Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan
<p>Neutron sources in Japan. Two reactor neutron sources, JRR-3 and KUR are also indicated. The neutron fluxes are typical value at a sample position. The values change depending on experimental conditions. The values of current are the maximum or typical ones. All the neutron sources other than SHI-ATEX belong to academia.</p> "> Figure 2
<p>Electron accelerator beam lines at Hokkaido University neutron source. The center beam line is used for thermal neutron experiments, the right for cold neutron ones, and the left for fast neutron ones.</p> "> Figure 3
<p>Thermal neutron spectrum at HUNS.</p> "> Figure 4
<p>Bragg edge transmission results of a welded iron sample. The upper left panel is a photo of the sample, the upper right shows the preferred orientation, the lower left panel the degree of anisotropy (texture) and the lower right panel the crystallite size [<a href="#B22-jimaging-04-00055" class="html-bibr">22</a>].</p> "> Figure 5
<p>Change of lattice plane distance with increasing of charge of a Li battery [<a href="#B23-jimaging-04-00055" class="html-bibr">23</a>].</p> "> Figure 6
<p>Elemental distribution and temperature distribution of a model sample [<a href="#B24-jimaging-04-00055" class="html-bibr">24</a>].</p> "> Figure 7
<p>Cyclotron accelerator and proton beam line (<b>a</b>) and a vertical irradiation room (<b>b</b>).</p> "> Figure 8
<p>Accelerator, target-moderator-reflector system with shield, and neutron beam line.</p> "> Figure 9
<p>Images of fully wet (<b>a</b>) and dry (<b>b</b>) conditions. Distribution of hydrogen in rust is mainly indicated in the dry case, and that of hydrogen in water is superimposed on the wet case [<a href="#B10-jimaging-04-00055" class="html-bibr">10</a>].</p> "> Figure 10
<p>Transmission image of concrete (<b>a</b>) and water penetration into concrete (<b>b</b>) [<a href="#B27-jimaging-04-00055" class="html-bibr">27</a>,<a href="#B28-jimaging-04-00055" class="html-bibr">28</a>].</p> "> Figure 11
<p>Accelerator and experimental area.</p> "> Figure 12
<p>Photo of ASTM samples (<b>a</b>) and transmission image (<b>b</b>).</p> "> Figure 13
<p>Imaging example of a brass rod in a copper cylinder and an acryl column.</p> "> Figure 14
<p>Layout of the beam line of KURRI-LINAC.</p> "> Figure 15
<p>Target-moderator-reflector and neutron flight path.</p> "> Figure 16
<p>Transmission image of In and Au with various thicknesses.</p> "> Figure 17
<p>Cyclotron and moderator.</p> "> Figure 18
<p>Irradiation area and sample stand.</p> ">
Abstract
:1. Introduction
2. Neutron Facilities in Japan
3. Compact Accelerator-Driven Neutron Sources and Their Activities
3.1. Hokkaido University Neutron Source (HUNS)
3.2. Aomori Prefecture Quantum Science Center
3.3. RIKEN Compact Accelerator-Driven Neutron Source (RANS)
3.4. Kyoto University Accelerator-Driven Neutron Source (KUANS)
3.5. Kyoto University Research Reactor Institute LINAC (KURRI-LINAC)
3.6. Sumitomo Heavy Industry ATEX (SHI-ATEX)
4. Summary
Acknowledgments
Conflicts of Interest
References
- Murakawa, H.; Sugimoto, K.; Miyata, K.; Asano, H.; Takenaka, N.; Yasuda, R. Visualization of water behavior in the in-plane and through-plane directions in a PEFC using a neutron image intensifier. Phys. Procedia 2013, 43, 277–281. [Google Scholar] [CrossRef]
- Lehmann, E.H.; Peetermans, S.; Betz, B. Instrumentation in neutron imaging—A world-wide overview. Neutron News 2015, 26, 6–10. [Google Scholar] [CrossRef]
- Kiyanagi, Y.; Sato, H.; Kamiyama, T.; Shinohara, T. A new imaging method using pulsed neutron sources for visualizing structural and dynamical information. J. Phys. Conf. Ser. 2012, 340, 012010. [Google Scholar] [CrossRef]
- Shinohara, T.; Kai, T.; Oikawa, K.; Segawa, M.; Harada, M.; Nakatani, T.; Ooi, M.; Aizawa, K.; Sato, H.; Kamiyama, T.; et al. Final design of the Energy-Resolved Neutron Imaging System “RADEN” at J-PARC. J. Phys. Conf. Ser. 2016, 746, 012007. [Google Scholar] [CrossRef]
