Novel Flavin Mononucleotide-Functionalized Cerium Fluoride Nanoparticles for Selective Enhanced X-Ray-Induced Photodynamic Therapy
<p>Schematic illustration of CeF<sub>3</sub>-FMN nanoparticles.</p> "> Figure 2
<p>STEM image of CeF<sub>3</sub>-FMN NPs (<b>a</b>), hydrodynamic radii distribution (<b>b</b>), XRD patterns of NPs (<b>c</b>), absorption spectra of NPs and FMN solution (<b>d</b>), FMN absorption spectrum, and emission spectra of CeF<sub>3</sub> and CeF<sub>3</sub>-FMN NPs sols (λex = 250–270 nm) (<b>e</b>).</p> "> Figure 3
<p>Fluorescence spectra (<b>top</b>) and integrated fluorescence intensity against absorbance (<b>bottom</b>) of tyrosine (red), CeF<sub>3</sub> (black), and CeF<sub>3</sub>-FMN (blue) in water at 25 °C.</p> "> Figure 4
<p>Reactive oxygen species generation in nanoparticle suspensions after X-ray exposure (1, 3, 5 Gy). Chemical dose enhancement factors (DEF<sub>ROS</sub>) for CeF<sub>3</sub> and CeF<sub>3</sub> + FMN as assessed using the acellular H<sub>2</sub>DCF-DA assay at pH 6.4, 7.2, and 8.0.</p> "> Figure 5
<p>Cell viability and survival rate of mouse fibroblasts NCTC L929 (<b>a</b>) and human epidermoid carcinoma cells A431 (<b>b</b>) after 24, 48, and 72 h of co-incubation with CeF<sub>3</sub> and CeF<sub>3</sub>-FMN NPs at concentrations of 10<sup>−3</sup>–10<sup>−6</sup> M determined by the MTT assay and live/dead assay. Data are shown as M ± SD and were analyzed using the Mann–Whitney U test (<span class="html-italic">n</span> = 3); 0.01 < <span class="html-italic">p</span> < 0.05 (*), 0.0001 < <span class="html-italic">p</span> < 0.01 (**), and <span class="html-italic">p</span> < 0.001 (***).</p> "> Figure 6
<p>Micronucleus frequency of mouse fibroblasts L929 (<b>a</b>) and human epidermoid carcinoma cells A431 (<b>b</b>) after co-incubation with CeF<sub>3</sub> and CeF<sub>3</sub>-FMN NPs at a concentration of 10<sup>−6</sup>–10<sup>−3</sup> M. Data are shown as M ± SD and were analyzed using the Mann–Whitney U test (<span class="html-italic">n</span> = 3).</p> "> Figure 7
<p>Dose–response curves of mouse fibroblasts NCTC L929 (<b>a</b>) and human epidermoid carcinoma cells A431 (<b>b</b>) after X-ray exposure. Representative images (enlarged fragments of the tablet wells) of colonies NCTC L929 and A431 without exposure (0 Gy) and after exposure to X-ray radiation at doses of 3 and 6 Gy (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CeF3 and CeF3-FMN Nanoparticles
2.2. Characterization of NPs
2.3. Fluorescence Quantum Yield
2.4. X-Ray Exposure
2.5. Acellular ROS Assay and Chemical Dose Enhancement Quantification
2.6. Cell Culture
2.7. MTT Assay
2.8. Live/Dead Assay
2.9. In Vitro Micronucleus Assay
2.10. Clonogenic Assay
2.11. Statistical Analysis
3. Results
3.1. Synthesis, Properties, and Characterization of CeF3-FMN NPs
3.2. Reactive Oxygen Species Generation in Nanoparticle Suspensions
3.3. Cyto- and Genotoxicity Study of CeF3 and CeF3-FMN NPs
3.4. Effect of CeF3 and CeF3 + FMN NPs on Cell Survival After X-Ray Exposure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA A Cancer J. Clin. 2011, 61, 250. [Google Scholar] [CrossRef] [PubMed]
- Castano, A.P.; Mroz, P.; Hamblin, M.R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef] [PubMed]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Lu, X.-X.; Xue, C.; Dong, J.-H.; Zhang, Y.-Z.; Gao, F. Nanoplatform-Based Strategies for Enhancing the Lethality of Current Antitumor PDT. J. Mater. Chem. B 2024, 12, 3209–3225. [Google Scholar] [CrossRef]
