Performance of Austenitic High-Nitrogen Steels under Gross Slip Fretting Corrosion in Bovine Serum
<p>Microstructures of the investigated austenitic high-nitrogen steels. (<b>a</b>) FeCN0.9; (<b>b</b>) FeCN0.6.</p> "> Figure 2
<p>(<b>a</b>) Scheme of the fretting test rig. (<b>b</b>) Elements of the tribological system and loading parameters.</p> "> Figure 3
<p>Mean frictional work of experiments with FeCN0.9 runs against (<b>a</b>,<b>b</b>) fluted Ti6Al4V and (<b>c</b>,<b>d</b>) fluted FeCN0.6.</p> "> Figure 4
<p>OCP over the entire duration of the fretting experiments for different pin materials against FL-FeCN0.6.</p> "> Figure 5
<p>Wear appearances on a fluted Ti6Al4V cylinder (<b>a</b>,<b>b</b>) after 40,000 cycles against FeCN0.6 (<b>c</b>,<b>d</b>). The samples have been sonicated in ethanol.</p> "> Figure 6
<p>EDS scans of a contact ridge and grainy debris on fluted Ti6Al4V cylinder. The samples have been sonicated in ethanol.</p> "> Figure 7
<p>Pile of grainy debris (areas and spectra 19 and 21) within a valley (areas and spectra 20 and 22) of a fluted Ti6Al4V cylinder after the fretting test against polished FeCN0.9. The samples have been sonicated in ethanol. Blank cells within this and all further EDS tables mean “not detected”.</p> "> Figure 8
<p>EDS scans of a contact ridge and grainy debris on the FeCN0.6 pin. The samples have been sonicated in ethanol.</p> "> Figure 8 Cont.
<p>EDS scans of a contact ridge and grainy debris on the FeCN0.6 pin. The samples have been sonicated in ethanol.</p> "> Figure 9
<p>Wear appearances on a fluted CoC0.06 cylinder (<b>a</b>,<b>b</b>) after 40,000 cycles against polished FeCN0.6 pins (<b>c</b>,<b>d</b>). The samples have been sonicated in ethanol.</p> "> Figure 10
<p>EDS scans of a contact ridge and grainy debris on a fluted CoC0.06 cylinder. The samples have been sonicated in ethanol.</p> "> Figure 11
<p>EDS scans of grainy debris between the wear grooves on the FeCN0.6 pin. The samples have been sonicated in ethanol.</p> "> Figure 12
<p>Wear appearances on a fluted FeCN0.6 cylinder (<b>a</b>,<b>b</b>) after 40,000 cycles against CoC0.06 pins (<b>c</b>,<b>d</b>). The samples have been sonicated in ethanol.</p> "> Figure 13
<p>EDS scans of a contact ridge and grainy debris on a fluted FeCN0.6 cylinder. The samples have been sonicated in ethanol.</p> "> Figure 13 Cont.
<p>EDS scans of a contact ridge and grainy debris on a fluted FeCN0.6 cylinder. The samples have been sonicated in ethanol.</p> "> Figure 14
<p>EDS scans of grainy debris on a polished CoC0.06 pin. The samples have been sonicated in ethanol.</p> "> Figure 15
<p>Wear appearances on a fluted FeCN0.6 cylinder (<b>a</b>,<b>b</b>) after 40,000 cycles against polished FeCN0.9 pins (<b>c</b>,<b>d</b>). The samples have been sonicated in ethanol.</p> "> Figure 16
<p>EDS scans of the debris pushed out to both sides of the contact area of the fluted FeCN0.6 cylinder. The samples have been sonicated in ethanol.</p> "> Figure 17
<p>EDS scans of grainy debris on a polished FeCN0.9 pin. The samples have been sonicated in ethanol.</p> "> Figure 17 Cont.
<p>EDS scans of grainy debris on a polished FeCN0.9 pin. The samples have been sonicated in ethanol.</p> "> Figure 18
<p>Wear appearances on a fluted FeCN0.6 cylinder (<b>a</b>,<b>b</b>) after 40,000 cycles against ZTA (<b>c</b>,<b>d</b>). The samples have been sonicated in ethanol.</p> "> Figure 18 Cont.
<p>Wear appearances on a fluted FeCN0.6 cylinder (<b>a</b>,<b>b</b>) after 40,000 cycles against ZTA (<b>c</b>,<b>d</b>). The samples have been sonicated in ethanol.</p> "> Figure 19
<p>EDS scans of a contact ridge and grainy debris on fluted FeCN0.6 cylinder. The samples have been sonicated in ethanol.</p> "> Figure 20
<p>The graded structure of sliding interfaces according to reference [<a href="#B30-jfb-15-00110" class="html-bibr">30</a>].</p> "> Figure 21
<p>Accumulated frictional work per wear path W<sub>acc/l</sub> in mNm/m of the different combinations of materials. (<b>a</b>) W<sub>acc/l</sub> of the fluted couples, this work; (<b>b</b>) W<sub>acc/l</sub> of all couples tested [<a href="#B20-jfb-15-00110" class="html-bibr">20</a>,<a href="#B39-jfb-15-00110" class="html-bibr">39</a>,<a href="#B44-jfb-15-00110" class="html-bibr">44</a>].</p> "> Figure 22
<p>Normalized gross MML generation rate g<sub>MML</sub> in ng/m and the ΔOCP in V of the different combinations of materials (* ZTA/metal couples). (<b>a</b>) This work; (<b>b</b>) This and former work [<a href="#B20-jfb-15-00110" class="html-bibr">20</a>,<a href="#B39-jfb-15-00110" class="html-bibr">39</a>,<a href="#B44-jfb-15-00110" class="html-bibr">44</a>].</p> "> Figure 23
<p>Normalized gross wear rate w<sub>FC</sub> vs. the normalized gross MML generate rate g<sub>MML</sub> of the different combinations of materials (* ZTA/metal couples). (<b>a</b>) This work; (<b>b</b>) This and former work [<a href="#B20-jfb-15-00110" class="html-bibr">20</a>,<a href="#B39-jfb-15-00110" class="html-bibr">39</a>,<a href="#B44-jfb-15-00110" class="html-bibr">44</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- CoCr29Mo6C0.06—30 min/1050 °C/H2O [20];
- FeCr18Mn14Mo3CN0.9—45 min/1150 °C/H2O;
- FeCr18Mn13Mo3CN0.6—45 min/1145 °C/H2O.
