Improved Parameter Estimation of the Line-Based Transformation Model for Remote Sensing Image Registration
"> Figure 1
<p>Overall workflow of line-based transformation model (LBTM).</p> "> Figure 2
<p>The synthetic CPs, GCLs and GCPs used in the first experiment.</p> "> Figure 3
<p>The GCLs and GCPs used in the second experiment; (<b>a</b>) Year 2006 IKONOS image; (<b>b</b>) Year 2012 IKONOS image.</p> "> Figure 4
<p>The GCLs and GCPs used in the third experiment. (<b>a</b>) WorldView-2 satellite image; (<b>b</b>) Landsat-8 satellite image.</p> "> Figure 5
<p>The GCLs and GCPs used in the fourth experiment.</p> "> Figure 6
<p>Analysis of the root-mean-squared (RMS) error with different levels of random noises in (<b>a</b>) GCLs, (<b>b</b>) GCPs and (<b>c</b>) both GCLs and GCPs.</p> "> Figure 7
<p>Analysis of the RMS error with different combinations of GCLs and GCPs being used in the original LBTM (blue) and the improved LBTM (red) in Experiment 2. <a href="#jimaging-03-00032-f007" class="html-fig">Figure 7</a>j shows the use of GCPs only for image registration as a comparison. (<b>a</b>) 1 GCP; (<b>b</b>) 2 GCPs; (<b>c</b>) 3 GCPs; (<b>d</b>) 4 GCPs; (<b>e</b>) 5 GCPs; (<b>f</b>) 10 GCPs; (<b>g</b>) 15 GCPs; (<b>h</b>) 20 GCPs; (<b>i</b>) 30 GCPs; (<b>j</b>) Only GCPs.</p> "> Figure 8
<p>Analysis of the RMS error with different combinations of GCLs and GCPs being used in the original LBTM (blue) and the improved LBTM (red) in Experiment 3. <a href="#jimaging-03-00032-f008" class="html-fig">Figure 8</a>j shows the use of GCPs only for image registration as a comparison. (<b>a</b>) 1 GCP; (<b>b</b>) 2 GCPs; (<b>c</b>) 3 GCPs; (<b>d</b>) 4 GCPs; (<b>e</b>) 5 GCPs; (<b>f</b>) 10 GCPs; (<b>g</b>) 15 GCPs; (<b>h</b>) 20 GCPs; (<b>i</b>) 30 GCPs; (<b>j</b>) Only GCPs.</p> "> Figure 9
<p>Analysis of the RMS error with different combinations of GCLs and GCPs being used in the original LBTM (blue) and the improved LBTM (red) in Experiment 4. (<b>a</b>) 1 GCP; (<b>b</b>) 2 GCPs; (<b>c</b>) 3 GCPs; (<b>d</b>) 4 GCPs; (<b>e</b>) 5 GCPs.</p> "> Figure 10
<p>Results of image registration performed in the two experiments. (<b>a</b>) Experiment 1: IKONOS to IKONOS; (<b>b</b>) Experiment 2: WorldView-2 to Landsat 8.</p> ">
Abstract
:1. Introduction
2. The Line-Based Transformation Model (LBTM)
2.1. The Original Two-Step Approach
2.2. Improved Parameter Estimation Method
3. Experimental Testing
3.1. Experiment 1: Synthetic Data
3.2. Experiment 2: IKONOS to IKONOS
3.3. Experiment 3: WorldView-2 to Landsat 8
3.4. Experiment 4: 3D Rectification of IKONOS
4. Results and Analysis
4.1. Experiment 1: Synthetic Data
4.2. Experiment 2: IKONOS to IKONOS
4.3. Experiment 3: WorldView-2 to Landsat 8
4.4. Experiment 4: 3D Rectification of IKONOS
4.5. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and opportunities. Future Gener. Comput. Syst. 2014, 51, 47–60. [Google Scholar] [CrossRef]
- Li, S.; Dragicevic, S.; Castro, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A.; et al. Geospatial big data handling theory and methods: A review and research challenges. ISPRS J. Photogramm. Remote Sens. 2016, 115, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Toutin, T. Review article: Geometric processing of remote sensing images: Models, algorithms and methods. Int. J. Remote Sens. 2004, 25, 1893–1924. [Google Scholar] [CrossRef]
- Habib, A.; Shin, S.W.; Kim, K.; Kim, C.; Bang, K.I.; Kim, E.M.; Lee, D.C. Comprehensive analysis of sensor modeling alternatives for high resolution imaging satellites. Photogramm. Eng. Remote Sens. 2007, 73, 1241–1251. [Google Scholar] [CrossRef]
- Shaker, A. Satellite sensor modeling and 3D geo-positioning using empirical models. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 282–295. [Google Scholar] [CrossRef]
- Wong, A.; Clausi, D. ARRSI: Automatic registration of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1483–1493. [Google Scholar] [CrossRef]
- Shaker, A.; Yan, W.Y.; Easa, S. Using stereo satellite imagery for topographic and transportation applications: An accuracy assessment. GISci. Remote Sens. 2010, 47, 321–337. [Google Scholar] [CrossRef]
- Habib, A.F.; Alruzouq, R.I. Line-based modified iterated Hough transform for automatic registration of multi-source imagery. Photogramm. Rec. 2004, 19, 5–21. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Zhang, J.; Zhang, H. Photogrammetric modeling of linear features with generalized point photogrammetry. Photogramm. Eng. Remote Sens. 2008, 74, 1119–1127. [Google Scholar] [CrossRef]
