Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System
<p>FT-IR patterns of (<b>a</b>) sodium alginate, (<b>b</b>) tetracycline, (<b>c</b>) chitosan, (<b>d</b>) pluronic, (<b>e</b>) agarose, and (<b>f</b>) CPAMi hydrogel.</p> "> Figure 2
<p>SEM images of (<b>a</b>) CPAMi-0.0, (<b>b</b>) CPAMi-0.05, and (<b>c</b>) CPAMi-0.1 hydrogels and (<b>d</b>) attributed pore size and porosity bar charts for the samples. * represent significant difference <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>Microscopic analysis of sample CPAMi-0.1 (<b>a</b>) SEM surface micrograph, (<b>b</b>) SEM micrograph of alginate/tetracycline bead, (<b>c</b>) Ca mapping, (<b>d</b>) Cl mapping, and (<b>e</b>) EDS elemental pattern.</p> "> Figure 4
<p>(<b>a</b>) The swelling ratio of the CPAMi samples in PBS (pH: 7.4 and T: 37 °C). (<b>b</b>) Swelling response of CPAMi-0.1 hydrogel in different pH solutions (T: 37 °C).</p> "> Figure 5
<p>Degradation rate of CPAMi hydrogel systems with various compositions.</p> "> Figure 6
<p>Compression experiment: (<b>a</b>) Compressive stress–strain curves, and (<b>b</b>) Compressive properties of the CPAMi hydrogels. * represent significant difference <span class="html-italic">p</span> < 0.05.</p> "> Figure 7
<p>(<b>a</b>) amplitude-scan and (<b>b</b>) frequency-scan of hydrogel.</p> "> Figure 8
<p>Images exhibit the recovery profiles of (<b>a</b>) CPAMi-0.0, (<b>b</b>) CPAMi-0.05, and (<b>c</b>) CPAMi-0.1 hydrogels. All Samples showed instant recovery after full compression using pliers.</p> "> Figure 9
<p>(<b>a</b>) Release profile of tetracycline from CPA-based hydrogels in PBS (pH: 7.4) at 37 °C. (<b>b</b>) Release profile of tetracycline from CPAMi-0.1 hydrogel in different pH solutions at 37 °C.</p> "> Figure 10
<p>(<b>a</b>) Biocompatibility study of developed hydrogels (CPAMi-0.1) using MTT assay. (<b>b</b>) Hemocompatibility of hydrogels.</p> "> Scheme 1
<p>Simplified schematic of alginate/tetracycline beads preparation process.</p> "> Scheme 2
<p>Schematic illustration of the drug release mechanism for CPAMi hydrogel systems.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. Synthesis of Alg/TC Beads
2.2.2. Characterization of Alg/Tc Beads
2.2.3. Synthesis of Chit/Plr/Aga (CPA)-Based Hydrogels
2.3. Characterization
2.3.1. Structural Characterization
2.3.2. Microstructure Investigations
2.3.3. Swelling Behavior
2.3.4. In Vitro Study of the Hydrogel Degradation
2.3.5. Mechanical Property
2.3.6. In Vitro Drug Release Assay
2.3.7. Evaluation of the Antibacterial Activity of Hydrogel
Microbial Strains
Determining the Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
2.3.8. In Vitro Evaluation of Hydrogel Cytotoxicity
2.3.9. Evaluation of Hydrogel Hemocompatibility
2.3.10. Statistical Analysis
3. Results and Discussion
3.1. FT-IR Characterization
3.2. Microstructure Assessments
3.3. Swelling Behavior of the CPAMi Hydrogels
3.4. Degradation Evaluation of the CPAMi Systems
3.5. Mechanical Properties of the Hydrogels
3.5.1. Compressive Properties of the Hydrogel
3.5.2. Shape Recovery Capability of the Hydrogel
3.6. Drug Release Behavior
3.6.1. Drug Release Behavior of Different Formulations
3.6.2. Drug Release Behavior at Different pHs
3.7. Antibacterial Performance
3.8. In Vitro Evaluation of Hydrogel Cytotoxicity and Hemocompatibility
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gholipourmalekabadi, M.; Samadikuchaksaraei, A.; Seifalian, A.M.; Urbanska, A.M.; Ghanbarian, H.; Hardy, J.G.; Omrani, M.D.; Mozafari, M.; Reis, R.L.; Kundu, S.C. Silk fibroin/amniotic membrane 3D bi-layered artificial skin. Biomed. Mater. 2018, 13, 35003. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Pei, L.; Zhang, W.; Shu, G.; Lin, J.; Li, H.; Xu, F.; Tang, H.; Peng, G.; Zhao, L.; et al. Chitosan-poloxamer-based thermosensitive hydrogels containing zinc gluconate/recombinant human epidermal growth factor benefit for antibacterial and wound healing. Mater. Sci. Eng. C 2021, 130, 112450. [Google Scholar] [CrossRef] [PubMed]
