Emulsion-Based Encapsulation of Fibrinogen with Calcium Carbonate for Hemorrhage Control
<p>Images of light microscopy of (<b>a</b>) Enc AC<sub>lowest</sub> Fib Hep, (<b>b</b>) Enc AC<sub>low</sub> Fib Hep, and (<b>c</b>) Enc AC Fib Hep, (<b>d</b>) Enc AC Fib<sub>high</sub> Hep and (<b>e</b>) Enc AC Fib Par. The scale bar represents 20 µm. See <a href="#jfb-16-00086-t001" class="html-table">Table 1</a> for details of the sample preparation.</p> "> Figure 2
<p>Images of fluorescence microscopy of FITC-labeled fibrinogen-CaCO<sub>3</sub> particles after subtraction of control particles: (<b>a</b>) Enc AC Fib<sub>high</sub> Hep, (<b>b</b>) Enc AC Fib<sub>high</sub> Par, and (<b>c</b>) Enc SBC Fib<sub>high</sub> Hep. Each particle was prepared under the same conditions as detailed in <a href="#jfb-16-00086-t001" class="html-table">Table 1</a> after FITC-labeling of fibrinogen. The scale bar represents 10 µm.</p> "> Figure 3
<p>Coomassie-stained SDS-PAGE analysis of fibrinogen and fibrinogen-encapsulated CaCO<sub>3</sub> particle samples dissolved in TXA<sup>+</sup> solution. Each sample except standard proteins (Mw STD) was reduced with 5% dithiothreitol and analyzed by the gel electrophoresis. Indicated molecular weights were estimated by Mw STD with known molecular weights from 11 to 250 kDa. From left to right, each lane represents: Mw STD, fibrinogen (5 mg/mL), Enc AC Fib<sub>high</sub> Par, Enc AC Fib Par, Enc AC Fib<sub>high</sub> Par 30 min, Enc AC Fib<sub>high</sub> Hep, Enc AC Fib Hep, Enc AC<sub>low</sub> Fib Hep, Enc AC<sub>lowest</sub> Fib Hep, Enc CaCl<sub>2</sub> Fib Hep AC. See <a href="#jfb-16-00086-t001" class="html-table">Table 1</a> for the details of each sample.</p> "> Figure 4
<p>Effects of fibrinogen-encapsulated CaCO<sub>3</sub> particle (Enc AC Fib<sub>high</sub> Par) alone and in combination with TXA<sup>+</sup> and thrombin-encapsulated CaCO<sub>3</sub> particle (Enc Thr) on ROTEM coagulation time (CT) and maximum clot firmness (MCF). ROTEM NATEM tests were performed with plasma containing an abnormally low level of fibrinogen in the presence of 6 mg Enc AC Fib<sub>high</sub> Par alone and together with 2 mg TXA<sup>+</sup> and 2 mg Enc Thr (see <a href="#sec2dot3dot3-jfb-16-00086" class="html-sec">Section 2.3.3</a> for details). Data represent mean ± SD (n = 3).</p> "> Figure A1
<p>Effects of fibrinogen content on the size of fibrinogen-encapsulated CaCO<sub>3</sub> particles. A linear relationship with a Pearson correlation coefficient of 0.689 (<span class="html-italic">p</span> = 0.002) was observed.</p> "> Figure A2
<p>Effects of fibrinogen content on ROTEM coagulation time (CT) and maximum clot firmness (MCF). ROTEM NATEM tests were performed with human plasma containing an abnormally low level of fibrinogen. It should be noted that all control particles prepared in the absence of fibrinogen resulted in non-detectable coagulation and were omitted. The Pearson correlation coefficient between the fibrinogen content and NATEM CT: r = 0.128 (<span class="html-italic">p</span> = 0.66), and NATEM MCF: r = −0.354 (<span class="html-italic">p</span> = 0.22).</p> "> Figure A3