- Dinakaran, D.; Wilson, B.C. The Use of Nanomaterials in Advancing Photodynamic Therapy (PDT) for Deep-Seated Tumors and Synergy with Radiotherapy. Front. Bioeng. Biotechnol. 2023, 11, 1250804. [Google Scholar] [CrossRef]
- Wang, G.D.; Nguyen, H.T.; Chen, H.; Cox, P.B.; Wang, L.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J. X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy. Theranostics 2016, 6, 2295–2305. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J. Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment. J. Nanosci. Nanotech. 2006, 6, 1159–1166. [Google Scholar] [CrossRef]
- Sun, W.; Chu, C.; Li, S.; Ma, X.; Liu, P.; Chen, S.; Chen, H. Nanosensitizer-Mediated Unique Dynamic Therapy Tactics for Effective Inhibition of Deep Tumors. Adv. Drug Deliv. Rev. 2023, 192, 114643. [Google Scholar] [CrossRef]
- Fan, W.; Tang, W.; Lau, J.; Shen, Z.; Xie, J.; Shi, J.; Chen, X. Breaking the Depth Dependence by Nanotechnology-Enhanced X-Ray-Excited Deep Cancer Theranostics. Adv. Mater. 2019, 31, 1806381. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Lan, G.; Tang, H.; Pelizzari, C.; Fu, Y.-X.; Spiotto, M.T.; et al. Low-Dose X-Ray Radiotherapy–Radiodynamic Therapy via Nanoscale Metal–Organic Frameworks Enhances Checkpoint Blockade Immunotherapy. Nat. Biomed. Eng. 2018, 2, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, G.D.; Chuang, Y.-J.; Zhen, Z.; Chen, X.; Biddinger, P.; Hao, Z.; Liu, F.; Shen, B.; Pan, Z.; et al. Nanoscintillator-Mediated X-Ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment. Nano Lett. 2015, 15, 2249–2256. [Google Scholar] [CrossRef] [PubMed]
- Lan, G.; Ni, K.; Xu, R.; Lu, K.; Lin, Z.; Chan, C.; Lin, W. Nanoscale Metal-Organic Layers for Deeply Penetrating X-ray Induced Photodynamic Therapy. Angew. Chem. (Int. Ed. Engl.) 2017, 56, 12102. [Google Scholar] [CrossRef]
- Clement, S.; Deng, W.; Camilleri, E.; Wilson, B.C.; Goldys, E.M. X-Ray Induced Singlet Oxygen Generation by Nanoparticle-Photosensitizer Conjugates for Photodynamic Therapy: Determination of Singlet Oxygen Quantum Yield. Sci. Rep. 2016, 6, 19954. [Google Scholar] [CrossRef]
- Zhang, X.; Lan, B.; Wang, S.; Gao, P.; Liu, T.; Rong, J.; Xiao, F.; Wei, L.; Lu, H.; Pang, C.; et al. Low-Dose X-Ray Excited Photodynamic Therapy Based on NaLuF4:Tb3+–Rose Bengal Nanocomposite. Bioconj. Chem. 2019, 30, 2191–2200. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, J.; Elmenoufy, A.H.; Yang, X. Highly Efficient FRET System Capable of Deep Photodynamic Therapy Established on X-Ray Excited Mesoporous LaF3: Tb Scintillating Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 12261–12269. [Google Scholar] [CrossRef]
- Wang, H.; Lv, B.; Tang, Z.; Zhang, M.; Ge, W.; Liu, Y.; He, X.; Zhao, K.; Zheng, X.; He, M.; et al. Scintillator-Based Nanohybrids with Sacrificial Electron Prodrug for Enhanced X-Ray-Induced Photodynamic Therapy. Nano Lett. 2018, 18, 5768–5774. [Google Scholar] [CrossRef]
- Morgan, N.Y.; Kramer-Marek, G.; Smith, P.D.; Camphausen, K.; Capala, J. Nanoscintillator Conjugates as Photodynamic Therapy-Based Radiosensitizers: Calculation of Required Physical Parameters. Radiat. Res. 2009, 171, 236–244. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Wang, S.; Joly, A.G. Investigation of Water-Soluble X-Ray Luminescence Nanoparticles for Photodynamic Activation. Appl. Phys. Lett. 2008, 92, 043901. [Google Scholar] [CrossRef]
