Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine
Abstract
:1. Introduction
2. Omics Technologies in Kidney Research
2.1. Genomics
2.2. Transcriptomics
2.3. Proteomics
2.4. Metabolomics
2.5. Epigenomics
Technology/Approach | Description | Applications in Nephrology | Challenges | References |
---|---|---|---|---|
Single-Cell Omics | Analyzes molecular profiles at the single-cell level, capturing cellular heterogeneity in kidney tissues | Identifies the specific cell populations and pathways involved in diseases like lupus nephritis and DKD | High data complexity and dimensionality | [87] |
Spatial Transcriptomics and Proteomics | Retains the spatial context of molecular data within tissue samples | Maps localized disease processes within nephron segments; identifies cell-type-specific regulatory elements in kidney tubular cells linked to disease risk | Integration with bulk omics data; requires advanced computational tools | [101] |
Explainable AI | AI models designed to provide interpretable predictions | Enhances transparency in predictive models for disease progression and drug response | Limited availability of explainable AI tools in clinical practice | [95] |
Temporal Multi-Omics Integration | Integrates omics data across disease stages to capture dynamic molecular changes | Tracks the progression of kidney disease, identifying biomarkers and key intervention points in early CKD | Resource-intensive; requires longitudinal data across disease stages | [102] |
Pharmacogenomics | Studies genetic variation in drug response, predicting potential adverse reactions and efficacy | Tailors treatments for patients with genetic mutations affecting drug metabolism, e.g., immunosuppressants | High cost and ethical concerns | [103] |
Causal Inference Models | Uses statistical methods to determine cause–effect relationships in multi-omics datasets | Identifies causal molecular interactions in kidney disease, improving the understanding of disease pathways and potential intervention targets | Computationally intensive; complexity in integrating diverse omics data | [104] |
3. Integration of Multi-Omics Data
4. Applications of Precision Medicine Using Omics
5. Challenges and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oe, Y. Editorial for the Special Issue: Pathophysiology of Chronic Kidney Disease and Its Complications. Biomedicines 2024, 12, 416. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, J.; Jiao, Y.; An, J.; Tian, J.; Yang, Y.; Zhuo, L. Integrated Multi-Omics with Machine Learning to Uncover the Intricacies of Kidney Disease. Brief. Bioinform. 2024, 25, bbae364. [Google Scholar] [CrossRef] [PubMed]
- Chebib, F.T.; Torres, V.E. Autosomal Dominant Polycystic Kidney Disease: Core Curriculum 2016. Am. J. Kidney Dis. 2016, 67, 792–810. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.-H.; Chang, C.L.; Song, S.H.; Kim, N. Novel PKD1 Mutations in Patients with Autosomal Dominant Polycystic Kidney Disease. Lab. Med. 2021, 52, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Kashtan, C.E.; Ding, J.; Garosi, G.; Heidet, L.; Massella, L.; Nakanishi, K.; Nozu, K.; Renieri, A.; Rheault, M.; Wang, F.; et al. Alport Syndrome: A Unified Classification of Genetic Disorders of Collagen IV A345: A Position Paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018, 93, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Pan, M.; Li, H.; Li, M.; Li, P.; Xiong, F.; Xiao, H. Four Novel Mutations Identified in the COL4A3, COL4A4 and COL4A5 Genes in 10 Families with Alport Syndrome. BMC Med. Genom. 2024, 17, 181. [Google Scholar] [CrossRef]
- Köttgen, A.; Cornec-Le Gall, E.; Halbritter, J.; Kiryluk, K.; Mallett, A.J.; Parekh, R.S.; Rasouly, H.M.; Sampson, M.G.; Tin, A.; Antignac, C.; et al. Genetics in Chronic Kidney Disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2022, 101, 1126–1141. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, N.; Berg, J.S. Uromodulin and CKD: Insight into Variant Pathogenicity. Kidney Int. 2023, 103, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Devuyst, O.; Bochud, M.; Olinger, E. UMOD and the Architecture of Kidney Disease. Pflug. Arch.—Eur. J. Physiol. 