<p>Effects of particle size on ROTEM coagulation time (CT) and maximum clot firmness (MCF). ROTEM NATEM tests were performed with human plasma containing an abnormally low level of fibrinogen. It should be noted that all control particles prepared in the absence of fibrinogen resulted in non-detectable coagulation and thus were omitted. The Pearson correlation coefficient between the particle size and CT: r = 0.466 (<span class="html-italic">p</span> = 0.097), and MCF: r = −0.523 (<span class="html-italic">p</span> = 0.055).</p> "> Figure A4
<p>Effects of fibrinogen content on the self-propelling lag time and speed of fibrinogen-CaCO<sub>3</sub> particles. No linear association of the fibrinogen content with the lag time and speed was observed: r = −0.119 (<span class="html-italic">p</span> = 0.65) and r = −0.276 (<span class="html-italic">p</span> = 0.28), respectively.</p> "> Figure A5
<p>Effects of particle size on the self-propelling lag time and speed of fibrinogen-CaCO<sub>3</sub> particles. No linear relationship between the particle size and self-propelling lag time r = 0.117 (<span class="html-italic">p</span> = 0.65), and a linear relationship between the particle size and self-propelling speed with a Pearson correlation coefficient of −0.506 (<span class="html-italic">p</span> = 0.038) was observed.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Self-Propelling Particles
2.2.1. Water-Oil-Water Emulsion Method
2.2.2. Protonation of TXA
2.3. Characterization of Fibrinogen-Encapsulated CaCO3 Particles
2.3.1. Light and Fluorescence Microscopy
FITC Labeling
Imaging Analysis
2.3.2. Gel Electrophoresis
2.3.3. Rotational Thromboelastometry (ROTEM)
2.3.4. Hemolysis Test
2.3.5. Self-Propulsion Test
2.3.6. Statistical Analysis
3. Results
3.1. Particle Yield and Fibrinogen Content
3.2. Particle Morphology and Size
3.3. Gel Electrophoresis
3.4. Hemostatic Properties
3.5. Hemolytic Activities
3.6. Self-Propelling Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hickman, D.A.; Pawlowski, C.L.; Sekhon, U.D.S.; Marks, J.; Gupta, A.S. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv. Mater. 2018, 30, 1700859. [Google Scholar] [CrossRef] [PubMed]
- Eastridge, B.J.; Mabry, R.L.; Seguin, P.; Cantrell, J.; Tops, T.; Uribe, P.; Mallett, O.; Zubko, T.; Oetjen-Gerdes, L.; Rasmussen, T.E.; et al. Death on the battlefield (2001–2011): Implications for the future of combat casualty care. J. Trauma Acute Care Surg. 2012, 73, S431–S437. [Google Scholar] [CrossRef] [PubMed]
- Mazuchowski, E.L.; Kotwal, R.S.; Janak, J.C.; Howard, J.T.; Harcke, H.T.; Montgomery, H.R.; Butler, F.K.; Holcomb, J.B.; Eastridge, B.J.; Gurney, J.M.; et al. Mortality review of us special operations command battle-injured fatalities. J. Trauma Acute Care Surg. 2020, 88, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Gruen, R.L.; Brohi, K.; Schreiber, M.; Balogh, Z.J.; Pitt, V.; Narayan, M.; Maier, R.V. Haemorrhage control in severely injured patients. Lancet 2012, 380, 1099–1108. [Google Scholar] [CrossRef]
- Kauvar, D.S.; Lefering, R.; Wade, C.E. Impact of hemorrhage on trauma outcome: An overview of epidemiology, clinical presentations, and therapeutic considerations. J. Trauma 2006, 60, S3–S9. [Google Scholar] [CrossRef]
- Drake, S.A.; Holcomb, J.B.; Yang, Y.; Thetford, C.; Myers, L.; Brock, M.; Wolf, D.A.; Cron, S.; Persse, D.; McCarthy, J.; et al. Establishing a regional trauma preventable/potentially preventable death rate. Ann. Surg. 2020, 271, 375–382. [Google Scholar] [CrossRef]
- Eastridge, B.J. Injuries to the abdomen from explosion. Curr. Trauma Rep. 2017, 3, 69–74. [Google Scholar] [CrossRef]
