Development and In-Silico and Ex-Vivo Validation of a Software for a Semi-Automated Segmentation of the Round Window Niche to Design a Patient Specific Implant to Treat Inner Ear Disorders
<p>Illustration of the human ear anatomy. Main figure (<b>A</b>): Overview of the outer ear, ear canal and structures of the middle ear containing the tympanic membrane (eardrum), round window niche, and ossicles. The cochlea and auditory nerve are also shown. Inset (<b>B</b>): Cross-section of the cochlea illustrating the three fluids filled compartments scala vestibuli, scala media with sensory cells (yellow), and scala tympani. Inset (<b>C</b>): Intraoperative microscopic appearance of the round window region seen through facial recess with focus on the round window niche and round window membrane [<a href="#B15-jimaging-09-00051" class="html-bibr">15</a>].</p> "> Figure 2
<p>Overview of the human cochlea in a CBCT image (<b>left</b>) compared to an illustration of the cochlea (<b>right</b>). The white star marks the fluid filled cochlea which is surrounded by radio dense hard bone (black star). The RWN is also surrounded by hard bone and the volume of the RWN is mainly air filled (as shown in the CBCT image on the left) but can also be fluid filled or obstructed by tissue.</p> "> Figure 3
<p>RNI creation using the developed semi-automated software as 3D Slicer™ plugin. (<b>a</b>) A CBCT slice of the basal turn of the scala tympani (cyan) with the implant including handle (pink) sitting inside the RWN. (<b>b</b>–<b>e</b>) 3D visualization of the individual steps, that are also visible as outlines in (<b>a</b>). (<b>b</b>) Four control points are placed, defining the RWM (yellow) and limiting the backside of the implant body. (<b>c</b>) The bone (light gray) surrounding of the RWN is segmented by thresholding, allowing the RWN to be filled (cyan, <b>d</b>). In a last step, a handle is added to the implant (pink), helping to define the orientation of the implant.</p> "> Figure 4
<p>User interface of the developed 3D Slicer™ plugin. In the left side, the user is guided through the process (zoomed in image of the user interface on the left). The green section contains information for data management (patient id, date) and the working orientation (left/right). The blue section is used to place three initial fiducials (control points), for fitting the mean cochlea model. The third yellow section enables the user to add and adjust the adjacent RWN fiducials and to shape the resulting model. The dialog is also used to add a handle and to finally export the data for 3D printing. The right side shows three orthogonal image planes as well as a 3D-rendering of the segmented structures (beige/gray) and derived models. The views are used to interact with the medical image by achieving the accurate placement of control points. By placing the first three fiducials for the z-axis upper and lower points and the RW-center, a mean cochlea model consisting of the scala tympani (cyan) and the scala vestibuli (violet) is placed. The view also shows the model filling the RWN (also cyan) and the handle (pink) with additional fiducials to move and scale the handle.</p> "> Figure 5
<p>The user has several options to influence the final shape of the implant: (<b>a</b>) shows the lower threshold for bone, resulting in a smaller implant compared to the automatic threshold used in (<b>b</b>). In (<b>c</b>) the level to which the niche is filled is manually reduced. The right images illustrate the RWN-filling corresponding to the related left images.</p> "> Figure 6
<p>Comparison of calculated RWN volumes and intersections between manual and semi-automated segmentations. The blue and orange bars show the volume of the semi-automated segmentations as performed by the two users. Using the semi-automated method, only small differences between the two users exist. The manual segmentations have a much larger volume (gray). The black lines in each bar represent the volume of the intersection between manual and semi-automatic segmentations.</p> "> Figure 7
<p>Comparison of manually segmented to semi-automatically segmented and 3D printed RNI in the corresponding human cadaver RWN. (<b>a</b>–<b>c</b>) left images: 3D printed individualized semi-automatically segmented RNI of the human cadaver RWN in their final position in the RWN (<b>a</b>–<b>c</b>) right images: 3D printed individualized manually segmented RNI of the human cadaver RWN laying above the bony edges of the RWN.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Image Acquisition
2.2. Software
2.3. In-Silico Validation: Semi-Automated vs. Manual Segmentation
- Step (1) Removing voxels inside the RWN model.