- CoCr29Mo6C0.06—CoC0.06;
- FeCr18Mn14Mo3CN0.9—FeCN0.9;
- FeCr18Mn13Mo3CN0.6—FeCN0.6.
2.2. Methods
2.2.1. Fretting Test Rig Set-Up and Parameters
2.2.2. Microscopy and Raman Scattering Analyses
2.2.3. Chemical Analysis of BCS and Enzymatic Soap
2.2.4. Determining the Rates for the Generation of the Mechanically Mixed Layer and the Rates for the Wear Loss
- BCS already contains high amounts of Fe and Al. Thus, those elements cannot be used for the analyses of the contributions of AHNS or ZTA to the tribomaterial or wear loss.
- Not all contaminants within the hospital’s tab water were removed by reverse osmosis, the process used for the DI water. Thus, the measured gross Ti amounts were corrected by the measured amount in the BCS blanks of 30.87 ppb, which was carried over from the DI water and the constituents within the respective NBCS lot.
- In ICP-MS, the plasma dissolves all matter, resulting in a loss of any quantitative value for the particles that were ejected from the tribosystem. Hence, the fraction of particles to ions cannot be determined.
- Deduct 30.87 ppb from all gross Ti values to account for the contamination found in the DI water.
- Relate the net concentration value to the weight of the 35 mL serum and 100 mL soap sample containments, respectively, in order to obtain the absolute values in ng.
- Relate these absolute values to the actually measured lengths of the wear paths and gain a rate in ng/m. This was primarily performed to account for some experiments that ran for 40,000 cycles and others that ran for 50,000 cycles.
3. Results
3.1. Fretting Regime
3.2. Frictional Work
3.3. OCP Drop (ΔOCP) during Fretting Experiments
3.4. Wear Appearances of Polished FeCN0.6 against Fluted Ti6Al4V Cylinders (AHNS/Ti Alloy)
3.5. Wear Appearances of Polished FeCN0.6 against Fluted CoC0.06 (AHNS/Co Alloy)
3.6. Wear Appearances of Polished CoC0.06 against Fluted FeCN0.6 Cylinders (Co Alloy/AHNS)
3.7. Wear Appearances of Polished FeCN0.9 against Fluted FeCN0.6 Cylinders (AHNS/AHNS)
3.8. Wear Appearances of Polished ZTA against Fluted FeCN0.6 Cylinders (ZTA/AHNS)
3.9. Raman Scattering Analyses of the Tribomaterial of AHNS/FL-Ti6Al4V Contacts
3.9.1. Metal Ion Concentration within the Soap
3.9.2. Metal Ion Concentration within the Serum
4. Discussion
4.1. Preliminary Remarks and Definition of Terms
4.2. Wear Appearances and Acting Wear Mechanisms and Submechanisms
4.3. Frictional Work
4.4. The Normalized Gross Generation Rate of the Mechanically Mixed Layer gMML
4.5. The Normalized Gross Wear Rate under Fretting Corrosion wFC
4.6. Implications
5. Limitations
- The contact stiffness of the test rig differs markedly from the stiffness of a real taper joint.
- The topography chosen does not represent any of today’s clinically applied taper topographies.
- The parameters chosen only mimic the gross slip fretting corrosion of taper junctions and do not cover any other mechanisms leading to reaction products causing trunnionosis.
- The fraction of wear particles within the BCS and, therefore, their contribution to the gross wear loss measured by ICP is not known.
- The ICP-MS results are at the verge of the resolution (≈1 ppb) of the substances for the current protocol.
- The analyses used did not allow for a full quantification of all possible—especially organic—boundary lubricants generated by the tribosystem.
6. Conclusions and Outlook
- The tribological behavior is characterized by the acting submechanisms of abrasion (microploughing and microcutting) and of tribochemical reactions (tribocorrosion, tribo-oxidation, and mechanical mixing).
- Certain constituents of the in situ generated tribomaterial (third bodies) allow for ultra-mild fretting wear rates for all investigated combinations of bodies and counterbodies.
- The lowest gross wear rates were found by a combination of both austenitic high-nitrogen steels investigated against fluted Ti6Al4V.
- As published before, such steels could be a Co- and Ni-free alternative to CoCrMo alloys.
- For the ultra-mild wear and the resolution of the ICP (≈ 1 ppb), future tests should run much longer up to a minimum of 106 cycles.
- Further research will be necessary in order to understand the immediate in situ repassivation reactions and kinetics of severely plastically deformed tribomaterial.
