MRI Robot for Prostate Focal Laser Ablation: An Ex Vivo Study in Human Prostate
<p>Focal laser ablation concept and system (<b>a</b>) Focal Laser ablation of prostate using a grid template; (<b>b</b>) Visualase™ focal laser ablation (FLA) system.</p> "> Figure 2
<p>An MRI-guided robot assisted focal laser ablation system components.</p> "> Figure 3
<p>Robot hardware: (<b>a</b>) Comparison of the old and new robot (left: old, right: new); (<b>b</b>) the robot; (<b>c</b>) The CoreXY stage; and (<b>d</b>) the rotation arm to allow needle angulation (top view).</p> "> Figure 4
<p>Air motor design concept.</p> "> Figure 5
<p>(<b>a</b>) Fiducial markers were positioned with respect to the robot’s frame at an offset of 50 mm perpendicular to the transverse plane of the robot, to eliminate the potential artifact caused by the guiding brass rods. Green arrows show the five fiducial markers, and white arrows show the five fiducial markers within the image. (<b>b</b>) Top view of the inside of the robot’s controller.</p> "> Figure 6
<p>A phantom study in the CT suite: N = 4 spherical metal targets were embedded into the phantom. After targeting of all fiducials to investigate robot accuracy, FLA was done on a thermochromics phantom for 2 of the targets. (<b>a</b>) Front view and (<b>b</b>) back view.</p> "> Figure 7
<p>Ex vivo FLA study under MRI guidance. A human prostate tissue from a donor who passed away from metastatic prostate cancer was molded in an acrylamide gel phantom. Multi-focal FLA was done on a suspicious and relatively large area identified in the MRI. (<b>a</b>) Robot setup. An endorectal coil was placed under the prostate specimen. (<b>b</b>) T2w image showing bi-focal ablation plan.</p> "> Figure 8
<p>A screen shot showing the OncoNav software, which was used for ablation planning, temperature monitoring, robot control, and validation purposes.</p> "> Figure 9
<p>In air accuracy results: (<b>a</b>) five random targets were chosen within the robot workspace and (<b>b</b>) the error distribution for each target.</p> "> Figure 10
<p>CT images post needle insertion for each target. Top row shows the entire phantom. The bright spots show the needle and fiducial. Bottom row shows close-up views of the distance between fiducials and needle. (<b>a</b>–<b>d</b>) are targets 1, 2, 3, and 4, respectively.</p> "> Figure 11
<p>Focal laser ablation in (<b>a</b>) thermochromic phantom (<b>b</b>) ablation plan: green circle is the target zone to be ablated, white circles are the two suggested ablation zones by the software to cover the target zone, red and yellow dots are centers of the target zone and planned zone, respectively, and (<b>c</b>) cross section of the prostate post-ablation. Dashed green circle shows the planned ablation zone while the gray contour shows the ablated zone.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Overview
2.2. The Robotic System
2.2.1. Robot
ΔY = 1/2(ΔA − ΔB),
2.2.2. Controller
2.3. OncoNav Is a Software Platform Used for Navigation, Robot Control, and Ablation Multi-Focal Planning and Monitoring
2.4. Typical Workflow
2.5. Experiments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.; Miller, K.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Tareen, B.; Godoy, G.; Taneja, S.S. Focal therapy: A new paradigm for the treatment of prostate cancer. Rev. Urol. 2009, 11, 203–212. [Google Scholar] [PubMed]
- Cepek, J.; Lindner, U.; Davidson, S.R.; Haider, M.A.; Ghai, S.; Trachtenberg, J.; Fenster, A. Treatment planning for prostate focal laser ablation in the face of needle placement uncertainty. Med. Phys. 2014, 41, 013301. [Google Scholar] [CrossRef] [PubMed]
- Stoianovici, D.; Kim, C.; Srimathveeravalli, G.; Sebrecht, P.; Petrisor, D.; Coleman, J.; Solomon, S.B.; Hricak, H. MRI-safe robot for endorectal prostate biopsy. IEEE/ASME Trans. Mechatron. 2014, 19, 1289–1299. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.S.; Iordachita, I.; Csoma, C.; Tokuda, J.; DiMaio, S.P.; Tempany, C.M.; Hata, N.; Fichtinger, G. MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Trans. Mechatron. 2008, 13, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Krieger, A.; Iordachita, I.; Guion, P.; Singh, A.K.; Kaushal, A.; Ménard, C.; Pinto, P.A.; Camphausen, K.; Fichtinger, G.; Whitcomb, L.L. An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans. Biomed. Eng. 2011, 58, 3049–3060. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-E.; Tokuda, J.; Tuncali, K.; Tempany, C.M.; Zhang, E.; Hata, N. Development and preliminary evaluation of a motorized needle guide template for MRI-guided targeted prostate biopsy. IEEE Trans. Biomed. Eng. 2013, 60, 3019–3027. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, A.A.; Trachtenberg, J.; Kucharczyk, W.; Yi, Y.; Haider, M.; Ma, L.; Weersink, R.; Raoufi, C. Robotic system for closed-bore MRI-guided prostatic interventions. IEEE/ASME Trans. Mechatron. 2008, 13, 374–379. [Google Scholar] [CrossRef]
- Seifabadi, R.; Aalamifar, F.; Iordachita, I.; Fichtinger, G. Toward teleoperated needle steering under continuous MRI guidance for prostate percutaneous interventions. Int. J. Med. Robot. Comput. Assist. Surg. 2016, 12, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Monfaredi, R.; Cleary, K.; Sharma, K. MRI Robots for Needle-Based Interventions: Systems and Technology. Ann. Biomed. Eng. 2018, 46, 1479–1497. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Squires, A.; Seifabadi, R.; Xu, S.; Agarwal, H.K.; Bernardo, M.; Pinto, P.A.; Choyke, P.; Wood, B.; Tse, Z.T.H. Robotic system for MRI-guided focal laser ablation in the prostate. IEEE/ASME Trans. Mechatron. 2017, 22, 107–114. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, S.; Squires, A.; Seifabadi, R.; Turkbey, I.B.; Pinto, P.; Choyke, P.; Wood, B.; Tse, Z.T.H. MRI Guided Robotically Assisted Focal Laser Ablation of the Prostate Using Canine Cadavers. IEEE Trans. Biomed. Eng. 2017, 65, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Moyer, I.E. 2012 “Core [X,Y]”. Available online: http://corexy.com/index.html (accessed on 26 November 2018).
