A Feed-Forward Neural Network Approach for Energy-Based Acoustic Source Localization
<p>Sensors’ distance estimate representation when measurement noise is considered.</p> "> Figure 2
<p>Proposed Deep Feed-Forward Neural Network.</p> "> Figure 3
<p>Overall strategy of the network.</p> "> Figure 4
<p>Random source distribution over the search space for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Histogram of the input data before and after normalization and rescaling.</p> "> Figure 6
<p>Training Performance considering 3, 9, and 27 perceptrons per layer, for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>9</mn> <mo>,</mo> <mn>12</mn> <mo>,</mo> </mrow> </semantics></math> and 15 Sensors (DFNN Network).</p> "> Figure 7
<p>Training Performance considering 3, 9, and 27 perceptrons per layer, for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>9</mn> <mo>,</mo> <mn>12</mn> <mo>,</mo> </mrow> </semantics></math> and 15 Sensors (MLP Network).</p> "> Figure 8
<p>RMSE Comparison of <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>X</mi> <mi>A</mi> <mi>C</mi> <mi>T</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>E</mi> <mi>H</mi> <mi>O</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>L</mi> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>F</mi> <mi>N</mi> <msub> <mi>N</mi> <mn>3</mn> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Cumulative Distribution Function of LE for <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <msub> <mi>ν</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> <mo>=</mo> <mo>−</mo> <mn>80</mn> </mrow> </semantics></math> dB and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Cumulative Distribution Function of LE for <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <msub> <mi>ν</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> <mo>=</mo> <mo>−</mo> <mn>80</mn> </mrow> </semantics></math> dB and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Theoretical Background
3.1. Energy-Based Acoustic Localization
3.2. Deep Feed-Forward Neural Network
4. Proposed Method
Algorithm 1 Training Procedure | |
1: for i = 1:1:NS do 2: 3: for j = 1:1:N do 4: 5: end for 6: end for 7: 8: 9: |
▹ NS—Number of samples ▹—Lower Bound; —Upper bound ▹ N—Number of sensors ▹ Apply Expression (1) [noise-free ()] ▹ Training set (inputs) ▹ Validation set (inputs) ▹ Levenberg–Marquardt Algorithm |
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uziel, S.; Elste, T.; Kattanek, W.; Hollosi, D.; Gerlach, S.; Goetze, S. Networked embedded acoustic processing system for smart building applications. In Proceedings of the 2013 Conference on Design and Architectures for Signal and Image Processing, Cagliari, Italy, 8–10 October 2013; pp. 349–350. [Google Scholar]
- Quintana-Suárez, M.; Sánchez-Rodríguez, D.; Alonso-González, I.; Alonso-Hernández, J. A Low Cost Wireless Acoustic Sensor for Ambient Assisted Living Systems. Appl. Sci. 2017, 7, 877. [Google Scholar] [CrossRef] [Green Version]
- Toky, A.; Singh, R.P.; Das, S. Localization schemes for Underwater Acoustic Sensor Networks—A Review. Comput. Sci. Rev. 2020, 37, 100241. [Google Scholar] [CrossRef]
- Taylor, C.E.; Huang, Y.; Yao, K. Distributed sensor swarms for monitoring bird behavior: An integrated system using wildlife acoustics recorders. Artif. Life Robot. 2016, 21, 268–273. [Google Scholar] [CrossRef]
- Lopatka, K.; Kotus, J.; Czyzewski, A. Detection, classification and localization of acoustic events in the presence of background noise for acoustic surveillance of hazardous situations. Multimed. Tools Appl. 2015, 75, 10407–10439. [Google Scholar] [CrossRef] [Green Version]
- Maroti, M.; Simon, G.; Ledeczi, A.; Sztipanovits, J. Shooter localization in urban terrain. Computer 2004, 37, 60–61. [Google Scholar] [CrossRef]
- Lammert-Siepmann, N.; Bestgen, A.K.; Edler, D.; Kuchinke, L.; Dickmann, F. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps. PLoS ONE 2017, 12, e0186065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reagan, I.; Baldwin, C.L. Facilitating route memory with auditory route guidance systems. J. Environ. Psychol. 2006, 26, 146–155. [Google Scholar] [CrossRef]