2022, 474, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Kopp, J.B.; Sampson, M.G.; Susztak, K. APOL1 at 10 Years: Progress and next Steps. Kidney Int. 2021, 99, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Itoku, A.; Isaac, J.; Wilson, S.; Reidy, K.; Kaskel, F. APOL1 Nephropathy Risk Variants Through the Life Course: A Review. Am. J. Kidney Dis. 2024, 84, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Abdu, A.; Duarte, R.; Dickens, C.; Dix-Peek, T.; Bala, S.M.; Ademola, B.; Naicker, S. High Risk APOL1 Genotypes and Kidney Disease among Treatment Naïve HIV Patients at Kano, Nigeria. PLoS ONE 2022, 17, e0275949. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.-T.; Govender, M.A.; Winkler, C.A.; Boua, P.R.; Agongo, G.; Fabian, J.; Ramsay, M. Apolipoprotein L1 High-Risk Genotypes and Albuminuria in Sub-Saharan African Populations. Clin. J. Am. Soc. Nephrol. 2022, 17, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Ekulu, P.M.; Nkoy, A.B.; Betukumesu, D.K.; Aloni, M.N.; Makulo, J.R.R.; Sumaili, E.K.; Mafuta, E.M.; Elmonem, M.A.; Arcolino, F.O.; Kitetele, F.N.; et al. APOL1 Risk Genotypes Are Associated with Early Kidney Damage in Children in Sub-Saharan Africa. Kidney Int. Rep. 2019, 4, 930–938. [Google Scholar] [CrossRef]
- Tzur, S.; Rosset, S.; Shemer, R.; Yudkovsky, G.; Selig, S.; Tarekegn, A.; Bekele, E.; Bradman, N.; Wasser, W.G.; Behar, D.M.; et al. Preliminary Report: Missense Mutations in the APOL Gene Family Are Associated with End Stage Kidney Disease Risk Previously Attributed to the MYH9 Gene. arXiv 2010, arXiv:1006.4281. [Google Scholar] [CrossRef]
- Forbes, T.A.; Howden, S.E.; Lawlor, K.; Phipson, B.; Maksimovic, J.; Hale, L.; Wilson, S.; Quinlan, C.; Ho, G.; Holman, K.; et al. Patient-iPSC-Derived Kidney Organoids Show Functional Validation of a Ciliopathic Renal Phenotype and Reveal Underlying Pathogenetic Mechanisms. Am. J. Hum. Genet. 2018, 102, 816–831. [Google Scholar] [CrossRef]
- Zaidan, M.; Burtin, M.; Zhang, J.D.; Blanc, T.; Barre, P.; Garbay, S.; Nguyen, C.; Vasseur, F.; Yammine, L.; Germano, S.; et al. Signaling Pathways Predisposing to Chronic Kidney Disease Progression. JCI Insight 2020, 5, e126183. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.J.; Dhanasekaran, S.M.; Petralia, F.; Pan, J.; Song, X.; Hu, Y.; Da Veiga Leprevost, F.; Reva, B.; Lih, T.-S.M.; Chang, H.-Y.; et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell 2019, 179, 964–983.e31. [Google Scholar] [CrossRef]
- Gerhardt, L.M.S.; Liu, J.; Koppitch, K.; Cippà, P.E.; McMahon, A.P. Single-Nuclear Transcriptomics Reveals Diversity of Proximal Tubule Cell States in a Dynamic Response to Acute Kidney Injury. Proc. Natl. Acad. Sci. USA 2021, 118, e2026684118. [Google Scholar] [CrossRef]
- Benjamin, K.; Bhandari, A.; Shang, Z.; Xing, Y.; An, Y.; Zhang, N.; Hou, Y.; Tillmann, U.; Bull, K.R.; Harrington, H.A. Multiscale Topology Classifies and Quantifies Cell Types in Subcellular Spatial Transcriptomics. arXiv 2022, arXiv:2212.06505. [Google Scholar]
- Ortiz, A. Proteomics for Clinical Assessment of Kidney Disease. Proteom. Clin. Apps 2019, 13, 1900004. [Google Scholar] [CrossRef]
- Ramírez Medina, C.R.; Ali, I.; Baricevic-Jones, I.; Odudu, A.; Saleem, M.A.; Whetton, A.D.; Kalra, P.A.; Geifman, N. Proteomic Signature Associated with Chronic Kidney Disease (CKD) Progression Identified by Data-Independent Acquisition Mass Spectrometry. Clin. Proteom. 2023, 20, 19. [Google Scholar] [CrossRef]
- Dubin, R.F.; Rhee, E.P. Proteomics and Metabolomics in Kidney Disease, Including Insights into Etiology, Treatment, and Prevention. Clin. J. Am. Soc. Nephrol. 2020, 15, 404–411. [Google Scholar] [CrossRef]
- Davies, R. The Metabolomic Quest for a Biomarker in Chronic Kidney Disease. Clin. Kidney J. 2018, 11, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Kalim, S.; Rhee, E.P. An Overview of Renal Metabolomics. Kidney Int. 2017, 91, 61–69. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, L.; Yang, Q.; Zhang, X.; Li, X. Epigenetics in Kidney Diseases. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; Volume 104, pp. 233–297. ISBN 978-0-12-824622-1. [Google Scholar]
- Wanner, N.; Bechtel-Walz, W. Epigenetics of Kidney Disease. Cell Tissue Res. 2017, 369, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Limou, S.; Ma, L.; Kopp, J.B. APOL1-Associated Nephropathy: A Key Contributor to Racial Disparities in CKD. Am. J. Kidney Dis. 2018, 72, S8–S16. [Google Scholar] [CrossRef]
- Malone, A.F. APOL1 Risk Variants in Kidney Transplantation: A Modulation of Immune Cell Function. J. Clin. Investig. 2021, 131, e154676. [Google Scholar] [CrossRef] [PubMed]