- The wear particles should be characterized as well as the cell reactions they might initiate and/or promote.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AB | abrasion (wear mechanism) |
AD | adhesion (wear mechanism) |
APT | atom probe tomography |
BCS | phosphate-buffered bovine calf serum solution |
BSE | backscattered electron |
CWLM | confocal white-light microscopy |
EDS | energy-dispersive X-Ray spectroscopy |
FL | fluted |
ICP-MS | inductively coupled plasma–mass spectroscopy |
MML | mechanically mixed layer |
NBCS | newborn calf serum |
OCP | open corrosion potential |
RS | Raman scattering |
SF | surface fatigue (wear mechanism) |
SEM | scanning electron microscopy |
SPD | severe plastic deformation |
TCR | tribochemical reactions (wear mechanism) |
TEM | transmission electron microscopy |
ZTA | zirconia-toughened alumina |
References
- Singh, J.A.; Yu, S.; Chen, L.; Cleveland, J.D. Rates of Total Joint Replacement in the United States: Future Projections to 2020–2040 Using the National Inpatient Sample. J. Rheumatol. 2019, 46, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Lanting, B.; Naudie, D.D.R.; McCalden, R.W. Clinical impact of trunnion wear after total hip arthroplasty. JBJS Rev. 2016, 4, e3. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.B.; Chughtai, M.; Elmallah, R.K.; Diedrich, A.; Le, S.; Thomas, M.; Mont, M.A. Trunnionosis in total hip arthroplasty: A review. J. Orthop. Traumatol. 2016, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Park, J.W.; Kim, J.S. There is no significant difference in fretting and corrosion at the trunnion of metal and ceramic heads. Orthopedics 2019, 42, e99–e103. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.L.; Buckley, C.A.; Jacobs, J.J. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J. Biomed. Mater. Res. 1993, 27, 1533–1544. [Google Scholar] [CrossRef] [PubMed]
- Urban, R.M.; Jacobs, J.J.; Gilbert, J.L.; Galante, J.O. Migration of corrosion products from modular hip prostheses. Particle microanalysis and histopathological findings. J. Bone Jt. Surg. Ser. A 1994, 76, 1345–1359. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.J.; Urban, R.M.; Gilbert, J.L.; Skipor, A.K.; Black, J.; Jasty, M.; Galante, J.O. Local and distant products from modularity. Clin. Orthop. Relat. Res. 1995, 319, 94–105. [Google Scholar] [CrossRef]
- Goldberg, J.R.; Gilbert, J.L.; Jacobs, J.J.; Bauer, T.W.; Paprosky, W.; Leurgans, S. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin. Orthop. Relat. Res. 2002, 401, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.J.; Abdel, M.P.; Callaghan, J.J.; Clinical Research Group. What are the current clinical issues in wear and tribocorrosion? Clin. Orthop. Relat. Res. 2014, 472, 3659–3664. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.L.; Mali, S.A.; Sivan, S. Corrosion of Modular Tapers in Total Joint Replacements: A Critical Assessment of Design, Materials, Surface Structure, Mechanics, Electrochemistry, and Biology. In Modularity and Tapers in Total Joint Replacement Devices, ASTM STP 1591; Greenwald, A.S., Kurtz, S.M., Lemons, J.E., Eds.; ASTM International: West Conshohocken, PA, USA, 2015; pp. 192–223. [Google Scholar]
- Lohmann, C.H.; Hameister, R.; Singh, G. Allergies in orthopaedic and trauma surgery. Orthop. Traumatol. Surg. Res. 2017, 103, S75–S81. [Google Scholar] [CrossRef]
- Pacheco, K.A. Allergy to Surgical Implants. Clin. Rev. Allergy Immunol. 2019, 56, 72–85. [Google Scholar] [CrossRef]
- Goldberg, J.; Jacobs, J.; Gilbert, J. In-vitro fretting corrosion testing of modular hip implants. In Transactions of the Annual Meeting of the Society for Biomaterials in Conjunction with the International Biomaterials Symposium; Society for Biomaterials: Mount Laurel, NJ, USA, 1996; Volume 1, p. 865. [Google Scholar]
- Rostoker, W.; Pretzel, C.W.; Galante, J.O. Couple corrosion among alloys for skeletal prostheses. J. Biomed. Mater. Res. 1974, 8, 407–419. [Google Scholar] [CrossRef]
- Rostoker, W.; Galante, J.O.; Lereim, P. Evaluation of couple/crevice corrosion by prosthetic alloys under in vivo conditions. J. Biomed. Mater. Res. 1978, 12, 823–829. [Google Scholar] [CrossRef]