- Curry, N.S.; Davenport, R.; Pavord, S.; Mallett, S.V.; Kitchen, D.; Klein, A.A.; Maybury, H.; Collins, P.W.; Laffan, M. The use of viscoelastic haemostatic assays in the management of major bleeding: A British society for haematology guideline. Br. J. Haematol. 2018, 182, 789–806. [Google Scholar] [CrossRef]
- van Oostendorp, S.E.; Tan, E.C.; Geeraedts, L.M., Jr. Prehospital control of life-threatening truncal and junctional haemorrhage is the ultimate challenge in optimizing trauma care; a review of treatment options and their applicability in the civilian trauma setting. Scand. J. Trauma Resusc. Emerg. Med. 2016, 24, 110. [Google Scholar] [CrossRef]
- Welch, M.; Barratt, J.; Peters, A.; Wright, C. Systematic review of prehospital haemostatic dressings. BMJ Mil. Health 2020, 166, 194–200. [Google Scholar] [CrossRef]
- Jamal, L.; Saini, A.; Quencer, K.; Altun, I.; Albadawi, H.; Khurana, A.; Naidu, S.; Patel, I.; Alzubaidi, S.; Oklu, R. Emerging approaches to pre-hospital hemorrhage control: A narrative review. Ann. Transl. Med. 2021, 9, 1192. [Google Scholar] [CrossRef]
- Peng, T. Biomaterials for hemorrhage control. Trends Biomater. Artif. Organs 2010, 24, 27–68. [Google Scholar]
- Peng, H.T.; Shek, P.N. Novel wound sealants: Biomaterials and applications. Expert. Rev. Med. Devices 2010, 7, 639–659. [Google Scholar] [CrossRef] [PubMed]
- Grissom, T.E.; Fang, R. Topical hemostatic agents and dressings in the prehospital setting. Curr. Opin. Anaesthesiol. 2015, 28, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.; Shukla, A.; Brown, A.C. Biomaterials for hemostasis. Annu. Rev. Biomed. Eng. 2022, 24, 111–135. [Google Scholar] [CrossRef]
- Huang, L.; Liu, G.L.; Kaye, A.D.; Liu, H. Advances in topical hemostatic agent therapies: A comprehensive update. Adv. Ther. 2020, 37, 4132–4148. [Google Scholar] [CrossRef] [PubMed]
- Mecwan, M.; Li, J.; Falcone, N.; Ermis, M.; Torres, E.; Morales, R.; Hassani, A.; Haghniaz, R.; Mandal, K.; Sharma, S.; et al. Recent advances in biopolymer-based hemostatic materials. Regen. Biomater. 2022, 9, rbac063. [Google Scholar] [CrossRef]
- Shao, H.; Wu, X.; Xiao, Y.; Yang, Y.; Ma, J.; Zhou, Y.; Chen, W.; Qin, S.; Yang, J.; Wang, R.; et al. Recent research advances on polysaccharide-, peptide-, and protein-based hemostatic materials: A review. Int. J. Biol. Macromol. 2024, 261, 129752. [Google Scholar] [CrossRef]
- Wang, L.; Hao, F.; Tian, S.; Dong, H.; Nie, J.; Ma, G. Targeting polysaccharides such as chitosan, cellulose, alginate and starch for designing hemostatic dressings. Carbohydr. Polym. 2022, 291, 119574. [Google Scholar] [CrossRef]
- Zheng, C.; Zeng, Q.; Pimpi, S.; Wu, W.; Han, K.; Dong, K.; Lu, T. Research status and development potential of composite hemostatic materials. J. Mater. Chem. B 2020, 8, 5395–5410. [Google Scholar] [CrossRef]
- Ali-Mohamad, N.; Cau, M.F.; Wang, X.; Khavari, A.; Ringgold, K.; Naveed, A.; Sherwood, C.; Peng, N.; Zhang Gao, H.; Zhang, Y.; et al. Ruggedized self-propelling hemostatic gauze delivers low dose of thrombin and systemic tranexamic acid and achieves high survival in swine with junctional hemorrhage. Mil. Med. 2023, 188, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Conley, S.P.; Littlejohn, L.F.; Henao, J.; DeVito, S.S.; Zarow, G.J. Control of junctional hemorrhage in a consensus swine model with hemostatic gauze products following minimal training. Mil. Med. 2015, 180, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Wang, Y.; Wu, H.; Cong, H.; Yu, B.; Shen, Y. Preparation and application of hemostatic microspheres containing biological macromolecules and others. Int. J. Biol. Macromol. 2023, 257, 128299. [Google Scholar] [CrossRef]