- Elmenoufy, A.H.; Tang, Y.; Hu, J.; Xu, H.; Yang, X. A Novel Deep Photodynamic Therapy Modality Combined with CT Imaging Established via X-Ray Stimulated Silica-Modified Lanthanide Scintillating Nanoparticles. Chem. Commun. 2015, 51, 12247–12250. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Misawa, M. Analysis of Potential Radiosensitizing Materials for X-Ray-Induced Photodynamic Therapy. NanoBiotechnology 2007, 3, 116–126. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, K.; Bu, W.; Ni, D.; Liu, Y.; Feng, J.; Shi, J. Marriage of Scintillator and Semiconductor for Synchronous Radiotherapy and Deep Photodynamic Therapy with Diminished Oxygen Dependence. Angew. Chem. Int. Ed. 2015, 54, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Fu, Z.; Zhu, X.; Zhan, C.; Hu, J.; Fan, L.; Song, C.; Yang, Q.; Wang, Y.; Shi, M. Establishment of NaLuF4:15%Tb-Based Low Dose X-PDT Agent and Its Application on Efficient Antitumor Therapy. Int. J. Min. Met. Mater. 2024, 31, 599–610. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, Z.; Pratx, G.; Chen, X.; Chen, H. Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications. Theranostics 2020, 10, 1296–1318. [Google Scholar] [CrossRef]
- Abliz, E.; Collins, J.E.; Bell, H.; Tata, D.B. Novel Applications of Diagnostic X-Rays in Activating a Clinical Photodynamic Drug: Photofrin II through X-Ray Induced Visible Luminescence from “Rare-Earth” Formulated Particles. J. X-Ray Sci. Technol. 2011, 19, 521–530. [Google Scholar] [CrossRef]
- Scaffidi, J.P.; Gregas, M.K.; Lauly, B.; Zhang, Y.; Vo-Dinh, T. Activity of Psoralen-Functionalized Nanoscintillators against Cancer Cells upon X-Ray Excitation. ACS Nano 2011, 5, 4679–4687. [Google Scholar] [CrossRef]
- Chen, H.; Sun, X.; Wang, G.D.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J.; Shen, B. LiGa5O8:Cr-Based Theranostic Nanoparticles for Imaging-Guided X-Ray Induced Photodynamic Therapy of Deep-Seated Tumors. Mater. Horiz. 2017, 4, 1092–1101. [Google Scholar] [CrossRef]
- Yanagida, T. Study of Rare-Earth-Doped Scintillators. Opt. Mater. 2013, 35, 1987–1992. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.E.; Wagner, T. An Experimental Study of the Solubility and Speciation of the Rare Earth Elements (III) in Fluoride- and Chloride-Bearing Aqueous Solutions at Temperatures up to 300 °C. Geochim. Cosmochim. Acta 2009, 73, 7087–7109. [Google Scholar] [CrossRef]
- Losytskyy, M.Y.; Kuzmenko, L.V.; Shcherbakov, O.B.; Gamaleia, N.F.; Marynin, A.I.; Yashchuk, V.M. Energy Transfer in Ce0.85Tb0.15F3 Nanoparticles-CTAB Shell-Chlorin E6 System. Nanoscale Res. Lett. 2017, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- Clement, S.; Deng, W.; Drozdowicz-Tomsia, K.; Liu, D.; Zachreson, C.; Goldys, E.M. Bright, Water-Soluble CeF3 Photo-, Cathodo-, and X-Ray Luminescent Nanoparticles. J. Nanopart Res. 2015, 17, 7. [Google Scholar] [CrossRef]
- Popov, A.L.; Zholobak, N.M.; Shcherbakov, A.B.; Kozlova, T.O.; Kolmanovich, D.D.; Ermakov, A.M.; Popova, N.R.; Chukavin, N.N.; Bazikyan, E.A.; Ivanov, V.K. The Strong Protective Action of Ce3+/F− Combined Treatment on Tooth Enamel and Epithelial Cells. Nanomaterials 2022, 12, 3034. [Google Scholar] [CrossRef] [PubMed]