- Hall, D.J.; Pourzal, R.; Lundberg, H.J.; Mathew, M.T.; Jacobs, J.J.; Urban, R.M. Mechanical, chemical and biological damage modes within head-neck tapers of CoCrMo and Ti6Al4V contemporary hip replacements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1672–1685. [Google Scholar] [CrossRef]
- Hall, D.J.; Pourzal, R.; Mathew, M.T.; Lundberg, H.J.; Jacobs, J.J.; Urban, R.M. Degradation Modes of CoCrMo and Ti6Al4VAlloys in Modular Head-Neck Junctions of Retrieved Hip Prostheses. Proc. Annu. Meet. Orthop. Res. Soc. 2016, 41, 400. [Google Scholar]
- Fischer, A.; Fullam, S.; Telouk, P.; Wimmer, M.A. The mechanism-based approach of understanding run-in and steady state: A gross-slip fretting experiment to fathom tribocorrosion of total hip taper junctions. Biotribology 2021, 25, 100165. [Google Scholar] [CrossRef]
- Colombie, C.; Berthier, Y.; Floquet, A.; Vincent, L.; Godet, M. Fretting: Load carrying capacity of wear debris. J. Tribol. Trans. 1984, 106, 194–201. [Google Scholar] [CrossRef]
- Berthier, Y.; Vincent, L.; Godet, M. Velocity accommodation in fretting. Wear 1988, 125, 25–38. [Google Scholar] [CrossRef]
- Fillot, N.; Iordanoff, I.; Berthier, Y. Wear modeling and the third body concept. Wear 2007, 262, 949–957. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Wu, J.H.; Rigney, D.A. The role of vorticity in the formation of tribomaterial during sliding. In MRS Fall Meeting, Symposium on Nanoscale Materials and Modeling-Relations among Processing, Microstructure, and Mechanical Properties; Anderson, P.M., Foecke, T., Misra, A., Rudd, R.E., Eds.; MRS: Warrendale, PA, USA, 2004; Volume 821, pp. 9.6.1–9.6.6. [Google Scholar]
- Rigney, D.A.; Karthikeyan, S. The evolution of tribomaterial during sliding: A brief introduction. Tribol. Lett. 2010, 39, 3–7. [Google Scholar] [CrossRef]
- Haug, C.; Ruebeling, F.; Kashiwar, A.; Gumbsch, P.; Kübel, C.; Greiner, C. Early deformation mechanisms in the shear affected region underneath a copper sliding contact. Nat. Commun. 2020, 11, 839. [Google Scholar] [CrossRef]
- Greiner, C.; Gagel, J.; Gumbsch, P. Solids Under Extreme Shear: Friction-Mediated Subsurface Structural Transformations. Adv. Mater. 2019, 31, 1806705. [Google Scholar] [CrossRef] [PubMed]
- Wolff, K.; Liu, Z.; Braun, D.; Schneider, J.; Greiner, C. Chronology of the microstructure evolution for pearlitic steel under unidirectional tribological loading. Tribol. Int. 2016, 102, 540–545. [Google Scholar] [CrossRef]
- Espallargas, N.; Fischer, A.; Igual Munoz, A.; Mischler, S.; Wimmer, M.A. In-situ Generated Tribomaterial in Metal/Metal Contact: Current understanding and future implications for implants. Biotribology 2017, 10, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Dudzinski, W.; Gleising, B.; Stemmer, P. Analyzing Mild- and Ultra-Mild Sliding Wear of Metallic Materials by Transmission Electron Microscopy. In Triboanalytics; Dienwiebel, M., de Barros, M.-I., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 29–59. [Google Scholar]
- Rigney, D.A.; Hammerberg, J.E. Mechanical mixing and the development of nanocrystalline material during the sliding of metals. In Advanced Materials in the 21st Century: The 1999 Julia R. Weertman Symposium; Chung, Y.W., Dunand, D.C., Liaw, P., Olson, G.B., Eds.; The Minerals, Metals & Materials Society: Warrendale, PA, USA, 1999; pp. 465–474. [Google Scholar]
- Zum Gahr, K.H. Microstructure and Wear of Materials; Elsevier Science Publishers: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Balachandran, S.; Zachariah, Z.; Fischer, A.; Mayweg, D.; Wimmer, M.A.; Raabe, D.; Herbig, M. Atomic Scale Origin of Metal Ion Release from Hip Implant Taper Junctions. Adv. Sci. 2020, 7, 1903008. [Google Scholar] [CrossRef]
- Mischler, S.; Debaud, S.; Landolt, D. Wear-accelerated corrosion of passive metals in tribocorrosion systems. J. Electrochem. Soc. 1998, 145, 750–758. [Google Scholar] [CrossRef]
- Fischer, A.; Janssen, D.; Wimmer, M.A. The Influence of Molybdenum on the Fretting Corrosion Behavior of CoCr/TiAlV Couples. Biotribology 2017, 11 (Suppl. C), 8–19. [Google Scholar] [CrossRef]
- Fischer, A.; Telouk, P.; Wimmer, M.A. The gross slip fretting corrosion mechanisms of biomedical ceramic-metal couples. Biotribology 2023, 35, 100252. [Google Scholar] [CrossRef]