- Step (2) Removing voxels classified as bone.
- Step (3) Removing voxels that are above the “spill-over” filling level.
2.4. Ex-Vivo Validation: Blinded, Comparative RNI Implantations in Human Cadaver Temporal Bones
2.5. Additively Manufactured Individualized Round Window Niche Implants
3. Results
3.1. In-Silico Validation: Semi-Automated vs. Manual Segmentation
3.2. Ex-Vivo Validation: Blinded, Comparative RNI Implantations in Human Cadaver Temporal Bones
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.H.; Young, Y.H. Bilateral simultaneous sudden sensorineural hearing loss. J. Neurol Sci. 2016, 362, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Plontke, S. Diagnostik und Therapie des Hörsturzes. Laryngo-Rhino-Otologie 2017, 96 (Suppl. 1), S103–S122. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Zhang, X.; Huang, Z.; Feng, X. The Characteristic and Short-Term Prognosis of Tinnitus Associated with Sudden Sensorineural Hearing Loss. Neural Plast. 2018, 2018, 6059697, PMCID:PMCPMC5971248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechner, M.; Sutton, L.; Ferguson, M.; Abbas, Y.; Sandhu, J.; Shaida, A. Intratympanic Steroid Use for Sudden Sensorineural Hearing Loss: Current Otolaryngology Practice. Ann. Otol. Rhinol. Laryngol. 2019, 128, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Gürkov, R.; Pyykö, I.; Zou, J.; Kentala, E. What is Menière’s disease? A contemporary re-evaluation of endolymphatic hydrops. J. Neurol. 2016, 263 (Suppl. 1), 71–81. [Google Scholar] [CrossRef] [Green Version]
- Bruderer, S.G.; Bodmer, D.; Stohler, N.A.; Jick, S.S.; Meier, C.R. Population-Based Study on the Epidemiology of Ménière’s Disease. Audiol. Neurotol. 2017, 22, 74–82. [Google Scholar] [CrossRef]
- Edizer, D.T.; Celebi, O.; Hamit, B.; Baki, A.; Yigit, O. Recovery of Idiopathic Sudden Sensorineural Hearing Loss. J Int Adv Otol. 2015, 11, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Adrion, C.; Fischer, C.S.; Wagner, J.; Gürkov, R.; Mansmann, U.; Strupp, M. Efficacy and safety of betahistine treatment in patients with Meniere’s disease: Primary results of a long term, multicentre, double blind, randomised, placebo controlled, dose defining trial (BEMED trial). BMJ 2016, 352, h6816. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Li, X.; Sha, Y.; Dai, C. Clinical features and management of Meniere’s disease patients with drop attacks. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 665–672. [Google Scholar] [CrossRef]
- Ciccone, M.M.; Scicchitano, P.; Gesualdo, M.; Cortese, F.; Zito, A.; Manca, F.; Boninfante, B.; Recchia, P.; Leogrande, D.; Viola, D.; et al. Idiopathic sudden sensorineural hearing loss and meniere syndrome: The role of cerebral venous drainage. Clin. Otolaryngol. 2018, 43, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Bird, P.A.; Begg, E.J.; Zhang, M.; Keast, A.T.; Murray, D.P.; Balkany, T.J. Intratympanic Versus Intravenous Delivery of Methylprednisolone to Cochlear Perilymph. Otol. Neurotol. 2007, 28, 1124–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M. Intratympanic corticosteroids in Ménière’s disease: A mini-review. J. Otol. 2017, 12, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Nikan, S.; Van Osch, K.; Bartling, M.; Allen, D.G.; Rohani, S.A.; Connors, B.; Agrawal, S.K.; Ladak, H.M. PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans. IEEE Trans. Image Process. 2021, 30, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, B. Anatomy and Surgical Approach of the Ear and Temporal Bone. Head Neck Pathol. 2018, 12, 321–327, PMCID:PMCPMC6081290. [Google Scholar] [CrossRef] [PubMed]