- Chukavin, N.N.; Filippova, K.O.; Ermakov, A.M.; Karmanova, E.E.; Popova, N.R.; Anikina, V.A.; Ivanova, O.S.; Ivanov, V.K.; Popov, A.L. Redox-Active Cerium Fluoride Nanoparticles Selectively Modulate Cellular Response against X-Ray Irradiation In Vitro. Biomedicines 2023, 12, 11. [Google Scholar] [CrossRef]
- Edwards, A.M. Structure and General Properties of Flavins. In Flavins and Flavoproteins; Weber, S., Schleicher, E., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2014; Volume 1146, pp. 3–13. ISBN 978-1-4939-0451-8. [Google Scholar]
- Baier, J.; Maisch, T.; Maier, M.; Engel, E.; Landthaler, M.; Bäumler, W. Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers. Biophys. J. 2006, 91, 1452–1459. [Google Scholar] [CrossRef]
- Insińska-Rak, M.; Sikorski, M. Riboflavin Interactions with Oxygen—A Survey from the Photochemical Perspective. Chem. A Eur. J. 2014, 20, 15280–15291. [Google Scholar] [CrossRef]
- Bäumler, W.; Regensburger, J.; Knak, A.; Felgenträger, A.; Maisch, T. UVA and Endogenous Photosensitizers—The Detection of Singlet Oxygen by Its Luminescence. Photochem. Photobiol. Sci. 2012, 11, 107–117. [Google Scholar] [CrossRef]
- Akasov, R.A.; Sholina, N.V.; Khochenkov, D.A.; Alova, A.V.; Gorelkin, P.V.; Erofeev, A.S.; Generalova, A.N.; Khaydukov, E.V. Photodynamic Therapy of Melanoma by Blue-Light Photoactivation of Flavin Mononucleotide. Sci. Rep. 2019, 9, 9679. [Google Scholar] [CrossRef]
- Krishna, C.M.; Uppuluri, S.; Riesz, P.; Zigler, J.S., Jr.; Balasubramanian, D. A Study of The Photodynamic Efficiencies of Some Eye Lens Constituents. Photochem. Photobiol. 1991, 54, 51–58. [Google Scholar] [CrossRef]
- Seto, A.; Gatt, C.J.; Dunn, M.G. Radioprotection of Tendon Tissue via Crosslinking and Free Radical Scavenging. Clin. Orthop. Relat. Res. 2008, 466, 1788–1795. [Google Scholar] [CrossRef]
- Shcherbakov, A.B.; Zholobak, N.M.; Baranchikov, A.E.; Ryabova, A.V.; Ivanov, V.K. Cerium Fluoride Nanoparticles Protect Cells against Oxidative Stress. Mater. Sci. Eng. C 2015, 50, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.T.R.; Winfield, S.A.; Miller, J.N. Relative Fluorescence Quantum Yields Using a Computer-Controlled Luminescence Spectrometer. Analyst 1983, 108, 1067. [Google Scholar] [CrossRef]
- Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Relative and Absolute Determination of Fluorescence Quantum Yields of Transparent Samples. Nat. Protoc. 2013, 8, 1535–1550. [Google Scholar] [CrossRef] [PubMed]
- Burstein, E.A.; Emelyanenko, V.I. Log-Normal Description of Fluorescence Spectra of Organic Fluorophores. Photochem. Photobiol. 1996, 64, 316–320. [Google Scholar] [CrossRef]
- Zhao, J.; Riediker, M. Detecting the Oxidative Reactivity of Nanoparticles: A New Protocol for Reducing Artifacts. J. Nanopart Res. 2014, 16, 2493. [Google Scholar] [CrossRef]
- Unkel, S.; Belka, C.; Lauber, K. On the Analysis of Clonogenic Survival Data: Statistical Alternatives to the Linear-Quadratic Model. Radiat. Oncol. 2016, 11, 11. [Google Scholar] [CrossRef]
- Greenhaus, H.L.; Feibush, A.M.; Gordon, L. Ultraviolet Spectrophotometric Determination of Cerium(III). Anal. Chem. 1957, 29, 1531–1534. [Google Scholar] [CrossRef]
- Macheroux, P. UV-Visible Spectroscopy as a Tool to Study Flavoproteins. In Flavoprotein Protocols; Humana Press: Totowa, NJ, USA, 1999; Volume 131, pp. 1–8. ISBN 978-1-59259-266-1. [Google Scholar]