- Wan, Y.F.; Han, J.M.; Cheng, F.; Wang, X.L.; Wang, H.N.; Song, Q.L.; He, W. Green preparation of hierarchically structured hemostatic epoxy -amine sponge. Chem. Eng. J. 2020, 397, 125445. [Google Scholar] [CrossRef]
- Li, N.; Yang, X.; Liu, W.; Xi, G.; Wang, M.; Liang, B.; Ma, Z.; Feng, Y.; Chen, H.; Shi, C. Tannic acid cross-linked polysaccharide-based multifunctional hemostatic microparticles for the regulation of rapid wound healing. Macromol. Biosci. 2018, 18, e1800209. [Google Scholar] [CrossRef]
- Li, L.; Du, Y.; Yin, Z.; Li, L.; Peng, H.; Zheng, H.; Yang, A.; Li, H.; Lv, G. Preparation and the hemostatic property study of porous gelatin microspheres both in vitro and in vivo. Colloids Surf. B Biointerfaces 2020, 187, 110641. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.X.; Chahal, D.; Ali-Mohamad, N.; Kastrup, C.; Donnellan, F. Hemostatic powders for gastrointestinal bleeding: A review of old, new, and emerging agents in a rapidly advancing field. Endosc. Int. Open 2022, 10, E1136–E1146. [Google Scholar] [CrossRef]
- Baylis, J.R.; Chan, K.Y.; Kastrup, C.J. Halting hemorrhage with self-propelling particles and local drug delivery. Thromb. Res. 2016, 141 (Suppl. 2), S36–S39. [Google Scholar] [CrossRef]
- Shi, Z.; Lan, G.; Hu, E.; Lu, F.; Qian, P.; Liu, J.; Dai, F.; Xie, R. Targeted delivery of hemostats to complex bleeding wounds with magnetic guidance for instant hemostasis. Chem. Eng. J. 2022, 427, 130916. [Google Scholar] [CrossRef]
- Montroy, J.; Hutton, B.; Moodley, P.; Fergusson, N.A.; Cheng, W.; Tinmouth, A.; Lavallee, L.T.; Fergusson, D.A.; Breau, R.H. The efficacy and safety of topical tranexamic acid: A systematic review and meta-analysis. Transfus. Med. Rev. 2018, 32, 165–178. [Google Scholar] [CrossRef]
- Vasudeva, M.; Mathew, J.K.; Groombridge, C.; Tee, J.W.; Johnny, C.S.; Maini, A.; Fitzgerald, M.C. Hypocalcemia in trauma patients: A systematic review. J. Trauma Acute Care Surg. 2021, 90, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Aubron, C.; Reade, M.C.; Fraser, J.F.; Cooper, D.J. Efficacy and safety of fibrinogen concentrate in trauma patients--a systematic review. J. Crit. Care 2014, 29, 471.e11–471.e17. [Google Scholar] [CrossRef]
- Peng, H.T.; Siddiqui, M. Encapsulation of fibrinogen and thrombin with calcium carbonate for hemorrhage control. Biofunct. Mater. 2023, 1, 0004. [Google Scholar] [CrossRef]
- Kanoje, B.; Patel, D.; Kuperkar, K. Morphology modification in freshly precipitated calcium carbonate particles using surfactant-polymer template. Mater. Lett. 2017, 187, 44–48. [Google Scholar] [CrossRef]
- Baylis, J.R.; Yeon, J.H.; Thomson, M.H.; Kazerooni, A.; Wang, X.; St John, A.E.; Lim, E.B.; Chien, D.; Lee, A.; Zhang, J.Q.; et al. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage. Sci. Adv. 2015, 1, e1500379. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.T.; Beckett, A. Stability of reconstituted fibrinogen concentrate in hemostatic function and concentration. Mil. Med. 2020, 186, 286–292. [Google Scholar] [CrossRef]