- Matin, F.; Gao, Z.; Repp, F.; John, S.; Lenarz, T.; Scheper, V. Determination of the Round Window Niche Anatomy Using Cone Beam Computed Tomography Imaging as Preparatory Work for Individualized Drug-Releasing Implants. J. Imaging 2021, 7, 79, PMCID:PMCPMC8321323. [Google Scholar] [CrossRef] [PubMed]
- Atturo, F.; Barbara, M.; Rask-Andersen, H. Is the human round window really round? An anatomic study with surgical implications. Otol. Neurotol. 2014, 35, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Li, P.M.; Wang, H.; Northrop, C.; Merchant, S.N.; Nadol, J.B., Jr. Anatomy of the round window and hook region of the cochlea with implications for cochlear implantation and other endocochlear surgical procedures. Otol. Neurotol. 2007, 28, 641–648, PMCID:PMCPMC2556227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, A.; Sahni, D.; Gupta, A.K.; Loukas, M.; Aggarwal, A. Surgical anatomy of round window and its implications for cochlear implantation. Clin. Anat. 2014, 27, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Cornwall, H.L.; Marway, P.S.; Bance, M. A Micro-Computed Tomography Study of Round Window Anatomy and Implications for Atraumatic Cochlear Implant Insertion. Otol. Neurotol. 2021, 42, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.H.; Dawant, B.M.; Warren, F.M.; Labadie, R.F. Automatic identification and 3D rendering of temporal bone anatomy. Otol. Neurotol. 2009, 30, 436–442, PMCID:PMCPMC4437534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.A.W.; Bergman, M.; Keith, J.P.; Powell, K.A.; Hittle, B.; Malhotra, P.; Wiet, G.J. Segmentation of Temporal Bone Anatomy for Patient-Specific Virtual Reality Simulation. Ann. Otol. Rhinol. Laryngol. 2021, 130, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Powell, K.A.; Liang, T.; Hittle, B.; Stredney, D.; Kerwin, T.; Wiet, G.J. Atlas-Based Segmentation of Temporal Bone Anatomy. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1937–1944, PMCID:PMCPMC5676303. [Google Scholar] [CrossRef] [PubMed]
- Neves, C.A.; Tran, E.D.; Kessler, I.M.; Blevins, N.H. Fully automated preoperative segmentation of temporal bone structures from clinical CT scans. Sci. Rep. 2021, 11, 116, PMCID:PMCPMC7794235. [Google Scholar] [CrossRef] [PubMed]
- Alzamil, K.S.; Linthicum, F.H. Extraneous round window membranes and plugs: Possible effect on intratympanic therapy. Ann. Owl. Rhinol. Laryngol. 2000, 109, 30–32. [Google Scholar] [CrossRef]
- Wang, J.; Lv, Y.; Wang, J.; Ma, F.; Du, Y.; Fan, X.; Wang, M. Fully automated segmentation in temporal bone CT with neural network: A preliminary assessment study. BMC Med. Imaging 2021, 21, 166, PMCID:PMCPMC8576911. [Google Scholar] [CrossRef] [PubMed]
- Verbist, B.M.; Skinner, M.W.; Cohen, L.T.; Leake, P.A.; James, C.; Boëx, C.; Holden, T.; Finley, C.; Roland, P.; Roland, J.T., Jr.; et al. Consensus Panel on a Cochlear Coordinate System Applicable in Histologic, Physiologic, and Radiologic Studies of the Human Cochlea. Otol. Neurotol. 2010, 31, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Kikinis, R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html (accessed on 1 June 2022).