- Doshi, M.D.; Gordon, E.J.; Freedman, B.I.; Glover, C.; Locke, J.E.; Thomas, C.P. Integrating APOL1 Kidney-Risk Variant Testing in Live Kidney Donor Evaluation: An Expert Panel Opinion. Transplantation 2021, 105, 2132–2134. [Google Scholar] [CrossRef]
- Egbuna, O.; Zimmerman, B.; Manos, G.; Fortier, A.; Chirieac, M.C.; Dakin, L.A.; Friedman, D.J.; Bramham, K.; Campbell, K.; Knebelmann, B.; et al. Inaxaplin for Proteinuric Kidney Disease in Persons with Two APOL1 Variants. N. Engl. J. Med. 2023, 388, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Giudicelli, G.C.; De Souza, C.M.B.; Veronese, F.V.; Pereira, L.V.; Hünemeier, T.; Vianna, F.S.L. Precision Medicine Implementation Challenges for APOL1 Testing in Chronic Kidney Disease in Admixed Populations. Front. Genet. 2022, 13, 1016341. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour, M.; Ardalani, F.; Mohseni, M.; Beheshtian, M.; Arzhangi, S.; Ossareh, S.; Najmabadi, H.; Nobakht, A.; Kahrizi, K.; Broumand, B. Targeted Next Generation Sequencing Revealed Novel Variants in the PKD1 and PKD2 Genes of Iranian Patients with Autosomal Dominant Polycystic Kidney Disease. Arch. Iran. Med. 2022, 25, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Schena, F.P.; Chiurlia, S.; Abbrescia, D.I.; Cox, S.N. Kidney and Urine Cell Transcriptomics in IgA Nephropathy and Lupus Nephritis: A Narrative Review. Clin. Kidney J. 2024, 17, sfad121. [Google Scholar] [CrossRef]
- Si, S.; Liu, H.; Xu, L.; Zhan, S. Identification of Novel Therapeutic Targets for Chronic Kidney Disease and Kidney Function by Integrating Multi-Omics Proteome with Transcriptome. Genome Med. 2024, 16, 84. [Google Scholar] [CrossRef]
- Lindström, N.O.; De Sena Brandine, G.; Ransick, A.; McMahon, A.P. Single-Cell RNA Sequencing of the Adult Mouse Kidney: From Molecular Cataloging of Cell Types to Disease-Associated Predictions. Am. J. Kidney Dis. 2019, 73, 140–142. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Jin, B.; Cheng, C.; Peng, H.; Zhang, X.; Tan, W.; Tang, R.; Lian, X.; Diao, H.; Luo, N.; et al. Single-Cell Profiling Reveals Kidney CD163+ Dendritic Cell Participation in Human Lupus Nephritis. Ann. Rheum. Dis. 2024, 83, 608–623. [Google Scholar] [CrossRef]
- Wu, H.; Malone, A.F.; Donnelly, E.L.; Kirita, Y.; Uchimura, K.; Ramakrishnan, S.M.; Gaut, J.P.; Humphreys, B.D. Single-Cell Transcriptomics of a Human Kidney Allograft Biopsy Specimen Defines a Diverse Inflammatory Response. J. Am. Soc. Nephrol. 2018, 29, 2069–2080. [Google Scholar] [CrossRef]
- Moreno, J.A.; Hamza, E.; Guerrero-Hue, M.; Rayego-Mateos, S.; García-Caballero, C.; Vallejo-Mudarra, M.; Metzinger, L.; Metzinger-Le Meuth, V. Non-Coding RNAs in Kidney Diseases: The Long and Short of Them. Int. J. Mol. Sci. 2021, 22, 6077. [Google Scholar] [CrossRef]
- Gluba-Sagr, A.; Franczyk, B.; Rysz-Górzyńska, M.; Ławiński, J.; Rysz, J. The Role of miRNA in Renal Fibrosis Leading to Chronic Kidney Disease. Biomedicines 2023, 11, 2358. [Google Scholar] [CrossRef]
- Bravo-Vázquez, L.A.; Paul, S.; Colín-Jurado, M.G.; Márquez-Gallardo, L.D.; Castañón-Cortés, L.G.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. Exploring the Therapeutic Significance of microRNAs and lncRNAs in Kidney Diseases. Genes 2024, 15, 123. [Google Scholar] [CrossRef] [PubMed]
- Dhas, Y.; Arshad, N.; Biswas, N.; Jones, L.; Ashili, S. MicroRNA-21 Silencing in Diabetic Nephropathy: Insights on Therapeutic Strategies. Biomedicines 2023, 11, 2583. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-Y.; Lu, F.-H.; Huang, X.-R.; Zhang, L.; Mao, W.; Yu, X.-Q.; Liu, X.-S.; Lan, H.-Y. Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front. Pharmacol. 2021, 11, 583528. [Google Scholar] [CrossRef] [PubMed]
- Gilyazova, I.; Ivanova, E.; Izmailov, A.; Sharifgaliev, I.; Karunas, A.; Pudova, E.; Kobelyatskaya, A.; Gilyazova, G.; Izmailova, A.; Pavlov, V.; et al. MicroRNA Expression Signatures in Clear Cell Renal Cell Carcinoma: High-Throughput Searching for Key miRNA Markers in Patients from the Volga-Ural Region of Eurasian Continent. Int. J. Mol. Sci. 2023, 24, 6909. [Google Scholar] [CrossRef] [PubMed]
- Corradi, E.; Baudet, M.-L. In the Right Place at the Right Time: miRNAs as Key Regulators in Developing Axons. Int. J. Mol. Sci. 2020, 21, 8726. [Google Scholar] [CrossRef]
- Sage, A.P.; Minatel, B.C.; Marshall, E.A.; Martinez, V.D.; Stewart, G.L.; Enfield, K.S.S.; Lam, W.L. Expanding the miRNA Transcriptome of Human Kidney and Renal Cell Carcinoma. Int. J. Genom. 2018, 2018, 6972397. [Google Scholar] [CrossRef] [PubMed]