- Peng, H.; Walford, D. Development of Biomaterials for Treating Battlefield Hemorrhage Part 1: Self-Propelling Particles; Report No. DRDC-RDDC-2020-R135; Defence Research and Development Canada, Toronto Research Centre: Toronto, ON, Canada, 2020. [Google Scholar]
- Alonso Villela, S.M.; Kraiem, H.; Bouhaouala-Zahar, B.; Bideaux, C.; Aceves Lara, C.A.; Fillaudeau, L. A protocol for recombinant protein quantification by densitometry. Microbiologyopen 2020, 9, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Lechner, R.; Helm, M.; Mueller, M.; Wille, T.; Friemert, B. Efficacy of hemostatic agents in humans with rotational thromboelastometry: An in-vitro study. Mil. Med. 2016, 181, 907–912. [Google Scholar] [CrossRef]
- van Holland, B.J.; Frings-Dresen, M.H.; Sluiter, J.K. Measuring short-term and long-term physiological stress effects by cortisol reactivity in saliva and hair. Int. Arch. Occup. Environ. Health 2012, 85, 849–852. [Google Scholar] [CrossRef]
- Wu, G.-x.; Ding, J.; Xue, J. Synthesis of calcium carbonate capsules in water-in-oil-in-water double emulsions. J. Mater. Res. 2008, 23, 140–149. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Y.; Wang, C.; Hao, Y.; Fan, Q.; Yang, Z.; Li, Q.; Feng, L.; Liu, Z. Tumor microenvironment modulating CaCO(3)-based colloidosomal microreactors can generally reinforce cancer immunotherapy. Adv. Mater. 2023, 36, e2308254. [Google Scholar] [CrossRef] [PubMed]
- Schulz, P.M.; Gehringer, W.; Nöhring, S.; Müller, S.; Schmidt, T.; Kekeiss-Schertler, S.; Solomon, C.; Pock, K.; Römisch, J. Biochemical characterization, stability, and pathogen safety of a new fibrinogen concentrate (fibryga®). Biologicals 2018, 52, 72–77. [Google Scholar] [CrossRef]
- Song, B.; Yang, L.; Han, L.; Jia, L. Metal ion-chelated tannic acid coating for hemostatic dressing. Materials 2019, 12, 1803. [Google Scholar] [CrossRef]
- Yang, X.; Liu, W.; Shi, Y.; Xi, G.; Wang, M.; Liang, B.; Feng, Y.; Ren, X.; Shi, C. Peptide-immobilized starch/peg sponge with rapid shape recovery and dual-function for both uncontrolled and noncompressible hemorrhage. Acta Biomater. 2019, 99, 220–235. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Liu, G.Q.; Yuan, S.D.; Zhang, L.; Meng, X.C. Study on the hemolysis rate and cytotoxicity test of porous ultramicron ha containing mg. Mater. Sci. Forum 2009, 610–613, 1215–1218. [Google Scholar] [CrossRef]
- Zhao, P.; Tian, Y.; You, J.; Hu, X.; Liu, Y. Recent advances of calcium carbonate nanoparticles for biomedical applications. Bioengineering 2022, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Dima, C.; Huang, M.; Assadpour, E.; Wang, J.; Sun, B.; Kharazmi, M.S.; Jafari, S.M. Advanced CaCO(3)-derived delivery systems for bioactive compounds. Adv. Colloid. Interface Sci. 2022, 309, 102791. [Google Scholar] [CrossRef]
- Li, S.Y.; Lian, B. Application of calcium carbonate as a controlled release carrier for therapeutic drugs. Minerals 2023, 13, 1136. [Google Scholar] [CrossRef]
- Biny, L.; Gerasimovich, E.; Karaulov, A.; Sukhanova, A.; Nabiev, I. Functionalized calcium carbonate-based microparticles as a versatile tool for targeted drug delivery and cancer treatment. Pharmaceutics 2024, 16, 653. [Google Scholar] [CrossRef]
- Lin, Y.J.; Huang, C.C.; Wan, W.L.; Chiang, C.H.; Chang, Y.; Sung, H.W. Recent advances in CO(2) bubble-generating carrier systems for localized controlled release. Biomaterial 2017, 133, 154–164. [Google Scholar] [CrossRef]