- Otake, Y. A Compact proton linac neutron source at RIKEN. In Applications of Laser-Driven Particle Acceleration; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Sunaga, H.; Takamura, M.; Ikeda, Y.; Otake, Y.; Hama, T.; Kumagai, M.; Suzuki, H.; Suzuki, S. Texture evaluation in ductile fracture process by neutron diffraction measurement. J. Phys. Conf. Ser. 2016, 734 Pt B. [Google Scholar] [CrossRef]
- Takamura, M.; Ikeda, Y.; Sunaga, H.; Taketani, A.; Otake, Y.; Suzuki, H.; Kumagai, M.; Hama, T.; Oba, Y. Non-destructive Texture Measurement of Steel Sheets with Compact Neutron Source “RANS”. J. Phys. Conf. Ser. 2016, 734 Pt B. [Google Scholar] [CrossRef]
- Ikeda, Y.; Taketani, A.; Takamura, M.; Sunaga, H.; Kumagai, M.; Oba, Y.; Otake, Y.; Suzuki, H. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction. Nucl. Instrum. Methods A 2016, 833, 61–67. [Google Scholar] [CrossRef]
- Yamada, M.; Otake, Y.; Taketani, A.; Sunaga, H.; Yamagata, Y.; Wakabayashi, T.; Kono, K.; Nakayama, T. Non-Destructive Inspection of Under-Film Corroded Steels using A Compact Neutron Source. Tetsu-to-Hagane 2014, 100, 429–431. [Google Scholar] [CrossRef]
- Taketani, A.; Yamada, M.; Ikeda, Y.; Hashiguchi, T.; Sunaga, H.; Wakabayashi, Y.; Ashigai, S.; Takamura, M.; Mihara, S.; Yanagimachi, S.; et al. Visualization of Water in Corroded Region of Painted Steels at a Compact Neutron Source. ISIJ Int. 2017, 57, 155–161. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kiyanagi, Y.; Watanabe, K.; Uritani, A.; Sano, T.; Hori, J.; Nakajima, K. Development of a neutron source for imaging at the electron linac facility in Kyoto University Research Reactor Institute. Physica B 2018. submitted. [Google Scholar]
- Baxter, D.V.; Rinckel, T. Status report on the Low Energy Neutron Source for 2015. Il Nuovo Cimento C 2016, 38, 183. [Google Scholar] [CrossRef]
- Wang, X.; Loong, C.K.; Guan, X.; Du, T. Recent Progress of the Compact Pulsed Hadron Source Project and Related Activities at Tsinghua University. Phys. Procedia 2014, 60, 97–100. [Google Scholar] [CrossRef]
- Guo, Z.; Lu, Y.; Zou, Y.; Zhu, K.; Peng, S.; Zhao, I.; Gao, S.; Wen, W.; Li, H.; Zhou, Q.; et al. Progress of PKUNIFTY—A RFQ Accelerator based Neutron Imaging Facility at Peking University. Phys. Procedia 2013, 43, 79–85. [Google Scholar] [CrossRef]
- Futakawa, M.; Maekawa, F.; Sakamoto, S. 1-MW Pulsed Spallation Neutron Source (JSNS) at J-PARC. Neutron News 2011, 22, 15–19. [Google Scholar] [CrossRef]
- Parker, J.D.; Harada, M.; Hayashida, H.; Hiroi, K.; Kai, T.; Matsumoto, Y.; Nakatani, T.; Oikawa, K.; Segawa, M.; Shinohara, T.; et al. Development of Energy-Resolved Neutron Imaging Detectors at RADEN. JPS Conf. Proc. 2018. submitted. [Google Scholar]
- Uno, S.; Uchida, T.; Sekimoto, M.; Murakami, T.; Miyama, K.; Shoji, M.; Nakano, E.; Koike, T.; Morita, K.; Satoh, H.; et al. Two-dimensional Neutron Detector with GEM and its Applications. Phys. Proc. 2012, 26, 142–152. [Google Scholar] [CrossRef]
- Parker, J.D.; Harada, M.; Hayashida, H.; Hiroi, K.; Kai, T.; Matsumoto, Y.; Oikawa, K.; Segawa, M.; Shinohara, T.; Su, Y.; et al. Development of the next-generation micro pixel chamber-based neutron imaging detector (μNID) for energy-resolved neutron imaging at the J-PARC/MLF. In Proceedings of the IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, 29 October–6 November 2016. [Google Scholar] [CrossRef]
- Mizukami, K.; Sato, S.; Sagehashi, S.; Ohnuma, S.; Ooi, M.; Iwasa, H.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y. Measurements of Performance of a Pixel-Type Two-Dimensional Position Sensitive Li-glass Neutron Detector. Nucl. Instrum. Methods Phys. Res. A 2004, 529, 310–312. [Google Scholar] [CrossRef]
- Nittoh, K.; Konagai, C.; Noji, T.; Miyabe, K. New feature of the neutron color image intensifier. Nucl. Instrum. Methods Phys. Res. A 2009, 605, 107–110. [Google Scholar] [CrossRef]