- Rezvani Ghomi, E.; Khalili, S.; Nouri Khorasani, S.; Esmaeely Neisiany, R.; Ramakrishna, S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019, 136, 47738. [Google Scholar] [CrossRef]
- Maas, M. Carbon nanomaterials as antibacterial colloids. Materials 2016, 9, 617. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, E.A.; Kenawy, E.-R.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.; Shao, Y.; Wang, F.; Feng, J.; Lei, L.; Dai, M. Designing polysaccharide materials for tissue repair and regeneration. APL Mater. 2024, 12, 080601. [Google Scholar] [CrossRef]
- Miguel, S.P.; Ribeiro, M.P.; Brancal, H.; Coutinho, P.; Correia, I.J. Thermoresponsive chitosan–agarose hydrogel for skin regeneration. Carbohydr. Polym. 2014, 111, 366–373. [Google Scholar] [CrossRef]
- Shinde, U.P.; Yeon, B.; Jeong, B. Recent progress of in situ formed gels for biomedical applications. Prog. Polym. Sci. 2013, 38, 672–701. [Google Scholar]
- Pluronic, M.; Romić, M.D.; Klarić, M.Š.; Lovrić, J.; Pepić, I.; Cetina-čižmek, B.; Filipović-grčić, J.; Hafner, A. Melatonin-loaded chitosan/Pluronic® F127 microspheres as in situ forming hydrogel: An innovative antimicrobial wound dressing. Eur. J. Pharm. Biopharm. 2016, 107, 67–79. [Google Scholar] [CrossRef]
- Chen, H.; Xing, X.; Tan, H.; Jia, Y.; Zhou, T.; Chen, Y.; Ling, Z.; Hu, X. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater. Sci. Eng. C 2017, 70, 287–295. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.; Tao, G.; Cai, R.; Wang, P.; Liu, L.; Ai, L.; Zuo, H.; Zhao, P.; Umar, A.; et al. Fabrication of Sericin/Agrose Gel Loaded Lysozyme and Its Potential in Wound Dressing Application. Nanomaterials 2018, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Han, Y.; Li, H.; Chang, J. Design of a thermosensitive bioglass/agarose–alginate composite hydrogel for chronic wound healing. J. Mater. Chem. B 2015, 3, 8856–8864. [Google Scholar] [CrossRef] [PubMed]
- Zarrintaj, P.; Ahmadi, Z.; Hosseinnezhad, M.; Saeb, M.R.; Laheurte, P.; Mozafari, M. Photosensitizers in medicine: Does nanotechnology make a difference? Mater. Today Proc. 2018, 5, 15836–15844. [Google Scholar] [CrossRef]
- Abdeltawab, H.; Svirskis, D.; Sharma, M. Formulation strategies to modulate drug release from poloxamer based in situ gelling systems. Expert Opin. Drug Deliv. 2020, 17, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Akkari, A.C.S.; Papini, J.Z.B.; Garcia, G.K.; Franco, M.K.K.D.; Cavalcanti, L.P.; Gasperini, A.; Alkschbirs, M.I.; Yokaichyia, F.; de Paula, E.; Tófoli, G.R.; et al. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: Physico-chemical characterization and pharmacological evaluation. Mater. Sci. Eng. C 2016, 68, 299–307. [Google Scholar] [CrossRef]
- Garcia-Couce, J.; Tomás, M.; Fuentes, G.; Que, I.; Almirall, A.; Cruz, L.J. Chitosan/Pluronic F127 Thermosensitive Hydrogel as an Injectable Dexamethasone Delivery Carrier. Gels 2022, 8, 44. [Google Scholar] [CrossRef]
- Youssefi Azarfam, M.; Nasirinezhad, M.; Naeim, H.; Zarrintaj, P.; Saeb, M. A Green Composite Based on Gelatin/Agarose/Zeolite as a Potential Scaffold for Tissue Engineering Applications. J. Compos. Sci. 2021, 5, 125. [Google Scholar] [CrossRef]
- Ji, C.; Khademhosseini, A.; Dehghani, F. Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials 2011, 32, 9719–9729. [Google Scholar] [CrossRef]
- Manouchehri, S.; Bagheri, B.; Rad, S.H.; Nezhad, M.N.; Kim, Y.C.; Park, O.O.; Farokhi, M.; Jouyandeh, M.; Ganjali, M.R.; Yazdi, M.K.; et al. Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Prog. Org. Coat. 2019, 131, 389–396. [Google Scholar] [CrossRef]