- Raghubar, A.M.; Pham, D.T.; Tan, X.; Grice, L.F.; Crawford, J.; Lam, P.Y.; Andersen, S.B.; Yoon, S.; Teoh, S.M.; Matigian, N.A.; et al. Spatially Resolved Transcriptomes of Mammalian Kidneys Illustrate the Molecular Complexity and Interactions of Functional Nephron Segments. Front. Med. 2022, 9, 873923. [Google Scholar] [CrossRef]
- Isnard, P.; Li, D.; Xuanyuan, Q.; Wu, H.; Humphreys, B.D. Histopathological-Based Analysis of Human Kidney Spatial Transcriptomics Data. Am. J. Pathol. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.A.; Govender, M.A.; Brandenburg, J.-T.; Winkler, C.A. Kidney Disease and APOL1. Hum. Mol. Genet. 2021, 30, R129–R137. [Google Scholar] [CrossRef] [PubMed]
- Ranek, J.S.; Stanley, N.; Purvis, J.E. Integrating Temporal Single-Cell Gene Expression Modalities for Trajectory Inference and Disease Prediction. Genome Biol. 2022, 23, 186. [Google Scholar]
- Elangovan, A.; Li, Y.; Pires, D.E.V.; Davis, M.J.; Verspoor, K. Large-Scale Protein-Protein Post-Translational Modification Extraction with Distant Supervision and Confidence Calibrated BioBERT. BMC Bioinform. 2022, 23, 4. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.C.; Kuo, K.-L. Oxidative Stress in Chronic Kidney Disease. Ren. Replace. Ther. 2018, 4, 53. [Google Scholar] [CrossRef]
- Zemaitis, K.J.; Veličković, D.; Kew, W.; Fort, K.L.; Reinhardt-Szyba, M.; Pamreddy, A.; Ding, Y.; Kaushik, D.; Sharma, K.; Makarov, A.A.; et al. Enhanced Spatial Mapping of Histone Proteoforms in Human Kidney Through MALDI-MSI by High-Field UHMR-Orbitrap Detection. Anal. Chem. 2022, 94, 12604–12613. [Google Scholar] [CrossRef] [PubMed]
- Rahmatbakhsh, M.; Gagarinova, A.; Babu, M. Bioinformatic Analysis of Temporal and Spatial Proteome Alternations During Infections. Front. Genet. 2021, 12, 667936. [Google Scholar] [CrossRef]
- Panizo, S.; Martínez-Arias, L.; Alonso-Montes, C.; Cannata, P.; Martín-Carro, B.; Fernández-Martín, J.L.; Naves-Díaz, M.; Carrillo-López, N.; Cannata-Andía, J.B. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int. J. Mol. Sci. 2021, 22, 408. [Google Scholar] [CrossRef] [PubMed]
- Rinschen, M.M.; Saez-Rodriguez, J. The Tissue Proteome in the Multi-Omic Landscape of Kidney Disease. Nat. Rev. Nephrol. 2021, 17, 205–219. [Google Scholar] [CrossRef]
- Meyer-Schwesinger, C. The Ubiquitin–Proteasome System in Kidney Physiology and Disease. Nat. Rev. Nephrol. 2019, 15, 393–411. [Google Scholar] [CrossRef] [PubMed]
- Takabatake, Y.; Kimura, T.; Takahashi, A.; Isaka, Y. Autophagy and the Kidney: Health and Disease. Nephrol. Dial. Transplant. 2014, 29, 1639–1647. [Google Scholar] [CrossRef]
- Kocaturk, N.M.; Gozuacik, D. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Front. Cell Dev. Biol. 2018, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Liu, N. EGFR Signaling in Renal Fibrosis. Kidney Int. Suppl. 2014, 4, 70–74. [Google Scholar] [CrossRef]
- Devuyst, O.; Bochud, M. Uromodulin, Kidney Function, Cardiovascular Disease, and Mortality. Kidney Int. 2015, 88, 944–946. [Google Scholar] [CrossRef]
- Hao, P.; Guo, T.; Sze, S.K. Simultaneous Analysis of Proteome, Phospho- and Glycoproteome of Rat Kidney Tissue with Electrostatic Repulsion Hydrophilic Interaction Chromatography. PLoS ONE 2011, 6, e16884. [Google Scholar] [CrossRef] [PubMed]
- Pagel, O.; Loroch, S.; Sickmann, A.; Zahedi, R.P. Current Strategies and Findings in Clinically Relevant Post-Translational Modification-Specific Proteomics. Expert. Rev. Proteom. 2015, 12, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Park, J.; Kim, O.; Kim, B.; Choi, D.; Lee, J.; Kim, K.; Oh, B.; Lee, H. Combined Phospho- and Glycoproteome Enrichment in Nephrocalcinosis Tissues of Phytate-fed Rats. Rapid Comm. Mass. Spectrom. 2013, 27, 2767–2776. [Google Scholar] [CrossRef] [PubMed]
- De Souza Barcelos, N.E.; Limeres, M.L.; Peixoto-Dias, A.F.; Vieira, M.A.R.; Peruchetti, D.B. Kidney Disease and Proteomics: A Recent Overview of a Useful Tool for Improving Early Diagnosis. In Mass Spectrometry-Based Approaches for Treating Human Diseases and Diagnostics; Verano-Braga, T., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2024; Volume 1443, pp. 173–186. ISBN 978-3-031-50623-9. [Google Scholar]
- Verbeke, F.; Siwy, J.; Van Biesen, W.; Mischak, H.; Pletinck, A.; Schepers, E.; Neirynck, N.; Magalhães, P.; Pejchinovski, M.; Pontillo, C.; et al. The Urinary Proteomics Classifier Chronic Kidney Disease 273 Predicts Cardiovascular Outcome in Patients with Chronic Kidney Disease. Nephrol. Dial. Transplant. 2021, 36, 811–818. [Google Scholar] [CrossRef]