- Furusaka, M.; Sato, H.; Kamiyama, T.; Ohnuma, M.; Kiyanagi, Y. Activity of Hokkaido University neutron source, HUNS. Phys. Procedia 2014, 60, 167–174. [Google Scholar] [CrossRef]
- Sato, H.; Kamiyama, T.; Kiyanagi, Y. A Rietveld-Type Analysis Code for Pulsed Neutron Bragg-Edge Transmission Imaging and Quantitative Evaluation of Texture and Microstructure of a Welded α-Iron Plate. Mater. Trans. 2011, 52, 1294–1302. [Google Scholar] [CrossRef]
- Kamiyama, T.; Narita, Y.; Sato, H.; Ohnuma, M.; Kiyanagi, Y. Structural change of carbon anode in a lithium-ion battery product associated with charging process observed by neutron transmission Bragg-edge imaging. Phys. Procedia 2017, 88, 27–33. [Google Scholar] [CrossRef]
- Sethuraman, V.A.; Hardwick, L.J. Surface structural disordering in graphite upon lithium intercalation/deintercalation. J. Power Sources 2010, 195, 3655–3660. [Google Scholar] [CrossRef]
- Kamiyama, T.; Noda, H.; Ito, J.; Iwasa, H.; Kiyanagi, Y.; Ikeda, S. Remote-sensing, Non-destructive, and Computed-tomography-assisted Thermometry by Neutron Resonance Absorption Spectroscopy. J. Neutron Res. 2005, 13, 97–101. [Google Scholar] [CrossRef]
- Kamiyama, T.; Miyamoto, N.; Tomioka, S.; Kozaki, T. Epithermal neutron tomography using compact electron linear accelerator. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 605, 91–94. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Mizuta, M.; Sunaga, H.; Otake, Y. Study on Water Penetration Measurement in Concrete using Compact Neutron Source. Proc. Jpn. Concr. Inst. 2017, 39, 613–618. Available online: http://data.jci-net.or.jp/data_html/39/039-01-1095.html (accessed on 26 March).
- Yoshimura, Y.; Mizuta, M.; Sunaga, H.; Otake, Y.; Hayashizaki, N. Measurement of Water in Concrete by a Compact Accelerator-driven Neutron Source. In Proceedings of the 17th JSMS Symposium on Concrete Structure Scenarios, Kyoto, Japan, 12–13 October 2017. [Google Scholar]
Facility Name | Accelerator Type | Acceleration Particle (Energy) | Accelerator Power (kW) | Moderator Type | Neutron Flux (n/cm2/s) | L/D |
---|---|---|---|---|---|---|
HUNS | Linac | Electron (35 MeV) | ~1 | Thermal Cold | ~few × 103 ~few × 104 | ~60 |
Aomori Prefecture Quantum Science Center | Cyclotron | Proton (20 MeV) | 1 | Thermal | 6.1 × 105 | 44 |
J-PARC RADEN | Synchrotron | Proton (3000 MeV) | 1000 | Cold | 2.6 × 107 | 180~7000 |
RANS | Linac | Proton (7 MeV) | 0.7 | Thermal | ~few × 104 | 21~781 |
KUANS | Linac | Proton (3.5 MeV) | 0.35 | Thermal | 1.2 × 103 | ~20 |
KURRI-LINAC | Linac | Electron (40 MeV) | 6 | Thermal | 2.4 × 104 | ~85 |
SHI-ATEX | Cyclotron | Proton (18 MeV) | 0.36 | Thermal | 2.0 × 105 | 44 |
L/D | Detector Position L from Moderator (mm) | Viewing Moderator Size D (mm) |
---|---|---|
33 | 5000 | 150 |
21~331 | 3500 | 10–170 |
781 (max) | 8000 | 10 |
Detector | Converter | Photo Sensor | Spatial Resolution |
---|---|---|---|
Neutron Camera | LiF/ZnS(Ag) | Cooled CCD sensor | 40 μm |
Color I.I. 1 | Gd2O3 | CMOS or | 45 μm |
Color I.I. 2 | B4C | Cooled CCD sensor | 45 μm |
3He Position Sensitive Detector | 3He 10 atom | 3He Gas chamber | 1 cm |
RPMT | LiF/ZnS Li grass | Position sensitive Photomultiplier Tube | 1 mm |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiyanagi, Y. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan. J. Imaging 2018, 4, 55. https://doi.org/10.3390/jimaging4040055
Kiyanagi Y. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan. Journal of Imaging. 2018; 4(4):55. https://doi.org/10.3390/jimaging4040055
Chicago/Turabian StyleKiyanagi, Yoshiaki. 2018. "Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan" Journal of Imaging 4, no. 4: 55. https://doi.org/10.3390/jimaging4040055
APA StyleKiyanagi, Y. (2018). Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan. Journal of Imaging, 4(4), 55. https://doi.org/10.3390/jimaging4040055