- Niu, Y.Q.; Liu, J.H.; Aymonier, C.; Fermani, S.; Kralj, D.; Falini, G.; Zhou, C.H. Calcium carbonate: Controlled synthesis, surface functionalization, and nanostructured materials. Chem. Soc. Rev. 2022, 51, 7883–7943. [Google Scholar] [CrossRef]
- Fadia, P.; Tyagi, S.; Bhagat, S.; Nair, A.; Panchal, P.; Dave, H.; Dang, S.; Singh, S. Calcium carbonate nano- and microparticles: Synthesis methods and biological applications. 3 Biotech. 2021, 11, 457. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Shiokawa, K.; Morigaki, K.; Zhu, Y.; Nakahara, Y. Calcium carbonate microcapsules encapsulating biomacromolecules. Chem. Eng. J. 2008, 137, 14–22. [Google Scholar] [CrossRef]
- Fujiwara, M.; Shiokawa, K.; Yotsuya, K.; Matsumoto, K. Immobilization of lipase from into calcium carbonate microcapsule and its use for enzymatic reactions in organic and aqueous media. J. Mol. Catal. B-Enzym. 2014, 109, 94–100. [Google Scholar] [CrossRef]
- Girish, A.; Jolly, K.; Alsaadi, N.; de la Fuente, M.; Recchione, A.; An, R.; Disharoon, D.; Secunda, Z.; Raghunathan, S.; Luc, N.F.; et al. Platelet-inspired intravenous nanomedicine for injury-targeted direct delivery of thrombin to augment hemostasis in coagulopathies. ACS Nano 2022, 16, 16292–16313. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Hariguchi, S.; Komasawa, I.; Davey, R.J. Biomimetic synthesis of calcium carbonate particles in a pseudovesicular double emulsion. Langmuir 1997, 13, 6650–6653. [Google Scholar] [CrossRef]
- Choukrani, G.; Freile, J.A.; Avtenyuk, N.U.; Wan, W.; Zimmermann, K.; Bremer, E.; Daehne, L. High loading efficiency and controlled release of bioactive immunotherapeutic proteins using vaterite nanoparticles. Part. Syst. Charact. 2021, 38, 2100012. [Google Scholar] [CrossRef]
- Kusova, A.M.; Sitnitsky, A.E.; Zuev, Y.F. The role of ph and ionic strength in the attraction–repulsion balance of fibrinogen interactions. Langmuir 2021, 37, 10394–10401. [Google Scholar] [CrossRef]
- Okude, M.; Yamanaka, A.; Akihama, S. The effects of ph on the generation of turbidity and elasticity associated with fibrinogen-fibrin conversion by thrombin are remarkably influenced by sialic acid in fibrinogen. Biol. Pharm. Bull. 1995, 18, 203–207. [Google Scholar] [CrossRef]
- Fujiwara, M.; Shiokawa, K.; Araki, M.; Ashitaka, N.; Morigaki, K.; Kubota, T.; Nakahara, Y. Encapsulation of proteins into CaCO3 by phase transition from vaterite to calcite. Cryst. Growth Des. 2010, 10, 4030–4037. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.F.; Liang, T.X.; Deng, Y.Q.; Qi, X.P.; Jiang, H.H.; Wu, Y.J.; Gao, H.C. Hierarchical porous calcium carbonate microspheres as drug delivery vector. Prog. Nat. Sci-Mater. 2017, 27, 674–677. [Google Scholar] [CrossRef]
- Yang, L.; Guo, Y.; Ma, X.; Hu, Z.; Zhu, S.; Zhang, X.; Jiang, K. Cooperativity between pepsin and crystallization of calcium carbonate in distilled water. J. Inorg. Biochem. 2003, 93, 197–203. [Google Scholar] [CrossRef]
- Mackie, J.; Lawrie, A.S.; Kitchen, S.; Gaffney, P.J.; Howarth, D.; Lowe, G.D.; Martin, J.; Purdy, G.; Rigsby, P.; Rumley, A. A performance evaluation of commercial fibrinogen reference preparations and assays for clauss and pt-derived fibrinogen. Thromb. Haemost. 2002, 87, 997–1005. [Google Scholar]
- Weathersby, P.K.; Horbett, T.A.; Hoffman, A.S. Solution stability of bovine fibrinogen. Thromb. Res. 1977, 10, 245–252. [Google Scholar] [CrossRef]