- Wimmer, M.A.; Radice, S.; Janssen, D.; Fischer, A. Fretting-corrosion of CoCr-alloys against TiAl6V4: The importance of molybdenum in oxidative biological environments. Wear 2021, 477, 203813. [Google Scholar] [CrossRef]
- Godet, M. The third-body approach: A mechanical view of wear. Wear 1984, 100, 437–452. [Google Scholar] [CrossRef]
- Pourzal, R.; Hall, D.J.; Ha, N.Q.; Urban, R.M.; Levine, B.R.; Jacobs, J.J.; Lundberg, H.J. Does Surface Topography Play a Role in Taper Damage in Head-neck Modular Junctions? Clin. Orthop. Relat. Res. 2016, 474, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Beckmann, C.; Heermant, S.; Wittrock, A.; Telouk, P.; Debus, J.; Wimmer, M.A. Topography rules the ultra-mild wear regime under boundary lubricated gross-slip fretting corrosion. Wear 2023, 522, 204716. [Google Scholar] [CrossRef]
- Rondinella, A.; Marin, E.; Boschetto, F.; Zanocco, M.; Zhu, W.; Affatato, S.; Yamamoto, K.; Tateiwa, T.; Pezzotti, G. Degradation phenomena occurring in the conical taper of a short-term retrieved ZTA femoral head: A case study. Mater. Des. 2018, 157, 362–370. [Google Scholar] [CrossRef]
- Pu, J.; Wu, D.; Zhang, Y.; Zhang, X.; Jin, Z. An Experimental Study on the Fretting Corrosion Behaviours of Three Material Pairs at Modular Interfaces for Hip Joint Implants. Lubricants 2021, 9, 12. [Google Scholar] [CrossRef]
- Kyomoto, M.; Shoyama, Y.; Saiga, K.; Moro, T.; Ishihara, K. Reducing fretting-initiated crevice corrosion in hip simulator tests using a zirconia-toughened alumina femoral head. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2815–2826. [Google Scholar] [CrossRef] [PubMed]
- Kocagoz, S.B.; Underwood, R.J.; MacDonald, D.W.; Gilbert, J.L.; Kurtz, S.M. Ceramic Heads Decrease Metal Release Caused by Head-taper Fretting and Corrosion. Clin. Orthop. Relat. Res. 2016, 474, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-M.; Xia, Z.; Glyn-Jones, S.; Beard, D.; Gill, H.S.; Murray, D.W. Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro. Biomed. Mater. 2009, 4, 025018. [Google Scholar] [CrossRef] [PubMed]
- Langton, D.; Joyce, T.; Jameson, S.; Lord, J.; Van Orsouw, M.; Holland, J.; Nargol, A.; De Smet, K. Adverse reaction to metal debris following hip resurfacing: The influence of component type, orientation and volumetric wear. J. Bone Jt. Surg. Br. Vol. 2011, 93, 164–171. [Google Scholar] [CrossRef]
- Posada, O.M.; Tate, R.; Grant, M. Toxicity of cobalt–chromium nanoparticles released from a resurfacing hip implant and cobalt ions on primary human lymphocytes in vitro. J. Appl. Toxicol. 2015, 35, 614–622. [Google Scholar] [CrossRef]
- Posada, O.M.; Tate, R.J.; Meek, R.D.; Grant, M.H. In vitro analyses of the toxicity, immunological, and gene expression effects of cobalt-chromium alloy wear debris and Co ions derived from metal-on-metal hip implants. Lubricants 2015, 3, 539–568. [Google Scholar] [CrossRef]
- Mölders, M.; Fischer, A.; Wiemann, M. Biocompatibility of a nickel-free austenitic steel assayed by osteoblastic MC3T3-E1 cells. Mater. Und Werkst. 2002, 33, 775–778. [Google Scholar] [CrossRef]
- Fini, M.; Aldini, N.N.; Torricelli, P.; Giavaresi, G.; Borsari, V.; Lenger, H.; Bernauer, J.; Giardino, R.; Chiesa, R.; Cigada, A. A new austenitic stainless steel with negligible nickel content: An in vitro and in vivo comparative investigation. Biomaterials 2003, 24, 4929–4939. [Google Scholar] [CrossRef]
- Torricelli, P.; Fini, M.; Borsari, V.; Lenger, H.; Bernauer, J.; Tschon, M.; Bonazzi, V.; Giardino, R. Biomaterials in orthopedic surgery: Effects of a nickel-reduced stainless steel on in vitro proliferation and activation of human osteoblasts. Int. J. Artif. Organs 2003, 26, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ding, T.; Xue, Y.; Sun, J. Osteoinduction and long-term osseointegration promoted by combined effects of nitrogen and manganese elements in high nitrogen nickel-free stainless steel. J. Mater. Chem. B 2016, 4, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Radice, S.; Impergre, A.; Fischer, A.; Wimmer, M.A. Corrosion resistance of the nickel-free high-nitrogen steel FeCrMnMoN0.9 under simulated inflammatory conditions. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 902–910. [Google Scholar] [CrossRef]