- Xu, E.; Ding, Z.; Dasgupta, S. Source Localization in Wireless Sensor Networks From Signal Time-of-Arrival Measurements. IEEE Trans. Signal Process. 2011, 59, 2887–2897. [Google Scholar] [CrossRef]
- Yang, L.; Ho, K.C. An Approximately Efficient TDOA Localization Algorithm in Closed-Form for Locating Multiple Disjoint Sources With Erroneous Sensor Positions. IEEE Trans. Signal Process. 2009, 57, 4598–4615. [Google Scholar] [CrossRef]
- Ali, A.M.; Yao, K.; Collier, T.C.; Taylor, C.E.; Blumstein, D.T.; Girod, L. An Empirical Study of Collaborative Acoustic Source Localization. In Proceedings of the 2007 6th International Symposium on Information Processing in Sensor Networks, Cambridge, MA, USA, 25–27 April 2007. [Google Scholar] [CrossRef]
- He, T.; Huang, C.; Blum, B.M.; Stankovic, J.A.; Abdelzaher, T.F. Range-Free Localization and Its Impact on Large Scale Sensor Networks. ACM Trans. Embed. Comput. Syst. 2005, 4, 877–906. [Google Scholar] [CrossRef]
- Singh, S.P.; Sharma, S. Range Free Localization Techniques in Wireless Sensor Networks: A Review. Procedia Comput. Sci. 2015, 57, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.H.; Li, D. Energy based collaborative source localization using acoustic micro-sensor array. In Proceedings of the 2002 IEEE Workshop on Multimedia Signal Processing, St. Thomas, VI, USA, 9–11 December 2002; pp. 371–375. [Google Scholar] [CrossRef] [Green Version]
- Sheng, X.; Hu, Y. Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Trans. Signal Process. 2005, 53, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Shareef, A.; Zhu, Y. Localization Using Extended Kalman Filters in Wireless Sensor Networks. In Kalman Filter Recent Advances and Applications; I-Tech: Vienna, Austria, 2009. [Google Scholar]
- Wang, X.; Mao, S. Deep learning for indoor localization based on bimodal CSI data. Appl. Mach. Learn. Wirel. Commun. 2019, 17, 343–369. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, J.; Li, Z.; Zhao, L. Robust and Accurate Wi-Fi Fingerprint Location Recognition Method Based on Deep Neural Network. Appl. Sci. 2020, 10, 321. [Google Scholar] [CrossRef] [Green Version]
- Wolf, B.J.; Wolfshaar, J.V.D.; Netten, S.M.V. Three-dimensional multi-source localization of underwater objects using convolutional neural networks for artificial lateral lines. J. R. Soc. Interface 2020, 17, 20190616. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, D.J. Artificial Neural Networks: Methods and Applications; Humana Press: Totowa, NJ, USA, 2009; ISBN 978-1-60327-101-1. [Google Scholar] [CrossRef]
- Parathai, P.; Tengtrairat, N.; Woo, W.L.; Abdullah, M.A.M.; Rafiee, G.; Alshabrawy, O. Efficient Noisy Sound-Event Mixture Classification Using Adaptive-Sparse Complex-Valued Matrix Factorization and OvsO SVM. Sensors 2020, 20, 4368. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Xiao, W. Energy-Based Acoustic Source Localization Methods: A Survey. Sensors 2017, 17, 376. [Google Scholar] [CrossRef] [Green Version]
- Meesookho, C.; Mitra, U.; Narayanan, S. On Energy-Based Acoustic Source Localization for Sensor Networks. IEEE Trans. Signal Process. 2008, 56, 365–377. [Google Scholar] [CrossRef]
- Ho, K.C.; Sun, M. An Accurate Algebraic Closed-Form Solution for Energy-Based Source Localization. IEEE Trans. Audio Speech Lang. Process. 2007, 15, 2542–2550. [Google Scholar] [CrossRef]
- Beck, A.; Stoica, P.; Li, J. Exact and Approximate Solutions of Source Localization Problems. IEEE Trans. Signal Process. 2008, 56, 1770–1778. [Google Scholar] [CrossRef]
- Wang, G. A Semidefinite Relaxation Method for Energy-Based Source Localization in Sensor Networks. IEEE Trans. Veh. Technol. 2011, 60, 2293–2301. [Google Scholar] [CrossRef]
- Beko, M. Energy-based localization in wireless sensor networks using semidefinite relaxation. In Proceedings of the 2011 IEEE Wireless Communications and Networking Conference, Cancun, Mexico, 28–31 March 2011; pp. 1552–1556. [Google Scholar] [CrossRef]
- Beko, M. Energy-Based Localization in Wireless Sensor Networks Using Second-Order Cone Programming Relaxation. Wirel. Pers. Commun. 2014, 77, 1847–1857. [Google Scholar] [CrossRef]