- Rezaei, S.J.T.; Sarijloo, E.; Rashidzadeh, H.; Zamani, S.; Ramazani, A.; Hesami, A.; Mohammadi, E. pH-triggered prodrug micelles for cisplatin delivery: Preparation and in vitro/vivo evaluation. React. Funct. Polym. 2020, 146, 104399. [Google Scholar] [CrossRef]
- Ekanayake, S.A.; Godakumbura, P.I. Synthesis of a Dual-Functional Nanofertilizer by Embedding ZnO and CuO Nanoparticles on an Alginate-Based Hydrogel. ACS Omega 2021, 6, 26262–26272. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, J.; Wang, Y. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 2017, 315, 274–282. [Google Scholar] [CrossRef]
- Jahed, E.; Khaledabad, M.A.; Almasi, H.; Hasanzadeh, R. Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements. Carbohydr. Polym. 2017, 164, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Branca, C.; Khouzami, K.; Wanderlingh, U.; D’Angelo, G. Effect of intercalated chitosan/clay nanostructures on concentrated pluronic F127 solution: A FTIR-ATR, DSC and rheological study. J. Colloid Interface Sci. 2018, 517, 221–229. [Google Scholar] [CrossRef]
- Garakani, S.S.; Khanmohammadi, M.; Atoufi, Z.; Kamrava, S.K.; Setayeshmehr, M.; Alizadeh, R.; Faghihi, F.; Bagher, Z.; Davachi, S.M.; Abbaspourrad, A. Fabrication of chitosan/agarose scaffolds containing extracellular matrix for tissue engineering applications. Int. J. Biol. Macromol. 2020, 143, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Hong, P.; Liao, M.; Kong, S.; Huang, N.; Ou, C.; Li, S. Preparation and Characterization of Chitosan—Agarose Composite Films. Materials 2016, 9, 816. [Google Scholar] [CrossRef]
- Park, K.M.; Lee, S.Y.; Joung, Y.K.; Na, J.S.; Lee, M.C.; Park, K.D. Thermosensitive chitosan–Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater. 2009, 5, 1956–1965. [Google Scholar] [CrossRef]
- Turabee, M.H.; Jeong, T.H.; Ramalingam, P.; Kang, J.H.; Ko, Y.T. N,N,N-trimethyl chitosan embedded in situ Pluronic F127 hydrogel for the treatment of brain tumor. Carbohydr. Polym. 2019, 203, 302–309. [Google Scholar] [CrossRef]
- Abdollahi, H.; Salimi, A.; Barikani, M.; Zeynizadeh, B. New synthesis processes of polyetheramines: Comparison of three different developed amination routes. Mater. Manuf. Process. 2017, 32, 1296–1303. [Google Scholar] [CrossRef]
- Chaudhary, J.P.; Vadodariya, N.; Nataraj, S.K.; Meena, R. Chitosan-Based Aerogel Membrane for Robust Oil-in-Water Emulsion Separation. ACS Appl. Mater. Interfaces 2015, 7, 24957–24962. [Google Scholar] [CrossRef]
- Felfel, R.M.; Gideon-Adeniyi, M.J.; Zakir Hossain, K.M.; Roberts, G.A.F.; Grant, D.M. Structural, mechanical and swelling characteristics of 3D scaffolds from chitosan-agarose blends. Carbohydr. Polym. 2019, 204, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Karageorgiou, V.; KAPLAN, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Feng, Y.; Wang, L.; Liu, D.; Qin, C.; Shi, Y. A review of preparation methods of porous skin tissue engineering scaffolds. Mater. Today Commun. 2022, 32, 104109. [Google Scholar] [CrossRef]
- Bagher, Z.; Atoufi, Z.; Alizadeh, R.; Farhadi, M.; Zarrintaj, P.; Moroni, L.; Setayeshmehr, M.; Komeili, A.; Kamrava, S.K. Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells. Mater. Sci. Eng. C 2019, 101, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, M.; Zarrintaj, P.; Jafari, S.H.; Hosseini, S.M.; Aliakbari, S.; Pourbadie, H.G.; Naderi, N.; Zibaii, M.I.; Gholizadeh, S.S.; Ramsey, J.D.; et al. Fabricating an electroactive injectable hydrogel based on pluronic-chitosan/aniline-pentamer containing angiogenic factor for functional repair of the hippocampus ischemia rat model. Mater. Sci. Eng. C 2020, 117, 111328. [Google Scholar] [CrossRef] [PubMed]