- Becerikli, M.; Jaurich, H.; Wallner, C.; Wagner, J.M.; Dadras, M.; Jettkant, B.; Pöhl, F.; Seifert, M.; Jung, O.; Mitevski, B.; et al. P2000—A high-nitrogen austenitic steel for application in bone surgery. PLoS ONE 2019, 14, e0214384. [Google Scholar] [CrossRef]
- Kauther, M.D.; Gödde, K.; Burggraf, M.; Hilken, G.; Wissmann, A.; Krüger, C.; Lask, S.; Jung, O.; Mitevski, B.; Fischer, A.; et al. In-vivo comparison of the Ni-free steel X13CrMnMoN18-14-3 and titanium alloy implants in rabbit femora—A promising steel for orthopedic surgery. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 797–807. [Google Scholar] [CrossRef]
- Radice, S.; Neto, M.Q.; Fischer, A.; Wimmer, M.A. Nickel-free high-nitrogen austenitic steel outperforms CoCrMo alloy regarding tribocorrosion in simulated inflammatory synovial fluids. J. Orthop. Res. 2022, 40, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, M.; Masson, B.; Pandorf, T. Current state of the art of the ceramic composite material BIOLOX® DELTA. In Strength of Materials; Materials Science and Technologies Series; Mendes, G., Lago, B., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2009; pp. 133–155. [Google Scholar]
- Fouvry, S.; Kapsa, P.; Vincent, L. Analysis of sliding behaviour for fretting loadings: Determination of transition criteria. Wear 1995, 185, 35–46. [Google Scholar] [CrossRef]
- Browne, J.; Gioe, T.; Weitzman, D. (Eds.) AAOS-AJRR, Annual Report 2019; AAOS: Rosemont, IL, USA, 2019. [Google Scholar]
- Debus, J.; Schindler, J.J.; Waldkirch, P.; Goeke, S.; Brümmer, A.; Biermann, D.; Bayer, M. Indication of worn WC/C surface locations of a dry-running twin-screw rotor by the oxygen incorporation in tungsten-related Raman modes. Appl. Phys. Lett. 2016, 109, 171601. [Google Scholar] [CrossRef]
- Hertz, H.R. Über die Berührung fester elastischer Körper und über die Härte. Sitzungsbericht Ver. Förderung Gewerbefleißes 1882, 196, 449–463. [Google Scholar]
- Kolman, D.; Scully, J. On the Repassivation Behavior of High-Purity Titanium and Selected α, β, and β+ α Titanium Alloys in Aqueous Chloride Solutions. J. Electrochem. Soc. 1996, 143, 1847. [Google Scholar] [CrossRef]
- Kolman, D.; Scully, J. Limitations of potentiostatic repassivation techniques and their relationship to the applicability of the high field approximation to the repassivation of titanium. J. Electrochem. Soc. 1995, 142, 2179. [Google Scholar] [CrossRef]
- Liao, Y.; Pourzal, R.; Wimmer, M.A.; Jacobs, J.J.; Fischer, A.; Marks, L.D. Graphitic Tribological Layers in Metal-on-Metal Hip Replacements. Science 2011, 334, 1687–1690. [Google Scholar] [CrossRef] [PubMed]
- Wittrock, A.; Heermant, S.; Beckmann, C.; Fischer, A.; Wimmer, M.A.; Debus, J. Molecular-Structural Changes in the Organic-Inorganic Tribological Material at Hip Taper Junctions. Adv. Healthc. Mater. 2024. to be submitted. [Google Scholar]
- Godet, M. Third-bodies in tribology. Wear 1990, 136, 29–45. [Google Scholar] [CrossRef]
- Zum Gahr, K.H. Wear by hard particles. Tribol. Int. 1998, 31, 587–596. [Google Scholar] [CrossRef]
- Shipway, P.H.; Kirk, A.M.; Bennett, C.J.; Zhu, T. Understanding and modelling wear rates and mechanisms in fretting via the concept of rate-determining processes—Contact oxygenation, debris formation and debris ejection. Wear 2021, 486–487, 204066, Corrigendum in Wear 2022, 488, 204161. [Google Scholar] [CrossRef]
- Baydoun, S.; Fouvry, S.; Descartes, S. Modeling contact size effect on fretting wear: A combined contact oxygenation—Third body approach. Wear 2022, 488–489, 204168. [Google Scholar] [CrossRef]
- Wimmer, M.A.; Fischer, A.; Buscher, R.; Pourzal, R.; Sprecher, C.; Hauert, R.; Jacobs, J.J. Wear mechanisms in metal-on-metal bearings: The importance of tribochemical reaction layers. J. Orthop. Res. 2010, 28, 436–443. [Google Scholar] [CrossRef]
- Play, D.; Godet, M. Self-Protection of High Wear Materials. ASLE Trans. 1979, 22, 56–64. [Google Scholar] [CrossRef]