- Brouwer, A.M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; Van Bree, C. Clonogenic Assay of Cells in Vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
- Mok, Z.H. The Effect of Particle Size on Drug Bioavailability in Various Parts of the Body. Pharm. Sci. Adv. 2024, 2, 100031. [Google Scholar] [CrossRef]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The Effect of Nanoparticle Size on In Vivo Pharmacokinetics and Cellular Interaction. Nanomedicine 2016, 11, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, C.; Moine, B.; Gacon, J.C.; Jacquier, B. One- and Two-Photon Spectroscopy of Ce3+ Ions in LaF3− CeF3 Mixed Crystals. J. Phys. Condens. Matter 1992, 4, 5461–5470. [Google Scholar] [CrossRef]
- Pedrini, C.; Belsky, A.N.; Vasil’ev, A.N.; Bouttet, D.; Dujardin, C.; Moine, B.; Martin, P.; Weber, M.J. Fluorescence Properties of CeF3 and of Some Other Cerium Doped Crystals and Glasses Under VUV and X-RAY Synchrotron Excitation. MRS Proc. 1994, 348, 225. [Google Scholar] [CrossRef]
- Dujardin, C.; Pedrini, C.; Garnier, N.; Belsky, A.N.; Lebbou, K.; Ko, J.M.; Fukuda, T. Spectroscopic Properties of CeF3 and LuF3:Ce3+ Thin Films Grown by Molecular Beam Epitaxy. Opt. Mater. 2001, 16, 69–76. [Google Scholar] [CrossRef]
- Pedrini, C.; Moine, B.; Bouttet, D.; Belsky, A.N.; Mikhailin, V.V.; Vasil’ev, A.N.; Zinin, E.I. Time-Resolved Luminescence of CeF3 Crystals Excited by X-Ray Synchrotron Radiation. Chem. Phys. Lett. 1993, 206, 470–474. [Google Scholar] [CrossRef]
- Han, B.; Bi, R.; Zhou, C.; Liu, Z.; Wang, Z. Freeze-Drying Synthesis of O,N–CeF3 with Enhanced Photocatalytic Oxygen Evolution. J. Rare Earths 2023, 41, 1714–1720. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Zhang, X.; Yao, M.; Ma, L.; Chen, W. Luminescence and Energy Transfer in Water Soluble CeF3 and CeF3Tb3+ Nanoparticles. J. Nanosci. Nanotech. 2009, 9, 6283–6291. [Google Scholar] [CrossRef]
- Cooper, D.R.; Kudinov, K.; Tyagi, P.; Hill, C.K.; Bradforth, S.E.; Nadeau, J.L. Photoluminescence of Cerium Fluoride and Cerium-Doped Lanthanum Fluoride Nanoparticles and Investigation of Energy Transfer to Photosensitizer Molecules. Phys. Chem. Chem. Phys. 2014, 16, 12441–12453. [Google Scholar] [CrossRef]
- Bartmann, L.; Schumacher, D.; Von Stillfried, S.; Sternkopf, M.; Alampour-Rajabi, S.; Van Zandvoort, M.A.M.J.; Kiessling, F.; Wu, Z. Evaluation of Riboflavin Transporters as Targets for Drug Delivery and Theranostics. Front. Pharmacol. 2019, 10, 79. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Chen, M.; Huang, Y.-C.; Liou, H.-H.; Fang, Y.-W. Corrigendum: The Protective Effects of Lipid-Lowering Agents on Cardiovascular Disease and Mortality in Maintenance Dialysis Patients: Propensity Score Analysis of a Population-Based Cohort Study. Front. Pharmacol. 2022, 13, 894462. [Google Scholar] [CrossRef] [PubMed]
- Torabi, S.; Soleimani, S.; Mahravani, H.; Ebrahimi, M.M.; Shahsavandi, S. Mouse Fibroblast L929 Cell Line as a Useful Tool for Replication and Adaptation of Infectious Bursal Disease Virus. Arch. Razi Inst. 2023, 78, 863–871. [Google Scholar] [PubMed]
- Zhou, D.; Shao, L.; Spitz, D.R. Reactive Oxygen Species in Normal and Tumor Stem Cells. In Advances in Cancer Research; Elsevier: Amsterdam, The Netherlands, 2014; Volume 122, pp. 1–67. ISBN 978-0-12-420117-0. [Google Scholar]