- Merchant, S.N.; Schuknecht, H.F.; Rauch, S.D.; McKenna, M.J.; Adams, J.C.; Wudarsky, R.; Nadol, J.B. The National Temporal Bone, Hearing, and Balance Pathology Resource Registry. Arch. Otolaryngol. Head Neck Surg. 1993, 119, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Elfarnawany, M.; Alam, S.R.; Rohani, S.A.; Zhu, N.; Agrawal, S.K.; Ladak, H.M. Micro-CT versus synchrotron radiation phase contrast imaging of human cochlea. J. Microsc. 2017, 265, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Plontke, S.K.; Radetzki, F.; Seiwerth, I.; Herzog, M.; Brandt, S.; Delank, K.S.; Rahne, T. Individual computer-assisted 3D planning for surgical placement of a new bone conduction hearing device. Otol. Neurotol. 2014, 35, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Caversaccio, M.; Gavaghan, K.; Wimmer, W.; Williamson, T.; Anso, J.; Mantokoudis, G.; Weber, S. Robotic cochlear implantation: Surgical procedure and first clinical experience. Acta Otolaryngol. 2017, 137, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Van Osch, K.; Allen, D.; Gare, B.; Hudson, T.J.; Ladak, H.; Agrawal, S.K. Morphological analysis of sigmoid sinus anatomy: Clinical applications to neurotological surgery. J. Otolaryngol. Head Neck Surg. 2019, 48, 2, PMCID:PMCPMC6329078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiam, N.T.; Gilbert, M.; Cooke, D.; Jiradejvong, P.; Barrett, K.; Caldwell, M.; Limb, C.J. Association Between Flat-Panel Computed Tomographic Imaging-Guided Place-Pitch Mapping and Speech and Pitch Perception in Cochlear Implant Users. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 109–116, PMCID:PMCPMC6440220. [Google Scholar] [CrossRef] [PubMed]
- Rader, T.; Doge, J.; Adel, Y.; Weissgerber, T.; Baumann, U. Place dependent stimulation rates improve pitch perception in cochlear implantees with single-sided deafness. Hear. Res. 2016, 339, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, M.; Aguirre Davila, L.; Erfurt, P.; Avci, E.; Lenarz, T.; Kral, A. Spiral Form of the Human Cochlea Results from Spatial Constraints. Sci. Rep. 2017, 7, 7500, PMCID:PMCPMC5548794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reda, F.A.; Noble, J.H.; Rivas, A.; McRackan, T.R.; Labadie, R.F.; Dawant, B.M. Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans. Med. Phys. 2011, 38, 5590–5600, PMCID:PMCPMC3208411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuman, T.A.; Noble, J.H.; Wright, C.G.; Wanna, G.B.; Dawant, B.; Labadie, R.F. Anatomic verification of a novel method for precise intrascalar localization of cochlear implant electrodes in adult temporal bones using clinically available computed tomography. Laryngoscope 2010, 120, 2277–2283, PMCID:PMCPMC4445845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjer, H.M.; Fagertun, J.; Wimmer, W.; Gerber, N.; Vera, S.; Barazzetti, L.; Paulsen, R.R. Patient-specific estimation of detailed cochlear shape from clinical CT images. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamroz, W.; Szafraniec, J.; Kurek, M.; Jachowicz, R. 3D Printing in Pharmaceutical and Medical Applications-Recent Achievements and Challenges. Pharm. Res. 2018, 35, 176, PMCID:PMCPMC6061505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aimar, A.; Palermo, A.; Innocenti, B. The Role of 3D Printing in Medical Applications: A State of the Art. J. Healthc Eng. 2019, 2019, 5340616, PMCID:PMCPMC6451800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domsta, V.; Seidlitz, A. 3D-Printing of Drug-Eluting Implants: An Overview of the Current Developments Described in the Literature. Molecules 2021, 26, 66, PMCID:PMCPMC8272161. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.K.; Maniruzzaman, M.; Nokhodchi, A. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Pharmaceutics 2018, 10, 203, PMCID:PMCPMC6321644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palo, M.; Holländer, J.; Suominen, J.; Yliruusi, J.; Sandler, N. 3D printed drug delivery devices: Perspectives and technical challenges. Expert Rev. Med. Devices 2017, 14, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Kader, N.A.; Sujatha, G.; Raj, T.; Patil, S. 3D printing in dentistry. J. 3D Print. Med. 2018, 2, 89–91. [Google Scholar] [CrossRef]
- Ding, A.S.; Lu, A.; Li, Z.; Galaiya, D.; Siewerdsen, J.H.; Taylor, R.H.; Creighton, F.X. Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery. Otolaryngol. Head Neck Surg. 2021, 167, 4982. [Google Scholar] [CrossRef] [PubMed]
Mean | STD | |
---|---|---|
DSC(SemiU1, ManU1) | 0.61 | 0.08 |
DSC(SemiU2, ManU1) | 0.55 | 0.12 |
DSC(SemiU2, SemiU1) | 0.87 | 0.09 |
J(SemiU1, ManU1) | 0.44 | 0.08 |
J(SemiU2, ManU1) | 0.39 | 0.11 |
J(SemiU2, SemiU1) | 0.78 | 0.13 |
Criteria | RNI | Rating | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
Handling with forceps | manual | 1 | 2 | 3 | 4 | 5 | 6 |
semi-automated | 1 | 2 | 3 | 4 | 5 | 6 | |
Time consumption of insertion | manual | 1 | 2 | 3 | 4 | 5 | 6 |
semi-automated | 1 | 2 | 3 | 4 | 5 | 6 | |
Fitting accuracy | manual | 1 | 2 | 3 | 4 | 5 | 6 |
semi-automated | 1 | 2 | 3 | 4 | 5 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matin-Mann, F.; Gao, Z.; Wei, C.; Repp, F.; Artukarslan, E.-N.; John, S.; Alcacer Labrador, D.; Lenarz, T.; Scheper, V. Development and In-Silico and Ex-Vivo Validation of a Software for a Semi-Automated Segmentation of the Round Window Niche to Design a Patient Specific Implant to Treat Inner Ear Disorders. J. Imaging 2023, 9, 51. https://doi.org/10.3390/jimaging9020051
Matin-Mann F, Gao Z, Wei C, Repp F, Artukarslan E-N, John S, Alcacer Labrador D, Lenarz T, Scheper V. Development and In-Silico and Ex-Vivo Validation of a Software for a Semi-Automated Segmentation of the Round Window Niche to Design a Patient Specific Implant to Treat Inner Ear Disorders. Journal of Imaging. 2023; 9(2):51. https://doi.org/10.3390/jimaging9020051
Chicago/Turabian StyleMatin-Mann, Farnaz, Ziwen Gao, Chunjiang Wei, Felix Repp, Eralp-Niyazi Artukarslan, Samuel John, Dorian Alcacer Labrador, Thomas Lenarz, and Verena Scheper. 2023. "Development and In-Silico and Ex-Vivo Validation of a Software for a Semi-Automated Segmentation of the Round Window Niche to Design a Patient Specific Implant to Treat Inner Ear Disorders" Journal of Imaging 9, no. 2: 51. https://doi.org/10.3390/jimaging9020051
APA StyleMatin-Mann, F., Gao, Z., Wei, C., Repp, F., Artukarslan, E.-N., John, S., Alcacer Labrador, D., Lenarz, T., & Scheper, V. (2023). Development and In-Silico and Ex-Vivo Validation of a Software for a Semi-Automated Segmentation of the Round Window Niche to Design a Patient Specific Implant to Treat Inner Ear Disorders. Journal of Imaging, 9(2), 51. https://doi.org/10.3390/jimaging9020051