- Peng, H. Viscoelastic point-of-care tests for diagnosis of fibrinogen deficiency and guidance of fibrinogen administration in bleeding patients. In An eBook on Biomedical Sciences; Open Access eBooks: Las Vegas, NV, USA, 2021; Volume 1, pp. 1–61. [Google Scholar]
- Ahmadian, Z.; Adiban, H.; Rashidipour, M.; Eskandari, M.R. Bioactive natural and synthetic polymers for wound repair. Macromol. Res. 2022, 30, 495–526. [Google Scholar] [CrossRef]
- Fenton, J.W., 2nd; Fasco, M.J. Polyethylene glycol 6,000 enhancement of the clotting of fibrinogen solutions in visual and mechanical assays. Thromb. Res. 1974, 4, 809–817. [Google Scholar] [CrossRef]
- Hong, C.; Alser, O.; Gebran, A.; He, Y.; Joo, W.; Kokoroskos, N.; Velmahos, G.; Olsen, B.D.; Hammond, P.T. Modulating nanoparticle size to understand factors affecting hemostatic efficacy and maximize survival in a lethal inferior vena cava injury model. ACS Nano 2022, 16, 2494–2510. [Google Scholar] [CrossRef] [PubMed]
- Mackie, I.J.; Kitchen, S.; Machin, S.J.; Lowe, G.D.O. Guidelines on fibrinogen assays. Br. J. Haematol. 2003, 121, 396–404. [Google Scholar] [CrossRef]
- Baylis, J.R.; Finkelstein-Kulka, A.; Macias-Valle, L.; Manji, J.; Lee, M.; Levchenko, E.; Okpaleke, C.; Al-Salihi, S.; Javer, A.; Kastrup, C.K. Rapid hemostasis in a sheep model using particles that propel thrombin and tranexamic acid. Laryngoscope 2017, 127, 787–793. [Google Scholar] [CrossRef]
- Ali-Mohamad, N.; Cau, M.F.; Zenova, V.; Baylis, J.R.; Beckett, A.; McFadden, A.; Donnellan, F.; Kastrup, C.J. Self-propelling thrombin powder enables hemostasis with no observable recurrent bleeding or thrombosis over 3 days in a porcine model of upper gi bleeding. Gastrointest. Endosc. 2023, 98, 245–248. [Google Scholar] [CrossRef]
- Rao, C.H.; Li, M.; Sun, X.Q.; Li, M.L.; Lian, X.J.; Wang, H.F.; Jia, L.; Niu, B.L.; Li, W.F. Preparation and characterization of phosphate-stabilized amorphous calcium carbonate nanoparticles and their application in curcumin delivery. Mater. Chem. Phys. 2020, 255, 123552. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Lin, X.; Zhuang, S.; Wu, Y.; Liu, Z.; Rong, J.; Zhao, J. CaCO(3) nanoparticles ph-sensitively induce blood coagulation as a potential strategy for starving tumor therapy. J. Mater. Chem. B 2020, 8, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Nardi, G.; Agostini, V.; Rondinelli, B.; Russo, E.; Bastianini, B.; Bini, G.; Bulgarelli, S.; Cingolani, E.; Donato, A.; Gambale, G.; et al. Trauma-induced coagulopathy: Impact of the early coagulation support protocol on blood product consumption, mortality and costs. Crit. Care 2015, 19, 83. [Google Scholar] [CrossRef] [PubMed]
Sample ID 1 | Carbonate Source and Concentration (mol/L) | Fibrinogen Concentration in Carbonate Solution (g/L) | Oil phase and Volume (mL) | Yield (%) 2 | Encapsulated Fibrinogen mg/mg Particle |
---|---|---|---|---|---|
Enc AClowest Fib Hep | AC 1 | 15 | Heptane 14 | 36 | 0.0128 |
Enc AClow Fib Hep | AC 2 | 15 | Heptane 14 | 40 | 0.0105 |
Enc AC Fib Hep | AC 3 | 15 | Heptane 14 | 50 | 0.0141 |
Enc SC Fib Hep | SC 1 | 15 | Heptane 14 | 79 | 0.0110 |
Enc AC Fibhigh Hep | AC 3 | 20 | Heptane 14 | 39 | 0.0183 |
Enc SBC Fibhigh Hep | SBC 1 | 20 | Heptane 14 | 21 | 0.0161 |
Enc AC Fib Par | AC 3 | 15 | Paraffin 14 | 43 | 0.0064 |
Enc AC Fibhigh Par | AC 3 | 20 | Paraffin 14 | 41 | 0.0093 |