- Martinez-Nogues, V.; Nesbitt, J.M.; Wood, R.J.K.; Cook, R.B. Nano-scale wear characterization of CoCrMo biomedical alloys. Tribol. Int. 2016, 93 Pt B, 563–572. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Agrawal, A.; Rigney, D.A. Molecular dynamics simulations of sliding in an Fe-Cu tribopair system. Wear 2009, 267, 1166–1176. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Kleff, J. Warmritzen Metallischer Werkstoffe; VDI-Verlag: Düsseldorf, Germany, 1994. [Google Scholar]
- Hembram, M.; Singh, P.; Kumar, N. High Strain Behaviour of Ultrafine-grained Aluminium Alloys Processed through the Severe Plastic Deformation Techniques: A Review. Metallogr. Microstruct. Anal. 2022, 11, 684–703. [Google Scholar] [CrossRef]
- Rau, J.S.; Schmidt, O.; Schneider, R.; Debastiani, R.; Greiner, C. Three Regimes in the Tribo-Oxidation of High Purity Copper at Temperatures of up to 150 °C. Adv. Eng. Mater. 2022, 24, 2200518. [Google Scholar] [CrossRef]
- Haug, C.; Molodov, D.; Gumbsch, P.; Greiner, C. Tribologically induced crystal rotation kinematics revealed by electron backscatter diffraction. Acta Mater. 2022, 225, 117566. [Google Scholar] [CrossRef]
- Dufils, J.; Wimmer, M.A.; Kunze, J.; Mathew, M.T.; Laurent, M.P. Influence of molybdate ion and pH on the fretting corrosion of a CoCrMo—Titanium alloy couple. Biotribology 2017, 11, 20–28. [Google Scholar] [CrossRef]
- Pourzal, R.; Martin, E.J.; Vajpayee, S.; Liao, Y.; Wimmer, M.A.; Shull, K.R. Investigation of the role of tribofilms in self-mating CoCrMo systems utilizing a quartz crystal microtribometer. Tribol. Int. 2014, 72, 161–171. [Google Scholar] [CrossRef]
- Pourzal, R. Possible Pathways of Particle Formation in CoCrMo Sliding Wear. Ph.D. Thesis, University Duisburg-Essen, VDI Verlag, Duisburg, Germany, 2011. [Google Scholar]
- Sun, D.; Wharton, J.; Wood, R. Micro-and nano-scale tribo-corrosion of cast CoCrMo. Tribol. Lett. 2011, 41, 525–533. [Google Scholar] [CrossRef]
- Van Citters, D.W.; Martin, A.J.; Currier, J.H.; Park, S.H.; Edidin, A.A. Factors related to imprinting corrosion in modular head-neck junctions. In Modularity and Tapers in Total Joint Replacement Devices, STP1591; ASTM International: West Conshohocken, PA, USA, 2015; pp. 83–98. [Google Scholar]
- Pourzal, R.; Lundberg, H.J.; Hall, D.J.; Jacobs, J.J. What Factors Drive Taper Corrosion? J. Arthroplast. 2018, 33, 2707–2711. [Google Scholar] [CrossRef] [PubMed]
Weight % | ISO | HV10 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZTA (acc. to EDS) | Al | Zr | O | |||||||||
37 | 17 | 39 | 6474-2 | 1732 ± 6 | ||||||||
C | N | Co | Mn | Cr | Mo | Ti | Al | V | Fe | |||
CoC0.06 | 0.06 | - | Bal | - | 27.6 | 5.7 | - | - | - | 0.19 | 5832-12 | 400 ± 11 |
FeCN0.9 | 0.08 | 0.88 | - | 14.0 | 18.0 | 3.5 | - | - | - | Bal | ~5832-9 (1.4452) | 260 ± 5 |
FeCN0.6 | 0.17 | 0.56 | - | 12.3 | 17.2 | 2.9 | - | - | - | Bal | 5832-9 (1.3808) | 327 ± 12 |
Ti6Al4V | 0.015 | - | - | - | <0.01 | <0.01 | Bal | 6.0 | 3.88 | 0.13 | 5832-3 | 296 ± 2 |
Type | Material | Ra in µm |
---|---|---|
Polished Pin | FeCN0.9 | 0.003 ± 0.001 |
FeCN0.6 | 0.003 ± 0.001 | |
CoC0.06 | 0.007 ± 0.001 | |
ZTA | 0.017 ± 0.002 | |
Fluted Cylinder | Ti6Al4V | 2.38 ± 0.12 |
CoC0.06 | 5.63 ± 0.29 | |
FeCN0.6 | 7.65 ± 0.33 |
Pins | |||||
---|---|---|---|---|---|
Materials | FeCN0.9 | FeCN0.6 | CoC0.06 | ZTA | |
Fluted Cylinders | Ti6Al4V | This work | This work | [38] | [34] |
CoC0.06 | This work | This work | [34] | [34] | |
FeCN0.6 | This work | - | This work | This work |
Values Averaged Over All Cycles of All Tests | ||||||||
---|---|---|---|---|---|---|---|---|
Body (Cylinder) | FL-Ti6Al4V | FL-CoC0.06 | FL-FeCN0.6 | |||||
Counterbodies (Pins) | FeCN0.9 | FeCN0.6 | FeCN0.9 | FeCN0.6 | FeCN0.9 | CoC0.06 | ZTA | |
At > 0.2 | Work Ratio A | 0.68 ± 0.05 | 0.71 ± 0.01 | 0.72 ± 0.02 | 0.65 ± 0.09 | 0.66 ± 0.06 | 0.75 ± 0.01 | 0.89 ± 0.01 |
Dt > 0.26 | Sliding Ratio D | 0.76 ± 0.07 | 0.79 ± 0.03 | 0.72 ± 0.01 | 0.63 ± 0.07 | 0.71 ± 0.06 | 0.79 ± 0.02 | 0.91 ± 0.01 |
Bt > 0.77 | System-Free Parameter B | 0.91 ± 0.08 | 0.91 ± 0.04 | 1.0 ± 0.03 | 1.07 ± 0.1 | 0.97 ± 0.09 | 0.95 ± 0.02 | 0.91 ± 0.01 |
Pin/Fluted Cylinder | Wd/c in mNm | Wacc in Nm | |
---|---|---|---|
AHNS/Ti alloy | FeCN0.9/FL-Ti6Al4V | 1.13 ± 0.04 | 45.3 ± 1.7 |
FeCN0.6/FL-Ti6Al4V | 1.08 ± 0.07 | 43.2 ± 2.9 | |