- Chen, L.; Su, W.; Chen, H.; Chen, D.-Q.; Wang, M.; Guo, Y.; Zhao, Y.-Y. Proteomics for Biomarker Identification and Clinical Application in Kidney Disease. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 85, pp. 91–113. ISBN 978-0-12-815205-8. [Google Scholar]
- Knepper, M.A.; Pisitkun, T. Exosomes in Urine: Who Would Have Thought…? Kidney Int. 2007, 72, 1043–1045. [Google Scholar] [CrossRef]
- Trabulus, S.; Zor, M.S.; Alagoz, S.; Dincer, M.T.; Meşe, M.; Yilmaz, E.; Tahir Turanli, E.; Seyahi, N. Profiling of Five Urinary Exosomal miRNAs for the Differential Diagnosis of Patients with Diabetic Kidney Disease and Focal Segmental Glomerulosclerosis. PLoS ONE 2024, 19, e0312470. [Google Scholar] [CrossRef]
- Du, S.; Zhai, L.; Ye, S.; Wang, L.; Liu, M.; Tan, M. In-Depth Urinary and Exosome Proteome Profiling Analysis Identifies Novel Biomarkers for Diabetic Kidney Disease. Sci. China Life Sci. 2023, 66, 2587–2603. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Pham, M.H.C.; Ko, K.S.; Rhee, B.D.; Han, J. Alternative Splicing Isoforms in Health and Disease. Pflug. Arch—Eur. J. Physiol. 2018, 470, 995–1016. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Lu, L.; Cai, S.; Chen, J.; Lin, W.; Han, F. Alternative Splicing: A New Cause and Potential Therapeutic Target in Autoimmune Disease. Front. Immunol. 2021, 12, 713540. [Google Scholar] [CrossRef] [PubMed]
- Ragi, N.; Sharma, K. Deliverables from Metabolomics in Kidney Disease: Adenine, New Insights, and Implication for Clinical Decision-Making. Am. J. Nephrol. 2024, 55, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Raftery, D. Comparing and Combining NMR Spectroscopy and Mass Spectrometry in Metabolomics. Anal. Bioanal. Chem. 2007, 387, 525–527. [Google Scholar] [CrossRef]
- Morevati, M.; Fang, E.F.; Mace, M.L.; Kanbay, M.; Gravesen, E.; Nordholm, A.; Egstrand, S.; Hornum, M. Roles of NAD+ in Acute and Chronic Kidney Diseases. Int. J. Mol. Sci. 2022, 24, 137. [Google Scholar] [CrossRef] [PubMed]
- Patera, F.; Gatticchi, L.; Cellini, B.; Chiasserini, D.; Reboldi, G. Kidney Fibrosis and Oxidative Stress: From Molecular Pathways to New Pharmacological Opportunities. Biomolecules 2024, 14, 137. [Google Scholar] [CrossRef]
- Kang, J.; Guo, X.; Peng, H.; Deng, Y.; Lai, J.; Tang, L.; Aoieong, C.; Tou, T.; Tsai, T.; Liu, X. Metabolic Implications of Amino Acid Metabolites in Chronic Kidney Disease Progression: A Metabolomics Analysis Using OPLS-DA and MBRole2.0 Database. Int. Urol. Nephrol. 2023, 56, 1173–1184. [Google Scholar] [CrossRef]
- Unluturk, U.; Erbas, T. Diabetes and Tryptophan Metabolism. In Tryptophan Metabolism: Implications for Biological Processes, Health and Disease; Engin, A., Engin, A.B., Eds.; Molecular and Integrative Toxicology; Springer International Publishing: Cham, Switzerland, 2015; pp. 147–171. ISBN 978-3-319-15629-3. [Google Scholar]
- Nicholson, R.J.; Pezzolesi, M.G.; Summers, S.A. Rotten to the Cortex: Ceramide-Mediated Lipotoxicity in Diabetic Kidney Disease. Front. Endocrinol. 2021, 11, 622692. [Google Scholar] [CrossRef]
- Šakić, Z.; Atić, A.; Potočki, S.; Bašić-Jukić, N. Sphingolipids and Chronic Kidney Disease. J. Clin. Med. 2024, 13, 5050. [Google Scholar] [CrossRef] [PubMed]
- Schwalm, S.; Manaila, R.; Oftring, A.; Schaefer, L.; Von Gunten, S.; Pfeilschifter, J. The Contribution of the Sphingosine 1-Phosphate Signaling Pathway to Chronic Kidney Diseases: Recent Findings and New Perspectives. Pflug. Arch—Eur. J. Physiol. 2024, 476, 1845–1861. [Google Scholar] [CrossRef]
- Pereira, P.R.; Carrageta, D.F.; Oliveira, P.F.; Rodrigues, A.; Alves, M.G.; Monteiro, M.P. Metabolomics as a Tool for the Early Diagnosis and Prognosis of Diabetic Kidney Disease. Med. Res. Rev. 2022, 42, 1518–1544. [Google Scholar] [CrossRef]
- Steinbrenner, I.; Schultheiss, U.T.; Kotsis, F.; Schlosser, P.; Stockmann, H.; Mohney, R.P.; Schmid, M.; Oefner, P.J.; Eckardt, K.-U.; Köttgen, A.; et al. Urine Metabolite Levels, Adverse Kidney Outcomes, and Mortality in CKD Patients: A Metabolome-Wide Association Study. Am. J. Kidney Dis. 2021, 78, 669–677.e1. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, S.; Inagi, R. Harnessing Metabolomics to Describe the Pathophysiology Underlying Progression in Diabetic Kidney Disease. Curr. Diab Rep. 2021, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Takkavatakarn, K.; Wuttiputinun, T.; Phannajit, J.; Praditpornsilpa, K.; Eiam-Ong, S.; Susantitaphong, P. Protein-Bound Uremic Toxin Lowering Strategies in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. J. Nephrol. 2021, 34, 1805–1817. [Google Scholar] [CrossRef]