- Jaw, J.J.; Perny, N.H. Line feature correspondence between object space and image space. Photogramm. Eng. Remote Sens. 2008, 74, 1521–1528. [Google Scholar] [CrossRef]
- Sui, H.; Xu, C.; Liu, J.; Hua, F. Automatic optical-to-SAR image registration by iterative line extraction and Voronoi integrated spectral point matching. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6058–6072. [Google Scholar] [CrossRef]
- Li, N.; Huang, X.; Zhang, F.; Wang, L. Registration of aerial imagery and LiDAR data in desert areas using the centroids of bushes as control information. Photogramm. Eng. Remote Sens. 2013, 79, 743–752. [Google Scholar] [CrossRef]
- Li, N.; Huang, X.; Zhang, F.; Li, D. Registration of aerial imagery and LiDAR data in desert areas using sand ridges. Photogramm. Rec. 2015, 30, 263–278. [Google Scholar] [CrossRef]
- Yan, W.Y.; Easa, S.M.; Shaker, A. Polygon-based image registration: A new approach for geo-referencing historical maps. Remote Sens. Lett. 2017, 8, 703–712. [Google Scholar] [CrossRef]
- Long, T.; Jiao, W.; He, G.; Zhang, Z.; Cheng, B.; Wang, W. A generic framework for image rectification using multiple types of feature. ISPRS J. Photogramm. Remote Sens. 2015, 102, 161–171. [Google Scholar] [CrossRef]
- Shaker, A. The line based transformation model (LBTM): A new approach to the rectification of high-resolution satellite imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, XXXV-B3, 850–855. [Google Scholar]
- Shi, W.; Shaker, A. The line based transformation model (LBTM) for image-to-image registration of high-resolution satellite image data. Int. J. Remote Sens. 2006, 27, 3001–3012. [Google Scholar] [CrossRef]
- Shaker, A. Feature-based transformation models for satellite image orientation and terrain modeling. In Proceedings of the ASPRS 2007 Annual Conference, Tampa, FL, USA, 7–11 May 2007; pp. 7–11. [Google Scholar]
- Li, C.; Shi, W. The generalized-line-based iterative transformation model for imagery registration and rectification. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1394–1398. [Google Scholar]
- Huo, C.; Pan, C.; Huo, L.; Zhou, Z. Multilevel SIFT matching for large-size VHR image registration. IEEE Geosci. Remote Sens. Lett. 2012, 9, 171–175. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, S.; Jiao, L.; Tian, D.; Wang, S. A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4328–4338. [Google Scholar] [CrossRef]
- Easa, S.M. Direct distance-based positioning without redundancy—In land surveying. Surv. Land Inf. Sci. 2007, 67, 69–74. [Google Scholar]
- Easa, S.M. Non-iterative method for nonlinear coordinate transformations. J. Arab Acad. Sci. Technol. Marit. Transp. 2008, 34, 10–16. [Google Scholar]
- Easa, S.M. Space resection in photogrammetry using collinearity condition without linearisation. Surv. Rev. 2010, 42, 40–49. [Google Scholar] [CrossRef]
- Shaker, A.; Shi, W.; Barakat, H. Assessment of the rectification accuracy of IKONOS imagery based on two-dimensional models. Int. J. Remote Sens. 2005, 26, 719–731. [Google Scholar] [CrossRef]
- Shi, W.; Shaker, A. Analysis of terrain elevation effects on IKONOS imagery rectification accuracy by using non-rigorous models. Photogramm. Eng. Remote Sens. 2003, 69, 1359–1366. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaker, A.; Easa, S.M.; Yan, W.Y. Improved Parameter Estimation of the Line-Based Transformation Model for Remote Sensing Image Registration. J. Imaging 2017, 3, 32. https://doi.org/10.3390/jimaging3030032
Shaker A, Easa SM, Yan WY. Improved Parameter Estimation of the Line-Based Transformation Model for Remote Sensing Image Registration. Journal of Imaging. 2017; 3(3):32. https://doi.org/10.3390/jimaging3030032
Chicago/Turabian StyleShaker, Ahmed, Said M. Easa, and Wai Yeung Yan. 2017. "Improved Parameter Estimation of the Line-Based Transformation Model for Remote Sensing Image Registration" Journal of Imaging 3, no. 3: 32. https://doi.org/10.3390/jimaging3030032
APA StyleShaker, A., Easa, S. M., & Yan, W. Y. (2017). Improved Parameter Estimation of the Line-Based Transformation Model for Remote Sensing Image Registration. Journal of Imaging, 3(3), 32. https://doi.org/10.3390/jimaging3030032