- Weng, Q.; Sun, H.; Fang, C.; Xia, F.; Liao, H.; Lee, J.; Wang, J.; Xie, A.; Ren, J.; Guo, X.; et al. Catalytic Activity Tunable Ceria Nanoparticles Prevent Chemotherapy-Induced Acute Kidney Injury without Interference with Chemotherapeutics. Nat. Commun. 2021, 12, 1436. [Google Scholar] [CrossRef] [PubMed]
- Asati, A.; Santra, S.; Kaittanis, C.; Perez, J.M. Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles. ACS Nano 2010, 4, 5321–5331. [Google Scholar] [CrossRef]
- Wason, M.S.; Colon, J.; Das, S.; Seal, S.; Turkson, J.; Zhao, J.; Baker, C.H. Sensitization of Pancreatic Cancer Cells to Radiation by Cerium Oxide Nanoparticle-Induced ROS Production. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 558–569. [Google Scholar] [CrossRef]
- McCormack, R.N.; Mendez, P.; Barkam, S.; Neal, C.J.; Das, S.; Seal, S. Inhibition of Nanoceria’s Catalytic Activity Due to Ce3+ Site-Specific Interaction with Phosphate Ions. J. Phys. Chem. C 2014, 118, 18992–19006. [Google Scholar] [CrossRef]
- Nourmohammadi, E.; Khoshdel-sarkarizi, H.; Nedaeinia, R.; Sadeghnia, H.R.; Hasanzadeh, L.; Darroudi, M.; Kazemi Oskuee, R. Evaluation of Anticancer Effects of Cerium Oxide Nanoparticles on Mouse Fibrosarcoma Cell Line. J. Cell. Physiol. 2019, 234, 4987–4996. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, L.; Zhu, Y.; Wang, S.; Shen, G.; Jin, L.; Liang, R. Chemodynamic/Photothermal Synergistic Therapy Based on Ce-Doped Cu–Al Layered Double Hydroxides. J. Mater. Chem. B 2021, 9, 710–718. [Google Scholar] [CrossRef]
- Popov, A.L.; Abakumov, M.A.; Savintseva, I.V.; Ermakov, A.M.; Popova, N.R.; Ivanova, O.S.; Kolmanovich, D.D.; Baranchikov, A.E.; Ivanov, V.K. Biocompatible Dextran-Coated Gadolinium-Doped Cerium Oxide Nanoparticles as MRI Contrast Agents with High T1 Relaxivity and Selective Cytotoxicity to Cancer Cells. J. Mater. Chem. B 2021, 9, 6586–6599. [Google Scholar] [CrossRef]
- McMahon, S.J.; Hyland, W.B.; Muir, M.F.; Coulter, J.A.; Jain, S.; Butterworth, K.T.; Schettino, G.; Dickson, G.R.; Hounsell, A.R.; O’Sullivan, J.M.; et al. Nanodosimetric Effects of Gold Nanoparticles in Megavoltage Radiation Therapy. Radiother. Oncol. 2011, 100, 412–416. [Google Scholar] [CrossRef]
- Cui, L.; Tse, K.; Zahedi, P.; Harding, S.M.; Zafarana, G.; Jaffray, D.A.; Bristow, R.G.; Allen, C. Hypoxia and Cellular Localization Influence the Radiosensitizing Effect of Gold Nanoparticles (AuNPs) in Breast Cancer Cells. Radiat. Res. 2014, 182, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Jin, X.; He, P.; Zheng, X.; Dai, Z.; Ye, F.; Zhao, T.; Chen, W.; Li, Q. The Dependence of Radiation Enhancement Effect on the Concentration of Gold Nanoparticles Exposed to Low- and High-LET Radiations. Phys. Medica 2015, 31, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Lechtman, E.; Chattopadhyay, N.; Cai, Z.; Mashouf, S.; Reilly, R.; Pignol, J.P. Implications on Clinical Scenario of Gold Nanoparticle Radiosensitization in Regards to Photon Energy, Nanoparticle Size, Concentration and Location. Phys. Med. Biol. 2011, 56, 4631–4647. [Google Scholar] [CrossRef] [PubMed]
- Phuc, L.; Taniguchi, A. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis. Int. J. Mol. Sci. 2017, 18, 1301. [Google Scholar] [CrossRef]
- Zamyatina, E.A.; Anikina, V.A.; Popova, N.R. Intracellular localization of fluorescence-modified maltodextrin stabilized cerium dioxide nanoparticles in cultured normal and transformed cells. Int. J. Appl. Fundam. Res. 2023, 10, 5–9. [Google Scholar] [CrossRef]