Enc AC Fibhigh Par 30 min | AC 3 | 20 | Paraffin 14 | 45 | 0.0101 |
Enc AC NoFib Hep 3 | AC 3 | 0 | Heptane 14 | 51 | 0 |
Enc SC NoFib Hep 3 | SC 1 | 0 | Heptane 14 | 81 | 0 |
Enc AC NoFib Par 30 min 3 | AC 3 | 0 | Paraffin 14 | 46 | 0 |
Enc SC Fib Par | SC 1 | 15 | Paraffin 14 | 77 | 0.0075 |
Enc AClow Fib Hep Surfhigh 4 | AC 2 | 15 | Heptane 14 | 43 | 0.0191 |
Enc AC Fib Hep PEG | AC 3 + 15 mg/mL PEG | 15 | Heptane 14 | 39 | 0.0267 |
Enc-AC Fib Hep PVA | AC 3 + 80 mg/mL PVA | 15 | Heptane 14 | 42 | 0.0071 |
Enc CaCl2 Fib Hep AC 5 | 2 M CaCl2 | 15 | Heptane 14 | 70 | 0.0208 |
Sample ID 1 | Particle Size in Diameter (µm, n = 10) | NATEM | Self-Propelling | |||
---|---|---|---|---|---|---|
CT (Second) 2 | MCF (mm) 3 | Hemolysis (%) | Lag Time (Second) (n = 10) | Speed (cm/Second) (n = 10) | ||
Enc AClowest Fib Hep | 4.607 ± 0.519 | 941 | 4 | −1.198 | 0.844 ± 0.084 | 4.779 ± 0.613 |
Enc AClow Fib Hep | 9.416 ± 1.089 | 1312 | 4 | 0.005 | 1.999 ± 0.296 | 3.798 ± 1.357 |
Enc AC Fib Hep | 9.853 ± 0.532 | 1232 | 4 | 0.009 | 0.866 ± 0.145 | 2.892 ± 0.737 |
Enc SC Fib Hep | 7.629 ± 1.519 | 659 | 4 | −0.740 | 1.233 ± 0.219 | 3.761 ± 1.203 |
Enc AC Fibhigh Hep | 10.792 ± 0.724 | 911 | 4 | −1.089 | 0.722 ± 0.184 | 2.852 ± 0.791 |
Enc SBC Fibhigh Hep | 5.187 ± 0.975 | 811 | 5 | −9.087 | 1.355 ± 0.259 | 3.988 ± 0.648 |
Enc AC Fib Par | 7.896 ± 0.729 | 936 | 4 | −9.380 | 2.367 ± 1.114 | 2.710 ± 0.607 |
Enc AC Fibhigh Par | 7.141 ± 1.035 | 661.3 ± 71.7 | 4.7 ± 0.6 | −9.676 | 2.647 ± 0.484 | 3.653 ± 0.651 |
Enc AC Fibhigh Par 30 min | 6.561 ± 0.852 | 551 | 5 | −11.358 | 2.511 ± 0.184 | 2.659 ± 0.767 |
Enc AC NoFib Hep | 2.731 ± 0.524 | Not detectable | −2.739 | 0.311 ± 0.287 | 4.977 ± 2.354 | |
Enc SC NoFib Hep | 3.975 ± 1.573 | Not detectable | −5.870 | 0.500 ± 0.202 | 6.082 ± 2.186 | |
Enc AC NoFib Par 30 min | 5.703 ± 0.894 | Not detectable | −4.304 | 2.377 ± 0.157 | 3.653 ± 1.031 | |
Enc SC Fib Par | 5.384 ± 1.655 | 831 | 6 | −0.784 | 2.721 ± 0.407 | 2.174 ± 0.522 |
Enc AClow Fib Hep Surfhigh | 8.791 ± 1.142 | 723 | 4 | −0.260 | 2.078 ± 1.058 | 4.801 ± 2.627 |
Enc AC Fib Hep PEG | 10.565 ± 2.466 | 1010 | 4 | 0.014 | 1.044 ± 0.434 | 2.787 ± 0.507 |
Enc AC Fib Hep PVA | 5.906 ± 1.640 | 755 | 4 | 0.010 | 0.439 ± 0.117 | 3.160 ± 1.859 |
Enc CaCl2 Fib Hep AC | 7.561 ± 1.321 | 739 | 4 | −2.034 | 0.733 ± 0.524 | 4.016 ± 1.937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.T.; Bonnici, T.; Chen, Y.; Kastrup, C.; Beckett, A. Emulsion-Based Encapsulation of Fibrinogen with Calcium Carbonate for Hemorrhage Control. J. Funct. Biomater. 2025, 16, 86. https://doi.org/10.3390/jfb16030086
Peng HT, Bonnici T, Chen Y, Kastrup C, Beckett A. Emulsion-Based Encapsulation of Fibrinogen with Calcium Carbonate for Hemorrhage Control. Journal of Functional Biomaterials. 2025; 16(3):86. https://doi.org/10.3390/jfb16030086
Chicago/Turabian StylePeng, Henry T., Tristan Bonnici, Yanyu Chen, Christian Kastrup, and Andrew Beckett. 2025. "Emulsion-Based Encapsulation of Fibrinogen with Calcium Carbonate for Hemorrhage Control" Journal of Functional Biomaterials 16, no. 3: 86. https://doi.org/10.3390/jfb16030086
APA StylePeng, H. T., Bonnici, T., Chen, Y., Kastrup, C., & Beckett, A. (2025). Emulsion-Based Encapsulation of Fibrinogen with Calcium Carbonate for Hemorrhage Control. Journal of Functional Biomaterials, 16(3), 86. https://doi.org/10.3390/jfb16030086