- Lin, C.-J.; Wu, V.; Wu, P.-C.; Wu, C.-J. Meta-Analysis of the Associations of p-Cresyl Sulfate (PCS) and Indoxyl Sulfate (IS) with Cardiovascular Events and All-Cause Mortality in Patients with Chronic Renal Failure. PLoS ONE 2015, 10, e0132589. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Li, X. Current Epigenetic Insights in Kidney Development. Genes 2021, 12, 1281. [Google Scholar] [CrossRef]
- Lu, H.-C.; Dai, W.-N.; He, L.-Y. Epigenetic Histone Modifications in the Pathogenesis of Diabetic Kidney Disease. DMSO 2021, 14, 329–344. [Google Scholar] [CrossRef]
- Yuan, H.; Reddy, M.A.; Sun, G.; Lanting, L.; Wang, M.; Kato, M.; Natarajan, R. Involvement of P300/CBP and Epigenetic Histone Acetylation in TGF-Β1-Mediated Gene Transcription in Mesangial Cells. Am. J. Physiol.-Ren. Physiol. 2013, 304, F601–F613. [Google Scholar] [CrossRef] [PubMed]
- Tezval, H.; Merseburger, A.S.; Matuschek, I.; Machtens, S.; Kuczyk, M.A.; Serth, J. RASSF1A Protein Expression and Correlation with Clinicopathological Parameters in Renal Cell Carcinoma. BMC Urol. 2008, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Chen, Z.; Shen, J.; Fan, M.; Xue, D.; Lu, H.; Xu, R.; He, X. RASSF1A Promoter Methylation Correlates Development, Progression, and Poor Cancer-Specific Survival of Renal Cell Carcinoma: Trial Sequential Analysis. OTT 2018, 12, 119–134. [Google Scholar] [CrossRef]
- Giaimo, B.D.; Ferrante, F.; Herchenröther, A.; Hake, S.B.; Borggrefe, T. The Histone Variant H2A.Z in Gene Regulation. Epigenet. Chromatin 2019, 12, 37. [Google Scholar] [CrossRef]
- Martire, S.; Banaszynski, L.A. The Roles of Histone Variants in Fine-Tuning Chromatin Organization and Function. Nat. Rev. Mol. Cell Biol. 2020, 21, 522–541. [Google Scholar] [CrossRef] [PubMed]
- Brandt, M.M.; Meddens, C.A.; Louzao-Martinez, L.; Van Den Dungen, N.A.M.; Lansu, N.R.; Nieuwenhuis, E.E.S.; Duncker, D.J.; Verhaar, M.C.; Joles, J.A.; Mokry, M.; et al. Chromatin Conformation Links Distal Target Genes to CKD Loci. J. Am. Soc. Nephrol. 2018, 29, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.C.; Ledru, N.; Humphreys, B.D. Epigenomics and the Kidney. Curr. Opin. Nephrol. Hypertens. 2020, 29, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Chau, B.N.; Xin, C.; Hartner, J.; Ren, S.; Castano, A.P.; Linn, G.; Li, J.; Tran, P.T.; Kaimal, V.; Huang, X.; et al. MicroRNA-21 Promotes Fibrosis of the Kidney by Silencing Metabolic Pathways. Sci. Transl. Med. 2012, 4, 121ra18. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ha, S.; Son, M.; Kim, D.; Kim, M.-J.; Kim, B.; Kim, D.; Chung, H.Y.; Chung, K.W. TLR7 Activation by miR-21 Promotes Renal Fibrosis by Activating the pro-Inflammatory Signaling Pathway in Tubule Epithelial Cells. Cell Commun. Signal 2023, 21, 215. [Google Scholar] [CrossRef]
- Yang, Z.; Song, D.; Wang, Y.; Tang, L. lncRNA MALAT1 Promotes Diabetic Nephropathy Progression via miR-15b-5p/TLR4 Signaling Axis. J. Immunol. Res. 2022, 2022, 8098001. [Google Scholar] [CrossRef] [PubMed]
- Dieter, C.; Lemos, N.E.; Girardi, E.; Ramos, D.T.; Corrêa, N.R.D.F.; Canani, L.H.; Bauer, A.C.; Assmann, T.S.; Crispim, D. The lncRNA MALAT1 Is Upregulated in Urine of Type 1 Diabetes Mellitus Patients with Diabetic Kidney Disease. Genet. Mol. Biol. 2023, 46, e20220291. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhuang, S. Histone Methyltransferases as Therapeutic Targets for Kidney Diseases. Front. Pharmacol. 2019, 10, 1393. [Google Scholar] [CrossRef] [PubMed]
- Duan, A.; Wang, H.; Zhu, Y.; Wang, Q.; Zhang, J.; Hou, Q.; Xing, Y.; Shi, J.; Hou, J.; Qin, Z.; et al. Chromatin Architecture Reveals Cell Type-Specific Target Genes for Kidney Disease Risk Variants. BMC Biol. 2021, 19, 38. [Google Scholar] [CrossRef]
- Sheng, X.; Qiu, C.; Liu, H.; Gluck, C.; Hsu, J.Y.; He, J.; Hsu, C.; Sha, D.; Weir, M.R.; Isakova, T.; et al. Systematic Integrated Analysis of Genetic and Epigenetic Variation in Diabetic Kidney Disease. Proc. Natl. Acad. Sci. USA 2020, 117, 29013–29024. [Google Scholar] [CrossRef] [PubMed]
- Ponce, F.; Vanhoye, X.; Mesnard, L.; Hatz, K.-D.; Raymond, L. #6812 ON THE TOP PHARMACOGENETICS STUDY EXTRACTED FROM EXOME SEQUENCING DONE FOR CHRONIC KIDNEY DISEASES OF UNKNOW ORIGIN. Nephrol. Dial. Transplant. 2023, 38, gfad063c_6812. [Google Scholar] [CrossRef]