- Yan, Y.; Shen, X.; Hua, F.; Zhong, X. On the Semidefinite Programming Algorithm for Energy-Based Acoustic Source Localization in Sensor Networks. IEEE Sens. J. 2018, 18, 8835–8846. [Google Scholar] [CrossRef]
- Shi, J.; Wang, G.; Jin, L. Robust Semidefinite Relaxation Method for Energy-Based Source Localization: Known and Unknown Decay Factor Cases. IEEE Access 2019, 7, 163740–163748. [Google Scholar] [CrossRef]
- Deb, S.; Fong, S.; Tian, Z. Elephant Search Algorithm for optimization problems. In Proceedings of the 2015 Tenth International Conference on Digital Information Management (ICDIM), Jeju, Korea, 21–23 October 2015; pp. 249–255. [Google Scholar] [CrossRef]
- Wang, G.G.; Coelho, L.D.S.; Gao, X.Z.; Deb, S. A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int. J. Bio Inspired Comput. 2016, 8, 394. [Google Scholar] [CrossRef]
- Correia, S.D.; Beko, M.; Cruz, L.; Tomic, S. Elephant Herding Optimization for Energy-Based Localization. Sensors 2018, 18, 2849. [Google Scholar] [CrossRef]
- Correia, S.D.; Beko, M.; Da Silva Cruz, L.A.; Tomic, S. Implementation and Validation of Elephant Herding Optimization Algorithm for Acoustic Localization. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Correia, S.D.; Beko, M.; Tomic, S.; Da Silva Cruz, L.A. Energy-Based Acoustic Localization by Improved Elephant Herding Optimization. IEEE Access 2020, 8, 28548–28559. [Google Scholar] [CrossRef]
- Correia, S.D.; Fé, J.; Tomic, S.; Beko, M. Development of a Test-Bench for Evaluating the Embedded Implementation of the Improved Elephant Herding Optimization Algorithm Applied to Energy-Based Acoustic Localization. Computers 2020, 9, 87. [Google Scholar] [CrossRef]
- Cobos, M.; Antonacci, F.; Alexandridis, A.; Mouchtaris, A.; Lee, B. A Survey of Sound Source Localization Methods in Wireless Acoustic Sensor Networks. Wirel. Commun. Mob. Comput. 2017, 2017, 3956282. [Google Scholar] [CrossRef]
- Sheng, X.; Hu, Y.H. Energy Based Acoustic Source Localization. In Information Processing in Sensor Networks Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 285–300. [Google Scholar]
- Meng, W.; Xiao, W.; Xie, L. An Efficient EM Algorithm for Energy-Based Multisource Localization in Wireless Sensor Networks. IEEE Trans. Instrum. Meas. 2011, 60, 1017–1027. [Google Scholar] [CrossRef]
- Lu, L.; Wu, H.C. Novel energy-based localization technique for multiple sources. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012. [Google Scholar] [CrossRef]
- Chang, S.; Li, Y.; He, Y.; Wang, H. Target Localization in Underwater Acoustic Sensor Networks Using RSS Measurements. Appl. Sci. 2018, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Morar, A.; Moldoveanu, A.; Mocanu, I.; Moldoveanu, F.; Radoi, I.E.; Asavei, V.; Gradinaru, A.; Butean, A. A Comprehensive Survey of Indoor Localization Methods Based on Computer Vision. Sensors 2020, 20, 2641. [Google Scholar] [CrossRef] [PubMed]
- Mao, G. Localization algorithms and strategies for wireless sensor networks monitoring and surveillance techniques for target tracking. In Information Science Reference; IGI Global: Hershey, PN, USA, 2009; Chapter 3. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, G. Machine Learning Based Localization in Large-Scale Wireless Sensor Networks. Sensors 2018, 18, 4179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, H.; Bouallegue, R. Comparative study of learning-based localization algorithms for Wireless Sensor Networks: Support Vector regression, Neural Network and Naïve Bayes. In Proceedings of the 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, 24–28 August 2015. [Google Scholar] [CrossRef]
- Alexandridis, A.; Mouchtaris, A. Multiple Sound Source Location Estimation in Wireless Acoustic Sensor Networks using DOA estimates: The Data-Association Problem. IEEE/ACM Trans. Audio Speech Lang. Process. 2017. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhu, H.; Dang, X. Tracking multiple acoustic sources by adaptive fusion of TDOAs across microphone pairs. Digit. Signal Process. 2020, 106, 102853. [Google Scholar] [CrossRef]