- Subiel, A.; Ashmore, R.; Schettino, G. Standards and Methodologies for Characterizing Radiobiological Impact of High-Z Nanoparticles. Theranostics 2016, 6, 1651–1671. [Google Scholar] [CrossRef]
- Fowler, J.F. Fractionated Radiation Therapy after Strandqvist. Acta Radiol. Oncol. 1984, 23, 209–216. [Google Scholar] [CrossRef]
- Griffitt, R.J.; Weil, R.; Hyndman, K.A.; Denslow, N.D.; Powers, K.; Taylor, D.; Barber, D.S. Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio rerio). Environ. Sci. Technol. 2007, 41, 8178–8186. [Google Scholar] [CrossRef]
- Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J.; Barber, D.S. Effects of Particle Composition and Species on Toxicity of Metallic Nanomaterials in Aquatic Organisms. Environ. Toxicol. Chem. 2008, 27, 1972–1978. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef]
- Aruoja, V.; Dubourguier, H.-C.; Kasemets, K.; Kahru, A. Toxicity of Nanoparticles of CuO, ZnO and TiO2 to Microalgae Pseudokirchneriella Subcapitata. Sci. Total Environ. 2009, 407, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Pujalté, I.; Passagne, I.; Brouillaud, B.; Tréguer, M.; Durand, E.; Ohayon-Courtès, C.; L’Azou, B. Cytotoxicity and Oxidative Stress Induced by Different Metallic Nanoparticles on Human Kidney Cells. Part. Fibre Toxicol. 2011, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Briggs, A.; Corde, S.; Oktaria, S.; Brown, R.; Rosenfeld, A.; Lerch, M.; Konstantinov, K.; Tehei, M. Cerium Oxide Nanoparticles: Influence of the High-Z Component Revealed on Radioresistant 9L Cell Survival under X-Ray Irradiation. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.L.Y.; Moonshi, S.S.; Ta, H.T. Nanoceria: An Innovative Strategy for Cancer Treatment. Cell. Mol. Life Sci. 2023, 80, 46. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Gao, F.; Chen, K.; Ma, J. Cerium Oxide Nanoparticles in Cancer. OncoTargets Ther. 2014, 7, 835–840. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kornienko, A.I.; Teplonogova, M.A.; Shevelyova, M.P.; Popkov, M.A.; Popov, A.L.; Ivanov, V.E.; Popova, N.R. Novel Flavin Mononucleotide-Functionalized Cerium Fluoride Nanoparticles for Selective Enhanced X-Ray-Induced Photodynamic Therapy. J. Funct. Biomater. 2024, 15, 373. https://doi.org/10.3390/jfb15120373
Kornienko AI, Teplonogova MA, Shevelyova MP, Popkov MA, Popov AL, Ivanov VE, Popova NR. Novel Flavin Mononucleotide-Functionalized Cerium Fluoride Nanoparticles for Selective Enhanced X-Ray-Induced Photodynamic Therapy. Journal of Functional Biomaterials. 2024; 15(12):373. https://doi.org/10.3390/jfb15120373
Chicago/Turabian StyleKornienko, Anastasia I., Maria A. Teplonogova, Marina P. Shevelyova, Matvei A. Popkov, Anton L. Popov, Vladimir E. Ivanov, and Nelli R. Popova. 2024. "Novel Flavin Mononucleotide-Functionalized Cerium Fluoride Nanoparticles for Selective Enhanced X-Ray-Induced Photodynamic Therapy" Journal of Functional Biomaterials 15, no. 12: 373. https://doi.org/10.3390/jfb15120373
APA StyleKornienko, A. I., Teplonogova, M. A., Shevelyova, M. P., Popkov, M. A., Popov, A. L., Ivanov, V. E., & Popova, N. R. (2024). Novel Flavin Mononucleotide-Functionalized Cerium Fluoride Nanoparticles for Selective Enhanced X-Ray-Induced Photodynamic Therapy. Journal of Functional Biomaterials, 15(12), 373. https://doi.org/10.3390/jfb15120373