- Chen, Y.; Godage, I.S.; Tse, Z.T.H.; Webster, R.J.; Barth, E.J. Characterization and Control of a Pneumatic Motor for MR-Conditional Robotic Applications. IEEE/ASME Trans. Mechatron. 2017, 22, 2780–2789. [Google Scholar] [CrossRef]
- Boley, D.L.; Steinmetz, E.S.; Sutherland, K.T. Robot localization from landmarks using recursive total least squares. In Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; pp. 1381–1386. [Google Scholar]
- Negussie, A.H.; Partanen, A.; Mikhail, A.S.; Xu, S.; Abi-Jaoudeh, N.; Maruvada, S.; Wood, B.J. Thermochromic tissue-mimicking phantom for optimisation of thermal tumour ablation. Int. J. Hyperth. 2016, 32, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Orban, M.; Kurin-Csoergei, K.; Zhabotinsky, A.M.; Epstein, I.R. Pattern Formation during Polymerization of Acrylamide in the Presence of Sulfide Ions. J. Phys. Chem. B 1999, 103, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Agarwal, H.; Bernardo, M.; Seifabadi, R.; Turkbey, B.; Partanen, A.; Negussie, A.; Glossop, N.; Choyke, P.; Pinto, P.; et al. An MRI guided system for prostate laser ablation with treatment planning and multi-planar temperature monitoring. In Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2016; Volume 9786, p. 97861I. [Google Scholar]
- Seifabadi, R.; Cho, N.B.; Song, S.E.; Tokuda, J.; Hata, N.; Tempany, C.M.; Fichtinger, G.; Iordachita, I. Accuracy study of a robotic system for MRI-guided prostate needle placement. Int. J. Med. Robot. Comput. Assist. Surg. 2013, 9, 305–316. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seifabadi, R.; Li, M.; Xu, S.; Chen, Y.; Squires, A.; Negussie, A.H.; Bakhutashvili, I.; Choyke, P.; Turkbey, I.B.; Tse, Z.T.H.; et al. MRI Robot for Prostate Focal Laser Ablation: An Ex Vivo Study in Human Prostate. J. Imaging 2018, 4, 140. https://doi.org/10.3390/jimaging4120140
Seifabadi R, Li M, Xu S, Chen Y, Squires A, Negussie AH, Bakhutashvili I, Choyke P, Turkbey IB, Tse ZTH, et al. MRI Robot for Prostate Focal Laser Ablation: An Ex Vivo Study in Human Prostate. Journal of Imaging. 2018; 4(12):140. https://doi.org/10.3390/jimaging4120140
Chicago/Turabian StyleSeifabadi, Reza, Ming Li, Sheng Xu, Yue Chen, Alex Squires, Ayele H. Negussie, Ivane Bakhutashvili, Peter Choyke, Ismail B. Turkbey, Zion Tsz Ho Tse, and et al. 2018. "MRI Robot for Prostate Focal Laser Ablation: An Ex Vivo Study in Human Prostate" Journal of Imaging 4, no. 12: 140. https://doi.org/10.3390/jimaging4120140
APA StyleSeifabadi, R., Li, M., Xu, S., Chen, Y., Squires, A., Negussie, A. H., Bakhutashvili, I., Choyke, P., Turkbey, I. B., Tse, Z. T. H., & Wood, B. J. (2018). MRI Robot for Prostate Focal Laser Ablation: An Ex Vivo Study in Human Prostate. Journal of Imaging, 4(12), 140. https://doi.org/10.3390/jimaging4120140