- Hasanzadeh, A.; Hajiramezanali, E.; Duffield, N.; Qian, X. MoReL: Multi-Omics Relational Learning. arXiv 2022, arXiv:2203.08149. [Google Scholar]
- Sandholm, N.; Cole, J.B.; Nair, V.; Sheng, X.; Liu, H.; Ahlqvist, E.; Van Zuydam, N.; Dahlström, E.H.; Fermin, D.; Smyth, L.J.; et al. Genome-Wide Meta-Analysis and Omics Integration Identifies Novel Genes Associated with Diabetic Kidney Disease. Diabetologia 2022, 65, 1495–1509. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, J.; Li, Z.; Meng, X. Recent Advances in Epigenetics of Age-Related Kidney Diseases. Genes 2022, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-Q.; Wang, Y. Multi-Omic Analysis Reveals Genetic Determinants and Therapeutic Targets of Chronic Kidney Disease and Kidney Function. Int. J. Mol. Sci. 2024, 25, 6033. [Google Scholar] [CrossRef] [PubMed]
- Pulley, J.M.; Rhoads, J.P.; Jerome, R.N.; Challa, A.P.; Erreger, K.B.; Joly, M.M.; Lavieri, R.R.; Perry, K.E.; Zaleski, N.M.; Shirey-Rice, J.K.; et al. Using What We Already Have: Uncovering New Drug Repurposing Strategies in Existing Omics Data. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 333–352. [Google Scholar] [CrossRef] [PubMed]
- Aoki, J.; Kaya, C.; Khalid, O.; Kothari, T.; Silberman, M.A.; Skordis, C.; Hughes, J.; Hussong, J.; Salama, M.E. CKD Progression Prediction in a Diverse US Population: A Machine-Learning Model. Kidney Med. 2023, 5, 100692. [Google Scholar] [CrossRef] [PubMed]
- Hall, G. Genetic Insights into the Mechanisms of Proliferative Glomerulonephritis. J. Clin. Investig. 2024, 134, e183090. [Google Scholar] [CrossRef] [PubMed]
- Barutta, F.; Bellini, S.; Canepa, S.; Durazzo, M.; Gruden, G. Novel Biomarkers of Diabetic Kidney Disease: Current Status and Potential Clinical Application. Acta Diabetol. 2021, 58, 819–830. [Google Scholar] [CrossRef]
- You, Y.-H.; Quach, T.; Saito, R.; Pham, J.; Sharma, K. Metabolomics Reveals a Key Role for Fumarate in Mediating the Effects of NADPH Oxidase 4 in Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 466–481. [Google Scholar] [CrossRef] [PubMed]
- Abedini, A.; Levinsohn, J.; Klötzer, K.A.; Dumoulin, B.; Ma, Z.; Frederick, J.; Dhillon, P.; Balzer, M.S.; Shrestha, R.; Liu, H.; et al. Spatially Resolved Human Kidney Multi-Omics Single Cell Atlas Highlights the Key Role of the Fibrotic Microenvironment in Kidney Disease Progression. bioRxiv 2022. [Google Scholar] [CrossRef]
- Wei, S.; Shen, H.; Zhang, Y.; Liu, C.; Li, S.; Yao, J.; Jin, Z.; Yu, H. Integrative Analysis of Single-Cell and Bulk Transcriptome Data Reveal the Significant Role of Macrophages in Lupus Nephritis. Arthritis Res. Ther. 2024, 26, 84. [Google Scholar] [CrossRef] [PubMed]
- Fontecha-Barriuso, M.; Martin-Sanchez, D.; Ruiz-Andres, O.; Poveda, J.; Sanchez-Niño, M.D.; Valiño-Rivas, L.; Ruiz-Ortega, M.; Ortiz, A.; Sanz, A.B. Targeting Epigenetic DNA and Histone Modifications to Treat Kidney Disease. Nephrol. Dial. Transplant. 2018, 33, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, P.; Valan, J.A. Machine Learning Approaches for Predicting and Diagnosing Chronic Kidney Disease: Current Trends, Challenges, Solutions, and Future Directions. Int. Urol. Nephrol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Isaza-Ruget, M.A.; Yomayusa, N.; González, C.A.; De Oro, V.F.A.; Cely, A.; Murcia, J.; Gonzalez-Velez, A.; Robayo, A.; Colmenares-Mejía, C.C.; Castillo, A.; et al. Predicting Chronic Kidney Disease Progression with Artificial Intelligence. BMC Nephrol. 2024, 25, 148. [Google Scholar] [CrossRef]
- Qiu, X.; Wu, Z.; Xu, Q.; Sheng, C.; Jiao, Z. Pharmacogenomics of Immunosuppressants. In Pharmacogenomics in Precision Medicine; Cai, W., Liu, Z., Miao, L., Xiang, X., Eds.; Springer: Singapore, 2020; pp. 83–106. ISBN 9789811538940. [Google Scholar]
- Reznichenko, A.; Nair, V.; Eddy, S.; Fermin, D.; Tomilo, M.; Slidel, T.; Ju, W.; Henry, I.; Badal, S.S.; Wesley, J.D.; et al. Unbiased Kidney-Centric Molecular Categorization of Chronic Kidney Disease as a Step towards Precision Medicine. Kidney Int. 2024, 105, 1263–1278. [Google Scholar] [CrossRef] [PubMed]
- Hodgin, J.B.; Smith, C.; Kretzler, M. Multi-Omics Data Integration Shines a Light on the Renal Medulla. Kidney Int. 2024, 105, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, H.U.; Altenbuchinger, M.; Solbrig, S.; Schäfer, A.; Buyukozkan, M.; Schultheiß, U.T.; Kotsis, F.; Köttgen, A.; Krumsiek, J.; Theis, F.J.; et al. Fully Integrative Data Analysis of NMR Metabolic Fingerprints with Comprehensive Patient Data: A Case Report Based on the German Chronic Kidney Disease (GCKD) Study. arXiv 2018, arXiv:1810.04281. [Google Scholar]