- Rokhade, A.P.; Shelke, N.B.; Patil, S.A.; Aminabhavi, T.M. Novel hydrogel microspheres of chitosan and pluronic F-127 for controlled release of 5-fluorouracil. J. Microencapsul. 2007, 24, 274–288. [Google Scholar] [CrossRef]
- Gorgieva, S.; Kokol, V. Preparation, characterization, and in vitro enzymatic degradation of chitosan-gelatine hydrogel scaffolds as potential biomaterials. J. Biomed. Mater. Res. Part A 2012, 100A, 1655–1667. [Google Scholar] [CrossRef]
- Zamora-Mora, V.; Velasco, D.; Hernández, R.; Mijangos, C.; Kumacheva, E. Chitosan/agarose hydrogels: Cooperative properties and microfluidic preparation. Carbohydr. Polym. 2014, 111, 348–355. [Google Scholar] [CrossRef]
- Cao, Z.; Gilbert, R.J.; He, W. Simple Agarose−Chitosan Gel Composite System for Enhanced Neuronal Growth in Three Dimensions. Biomacromolecules 2009, 10, 2954–2959. [Google Scholar] [CrossRef]
- Ahsan, A.; Farooq, M.A.; Parveen, A. Thermosensitive Chitosan-Based Injectable Hydrogel as an Efficient Anticancer Drug Carrier. ACS Omega 2020, 5, 20450–20460. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Méndez, J.A.; Fernández-Gutiérrez, M.; Vázquez, B.; San Román, J. Oxidized dextrins as alternative crosslinking agents for polysaccharides: Application to hydrogels of agarose–chitosan. Acta Biomater. 2014, 10, 798–811. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, H.; Samadi, A.; Amiri, F.; Mousapour, V.; Payam, K. Kinetics of thermal degradation, adhesion and dynamic—Mechanical properties of flexible polyamine—Epoxy systems. J. Polym. Res. 2022, 29, 398. [Google Scholar] [CrossRef]
- Bhat, S.; Tripathi, A.; Kumar, A. Supermacroprous chitosan–agarose–gelatin cryogels: In vitro characterization and in vivo assessment for cartilage tissue engineering. J. R. Soc. Interface 2011, 8, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Postolović, K.S.; Antonijević, M.D.; Ljujić, B.; Miletić Kovačević, M.; Gazdić Janković, M.; Stanić, Z.D. pH-Responsive Hydrogel Beads Based on Alginate. Molecules 2022, 27, 4045. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.; Kashaw, S.K.; Kushwah, V.; Sau, S.; Jain, S.; Iyer, A.K. pH responsive biodegradable nanogels for sustained release of bleomycin. Bioorg. Med. Chem. 2017, 25, 4595–4613. [Google Scholar] [CrossRef] [PubMed]
Organism | ATCC | MIC (μg/mL) | Negative Control | Positive Control |
---|---|---|---|---|
S. aureus | 29213 | 200 | Absence of growth | Growth of bacterium |
S. saprophyticus | 15305 | 12.5 | Absence of growth | Growth of bacterium |
E. faecalis | 29212 | 12.5 | Absence of growth | Growth of bacterium |
E. coli | 25922 | 200 | Absence of growth | Growth of bacterium |
K. pneumoniae | 7881 | 200 | Absence of growth | Growth of bacterium |
S. typhimurium | 14028 | 200 | Absence of growth | Growth of bacterium |
P. aeruginosa | 27853 | 100 | Absence of growth | Growth of bacterium |
C. albicans | 10231 | 12.5 | Absence of growth | Growth of yeast |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdollahi, H.; Amiri, S.; Amiri, F.; Moradi, S.; Zarrintaj, P. Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System. J. Funct. Biomater. 2024, 15, 286. https://doi.org/10.3390/jfb15100286
Abdollahi H, Amiri S, Amiri F, Moradi S, Zarrintaj P. Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System. Journal of Functional Biomaterials. 2024; 15(10):286. https://doi.org/10.3390/jfb15100286
Chicago/Turabian StyleAbdollahi, Hossein, Saber Amiri, Farzaneh Amiri, Somayeh Moradi, and Payam Zarrintaj. 2024. "Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System" Journal of Functional Biomaterials 15, no. 10: 286. https://doi.org/10.3390/jfb15100286
APA StyleAbdollahi, H., Amiri, S., Amiri, F., Moradi, S., & Zarrintaj, P. (2024). Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System. Journal of Functional Biomaterials, 15(10), 286. https://doi.org/10.3390/jfb15100286