.09E-02 | 7 | 0.30071510804 | 0.93552375907 |
RBFNN(dp)1,3 | 5.03E-05 | 3 | 0.999999996 | 0.999999958 |
RBFNN(dt)1,3 | 1.98E-05 | 3 | 0.999999999 | 0.999999987 |
5.2. Prediction Results Analysis
5.3. Inverted Pendulum Simulations
Mass of cart, M | 3 kg |
Mass of pendulum bob, m | 1.5 kg |
Length of pendulum, l | 0.7 metres |
Gravitational constant, g | 9.81 |
Variable Sampling Period
6. Conclusion
References
- Nkwogu, D.N.; Allen, A.R. Adaptive Learning and Reconfiguration in Wireless Sensor networks for Control Applications. In Proceedings of the 12th Annual Postgraduate Symposium on the Convergence of Telecommunication, Networking and Broadcasting, Liverpool, UK, 27–29 June 2011.
- IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirement Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), IEEE Std 802.15.4a-2007.
- Gmez, R.C.L.; Velasco, P.M.; Fuertes, J.M. Wireless Network Delay Estimation for Time Sensitive Applications Research Report; ESAII RR-06-12; Technical University of Catalonia: Barcelona, Spain, 2006. [Google Scholar]
- Nilsson, J. Real-Time Control Systems with Delays.
- Kurose, J.F.; Ross, K.W. Computer Networking: A Top-Down Approach, 4th ed; Addison Wesley, 2007. [Google Scholar]
- Nise, N.S. Control Systems Engineering; Benjamin/Cummings: San Fransisco, CA, USA, 1992. [Google Scholar]
- Yi, J.; Wang, Q.; Zhao, D.; Wen, J. BP neural network prediction based variable sampling approach for networked control systems. Appl. Math. Comput. 2007, 185, 976–988. [Google Scholar]
- Kawka, P.; Alleyne, A. Stability and Feedback Control of Wireless Networked Systems. In Proceedings of the 2005 American Control Conference, Portland, OR, USA, 8–10 June 2005; 4, pp. 2953–2959.
- McKernan, A.; Arino, C.; Irwin, G.; Scanlon, W. A Multiple Observer Approach to Stability in Wireless Network Control Systems. In Proceeding of the UKACC International Control Conference, Manchester, UK; 2008. [Google Scholar]
- Branicky, M.; Phillips, S.; Wei, Z. Stability of Networked Control Systems: Explicit Analysis of Delay. In Proceedings of the 2000 American Control Conference, Illinois, IL, USA, June 2000; 4, pp. 2352–2357.
- Osterlind, N.; Dunkels, A. Approaching the Maximum 802.15.4 Multi-Hop Throughput. In Proceedings of ACM HotEmNets’08, Charlottesville, Virginia, USA, 2–3 June 2008.
- Latré, N.; De Mil, P.; Moerman, I.; Van Dierdonck, N.; Dhoedt, B.; Demeester, P. Maximum throughput and minimum delay in IEEE 802.15.4. Lect. Note. Comp. Sci. 2005, 3794, 866–876. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Macmillian College Publishing: New York, NY, USA, 1994. [Google Scholar]
- MATLAB® & Simulink® Student Version R2011 by The MathWorks, Inc.Matlab reference © Copyright 1984–2011
- Xia, F.; Ma, L.; Peng, C.; Sun, Y.; Dong, J. Cross layer adaptive feedback scheduling of wireless controls systems. Sensors 2008, 8, 4265–4281. [Google Scholar] [CrossRef]
- Guo, Z.; Malakooti, B. Delay Prediction for Intelligent Routing in Wireless Networks Using Neural Networks. In Proceedings of IEEE International Conference on Networking, Sensing and Control (ICNSC06), Ft. Lauderdale, FL, USA, 23–25 April 2006.
- Sadeghzadeh, N.; Afshar, A.; Menhaj, M. An MLP Neural Network for Time Delay Prediction in Networked Control Systems. In Proceedings of Chinese Control and Decision Conference, Yantai, China, 2–4 July 2008.
- Zhang, L.; Shi, Y.; Chen, T.; Huang, B. A new method for stabilization of networked control systems with random delays. IEEE Trans. Automatic Control 2009, 50, 1177–1181. [Google Scholar]
- Nilsson, J.; Bernhardson, B.; Wittenmark, B. Stochastic analysis and control of real-time systems with random time delays. Automatica 1998, 34, 57–64. [Google Scholar] [CrossRef]
- OpnetModeler. Available online: https://enterprise1.opnet.com/opnet_directory/login/validate_static_pages?REDIRECT_URL=https://www.opnet.com/support/110-opnetreference (accessed on 28 March2012).
- Friedland, B.; McKendrick, J.A. Control System Design an Introduction to State-Space Methods; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning, 2nd ed; The MIT Press Cambridge: Cambridge, MA, USA, 2010. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nkwogu, D.N.; Allen, A.R. Adaptive Sampling for WSAN Control Applications Using Artificial Neural Networks. J. Sens. Actuator Netw. 2012, 1, 299-320. https://doi.org/10.3390/jsan1030299
Nkwogu DN, Allen AR. Adaptive Sampling for WSAN Control Applications Using Artificial Neural Networks. Journal of Sensor and Actuator Networks. 2012; 1(3):299-320. https://doi.org/10.3390/jsan1030299
Chicago/Turabian StyleNkwogu, Daniel N., and Alastair R. Allen. 2012. "Adaptive Sampling for WSAN Control Applications Using Artificial Neural Networks" Journal of Sensor and Actuator Networks 1, no. 3: 299-320. https://doi.org/10.3390/jsan1030299
APA StyleNkwogu, D. N., & Allen, A. R. (2012). Adaptive Sampling for WSAN Control Applications Using Artificial Neural Networks. Journal of Sensor and Actuator Networks, 1(3), 299-320. https://doi.org/10.3390/jsan1030299