Omics Technology | Main Focus | Applications in Kidney Disease | Examples of Insights | References |
---|---|---|---|---|
Genomics | Study of genetic variations | Identifies gene mutations linked to monogenic kidney disorders and CKD risk genes; assesses polygenic risk for kidney disease | Mutations in PKD1 and PKD2 in ADPKD; APOL1 variants associated with CKD susceptibility in African populations; GWAS loci linked to CKD progression | [16,18] |
Transcriptomics | Analysis of RNA expression | Characterizes disease-specific gene expression patterns and cellular interactions; tracks cell-type-specific responses in kidney disease | scRNA-seq identifies immune cell subsets in lupus nephritis; novel biomarkers for podocyte failure in glomerulosclerosis | [19,20] |
Proteomics | Protein expression and modifications | Identifies biomarkers, post-translational modifications, and protein interactions relevant to kidney disease progression | Urinary proteomics classifier CKD273 predicts CKD progression and cardiovascular risk; altered glycosylation of uromodulin in CKD | [21,22] |
Metabolomics | Analysis of small molecules | Identifies metabolic signatures and potential biomarkers for the early detection and progression of kidney diseases | Increased uremic toxins in CKD; fumarate and NAD precursors indicating mitochondrial dysfunction in CKD; lipidomic findings on ceramides and sphingolipids linked to kidney fibrosis | [23,24,25] |
Epigenomics | Epigenetic modifications | Examines DNA methylation, histone modifications, and chromatin structure; evaluates treatment response and disease progression | TGF-β1 promoter acetylation linked to kidney fibrosis in DKD; hypomethylation as a biomarker for early CKD detection; spatial chromatin looping linked to nephropathy genes | [26,27] |
Omics Approach | Unique Findings | Applications | References |
---|---|---|---|
Genomics | Identification of genetic mutations like APOL1 risk alleles. | Guiding transplant decisions and targeted treatments such as VX-407 for PKD1 mutations. | [11] |
Transcriptomics | Insights into podocyte mitotic catastrophe linked to glomerulosclerosis. | Identifying therapeutic targets to maintain podocyte integrity and delay glomerular disease progression. | [110] |
Proteomics | Biomarkers like fibronectin and laminin associated with DKD progression. | Differentiation of DKD from other kidney diseases, and the development of individualized diagnostic tools. | [111] |
Metabolomics | Fumarate identified as a mediator of oxidative stress and mitochondrial dysfunction in DKD. | Early diagnosis of kidney disease, and targeting energy metabolism disturbances for therapeutic interventions. | [112] |
Spatial Omics | Localization of disease processes in specific nephron segments using spatial transcriptomics. | Tailored therapy in CKD by understanding segment-specific mechanisms and chromatin architecture. | [113] |
Single-cell Omics | Discovery of new renal cell types and pathways in lupus nephritis. | Uncovering cell-specific therapeutic targets and cellular lineage interactions for better diagnostics and therapy. | [37,114] |
Epigenomics | Role of DNA methylation and histone deacetylase inhibitors in reversing gene expression changes. | Reversible modulation of renal fibrosis and inflammation, enabling tailored treatments. | [115] |
Pharmacogenomics | Study of genetic variations influencing drug metabolism and immunosuppressant response. | Reduction in adverse drug reactions, and personalization of polypharmacy regimens. | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delrue, C.; Speeckaert, M.M. Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine. J. Pers. Med. 2024, 14, 1157. https://doi.org/10.3390/jpm14121157
Delrue C, Speeckaert MM. Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine. Journal of Personalized Medicine. 2024; 14(12):1157. https://doi.org/10.3390/jpm14121157
Chicago/Turabian StyleDelrue, Charlotte, and Marijn M. Speeckaert. 2024. "Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine" Journal of Personalized Medicine 14, no. 12: 1157. https://doi.org/10.3390/jpm14121157
APA StyleDelrue, C., & Speeckaert, M. M. (2024). Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine. Journal of Personalized Medicine, 14(12), 1157. https://doi.org/10.3390/jpm14121157