- Evers, C.; Dorfan, Y.; Gannot, S.; Naylor, P.A. Source tracking using moving microphone arrays for robot audition. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, X.; Zheng, C.; Fu, J.; Zhao, C. Underwater Acoustical Localization of the Black Box Utilizing Single Autonomous Underwater Vehicle Based on the Second-Order Time Difference of Arrival. IEEE J. Ocean. Eng. 2020, 45, 1268–1279. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M.; Dinis, R.; Tuba, M.; Bacanin, N. Bayesian methodology for target tracking using combined RSS and AoA measurements. Phys. Commun. 2017, 25, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Frank, R.J.; Davey, N.; Hunt, S.P. Time Series Prediction and Neural Networks. J. Intell. Robot. Syst. 2001, 31, 91–103. [Google Scholar] [CrossRef]
- Koh, B.H.D.; Lim, C.L.P.; Rahimi, H.; Woo, W.L.; Gao, B. Deep Temporal Convolution Network for Time Series Classification. Sensors 2021, 21, 603. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgio, M.; Dercole, F. Robustness of LSTM neural networks for multi-step forecasting of chaotic time series. Chaos Solitons Fractals 2020, 139, 110045. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Sonoda, S.; Murata, N. Neural network with unbounded activation functions is universal approximator. Appl. Comput. Harmon. Anal. 2017, 43, 233–268. [Google Scholar] [CrossRef] [Green Version]
- Kalman, B.L.; Kwasny, S.C. Why tanh: Choosing a sigmoidal function. In Proceedings of the IJCNN International Joint Conference on Neural Networks, Baltimore, MD, USA, 7–11 June 1992; Volume 4, pp. 578–581. [Google Scholar] [CrossRef]
- Abdulkarim, M.; Shafie, A.; Ahmad, W.F.W.; Razali, R. Performance Comparison between MLP Neural Network and Exponential Curve Fitting on Airwaves Data. In Lecture Notes in Electrical Engineering Advances in Computer Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1079–1087. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Battiti, R. First- and Second-Order Methods for Learning: Between Steepest Descent and Newton’s Method. Neural Comput. 1992, 4, 141–166. [Google Scholar] [CrossRef]
- Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147. [Google Scholar] [CrossRef]
- Huang, G. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, S. Capabilities of a three layer feedforward neural network. In Proceedings of the 1991 IEEE International Joint Conference on Neural Networks, Singapore, 18–21 November 1991. [Google Scholar] [CrossRef]
- Shin-ike, K. A two phase method for determining the number of neurons in the hidden layer of a 3-layer neural network. In Proceedings of the SICE Annual Conference 2010, Taipei, Taiwan, 18–21 August 2010; pp. 238–242. [Google Scholar]
- Sheela, K.G.; Deepa, S.N. Review on Methods to Fix Number of Hidden Neurons in Neural Networks. Math. Probl. Eng. 2013, 2013, 425740. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Cao, X.; Liang, H.; Huang, W.; Chen, Z.; Li, Z. New Interpretations of Normalization Methods in Deep Learning. Proc. AAAI Conf. Artif. Intell. 2020, 34, 5875–5882. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning-ICML’15, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456. [Google Scholar]
- Beichelt, F. Functions of Random Variables. Appl. Probab. Stoch. Process. 2018, 155–198. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, S.D.; Tomic, S.; Beko, M. A Feed-Forward Neural Network Approach for Energy-Based Acoustic Source Localization. J. Sens. Actuator Netw. 2021, 10, 29. https://doi.org/10.3390/jsan10020029
Correia SD, Tomic S, Beko M. A Feed-Forward Neural Network Approach for Energy-Based Acoustic Source Localization. Journal of Sensor and Actuator Networks. 2021; 10(2):29. https://doi.org/10.3390/jsan10020029
Chicago/Turabian StyleCorreia, Sérgio D., Slavisa Tomic, and Marko Beko. 2021. "A Feed-Forward Neural Network Approach for Energy-Based Acoustic Source Localization" Journal of Sensor and Actuator Networks 10, no. 2: 29. https://doi.org/10.3390/jsan10020029
APA StyleCorreia, S. D., Tomic, S., & Beko, M. (2021). A Feed-Forward Neural Network Approach for Energy-Based Acoustic Source Localization. Journal of Sensor and Actuator Networks, 10(2), 29. https://doi.org/10.3390/jsan10020029