AHNS/Co alloy | FeCN0.9/FL-CoC0.06 | 1.33 ± 0.14 | 57.1 ± 1.8 |
FeCN0.6/FL-CoC0.06 | 1.35 ± 0.06 | 53.1 ± 5.6 | |
Co alloy/AHNS | CoC0.06/FL-FeCN0.6 | 1.48 ± 0.07 | 59.1 ± 2.8 |
AHNS/AHNS | FeCN0.9/FL-FeCN0.6 | 1.24 ± 0.15 | 49.6 ± 6.0 |
ZTA/AHNS | ZTA/FL-FeCN0.6 | 0.92 ± 0.09 | 37.0 ± 3.7 |
Pin/Fluted Cylinder | ΔOCP in V | |
---|---|---|
AHNS/Ti alloy | FeCN0.9/FL-Ti6Al4V | 0.29 ± 0.04 |
FeCN0.6/FL-Ti6Al4V | 0.32 ± 0.05 | |
AHNS/Co alloy | FeCN0.9/FL-CoC0.06 | 0.32 ± 0.01 |
FeCN0.6/FL-CoC0.06 | 0.31 ± 0.04 | |
Co alloy/AHNS | CoC0.0.6/FL-FeCN0.6 | 0.10 ± 0.02 |
AHNS/AHNS | FeCN0.9/FL-FeCN0.6 | 0.20 ± 0.09 |
ZTA/AHNS | ZTA/FL-FeCN0.6 | 0.09 ± 0.02 |
Element | Within Wear Grooves | Grainy Debris between Wear Grooves | ||||
---|---|---|---|---|---|---|
C | 11.58 | 18.89 | 39.19 | 46.22 | 39.28 | 51.14 |
O | 10.06 | 9.71 | 28.68 | 17.97 | ||
P | 0.52 | 0.51 | 0.64 | 0.73 | ||
S | 1.46 | 1.33 | 1.54 | 1.70 | ||
Ca | 0.15 | 0.17 | 0.27 | 0.25 | ||
Cr | 25.08 | 23.18 | 15.43 | 10.93 | 9.79 | 6.56 |
Mn | 0.64 | 0.29 | ||||
Fe | 0.66 | 0.97 | 0.70 | 1.12 | ||
Co | 56.82 | 52.45 | 23.90 | 18.33 | 6.08 | 5.60 |
Mo | 5.11 | 4.94 |
Element | Debris Particles | ||
---|---|---|---|
C | 44.05 | 42.05 | 51.95 |
O | 26.07 | 22.24 | 20.05 |
P | 1.60 | 1.41 | 1.56 |
S | 1.32 | 1.64 | 1.99 |
Ca | 0.47 | 0.42 | 0.53 |
Cr | 13.24 | 10.98 | 12.19 |
Mn | 1.05 | 0.93 | 1.26 |
Fe | 11.13 | 9.04 | 10.33 |
Element | Debris Particles | ||||||
---|---|---|---|---|---|---|---|
C | 56.56 | 50.01 | 51.89 | 47.55 | 56.03 | 56.88 | 45.12 |
O | 20.53 | 23.85 | 18.75 | 24.68 | 22.57 | 23.36 | 27.48 |
Si | 0.22 | 0.10 | 0.28 | 0.20 | 0.16 | 0.06 | |
P | 1.10 | 0.55 | 0.56 | 0.66 | 1.03 | 1.27 | 0.52 |
S | 2.55 | 1.51 | 1.74 | 1.49 | 1.84 | 1.80 | 0.81 |
Ca | 0.31 | 0.16 | 0.17 | 0.25 | 0.35 | 0.42 | 0.14 |
Cr | 9.44 | 5.00 | 9.18 | 6.18 | 7.90 | 8.24 | 2.77 |
Mn | 1.21 | 0.61 | 2.73 | 0.57 | 1.08 | 0.80 | 0.32 |
Fe | 8.08 | 3.56 | 14.70 | 3.35 | 9.01 | 7.08 | 3.28 |
Element | Ridge | Debris | ||
---|---|---|---|---|
C | 8.54 | 52.36 | 53.35 | 21.05 |
O | 2.45 | 16.76 | 15.92 | 4.85 |
Al | 0.09 | |||
Si | 0.44 | 0.17 | 0.15 | 0.38 |
P | 0.55 | 0.60 | 0.24 | |
Ca | 0.28 | 0.43 | ||
Cr | 16.99 | 6.37 | 5.92 | 12.74 |
Mn | 11.16 | 3.52 | 3.29 | 8.56 |
Fe | 57.61 | 19.91 | 17.94 | 46.12 |
AHNS FeCN0.9 | BCS | |
---|---|---|
Before the fretting experiment | MoO3, Cr3O8 | tryptophan, cysteine, phenylanaline, lipids, tyrosine, fatty acids, native albumin, globulin |
After the fretting experiment within the immediate contact area | +FeCr2O4, CrO42−, CrO3, Cr2O5, MnMoO4 | +denatured, cleaved proteins, sp2-hybridized C |
+TiO2, Cr2O3, MoO2, Fe2O3, Mn3+-OOH | ||
After the fretting experiment materials pushed out of the immediate contact area | all of the above |
Pin/Cylinder | Soap | ||||
---|---|---|---|---|---|
Cr | Mn | Co | Ti | ||
AHNS/Ti alloy | FeCN0.9/FL-Ti6Al4V | 11.9 ± 0.04 | 11.5 ± 0.4 | - | 460 ± 130 |
FeCN0.6/FL-Ti6Al4V | 34.6 ± 9.1 | 12.2 ± 8 | - | 650 ± 50 | |
AHNS/Co alloy | FeCN0.6/FL-CoC0.06 | 40.2 ± 3.8 | 9.4 ± 0.9 | 38.6 ± 10.8 | - |
FeCN0.9/FL-CoC0.06 | 42.1 ± 8.6 | 11.3 ± 0.4 | 32.4 ± 0.2 | - | |
Co alloy/AHNS | CoC0.06/FL-FeCN0.6 | 44.9 ± 1.3 | 18.2 ± 1.3 | 41.1 ± 8.2 | - |
AHNS/AHNS | FeCN0.9/FL-FeCN0.6 | 16.0 ± 3.9 | 11.9 ± 3.4 | - | - |
ZTA/AHNS | ZTA/FL-FeCN0.6 | 30.1 ± 9.5 | 18.1 ± 5.9 | - | - |
Pin/Cylinder | Serum | ||||
---|---|---|---|---|---|
Cr | Mn | Co | Ti | ||
AHNS/Ti alloy | FeCN0.9/FL-Ti6Al4V | 9.2 ± 1.9 | 17.6 ± 2.1 | - | 3.0 ± 1.7 |
FeCN0.6/FL-Ti6Al4V | 12.3 ± 4 | 19.6 ± 5.0 | - | 3.0 ± 0.6 | |
AHNS/Co alloy | FeCN0.9/FL-CoC0.06 | 31.9 ± 4.2 | 13.6 ± 0.1 | 252 ± 4.5 | - |
FeCN0.6/FL-CoC0.06 | 16.8 ± 2.9 | 22.1 ± 5.3 | 230 ± 5.8 | - | |
Co alloy/AHNS | CoC0.06/FL-FeCN0.6 | 7.9 ± 0.6 | 37.4 ± 1.7 | 86.7 ± 9.2 | - |
AHNS/AHNS | FeCN0.9/FL-FeCN0.6 | 6.9 ± 0.4 | 35.1 ± 4.7 | - | - |
ZTA/AHNS | ZTA/FL-FeCN0.6 | 4.7 ± 0.4 | 25.4 ± 7.2 | - | - |
Polished Pin | Fluted Cylinder | Wacc/l in mNm/m | gMML in ng/m | |
---|---|---|---|---|
AHNS/Ti alloy | FeCN0.9 | Ti6Al4V | 573 ± 20 | 7.4 |
FeCN0.6 | Ti6Al4V | 537 ± 33 | 10.9 | |
AHNS/Co alloy | FeCN0.9 | CoC0.06 | 749 ± 35 | 3.5 |
FeCN0.6 | CoC0.06 | 692 ± 72 | 3.6 | |
Co alloy/AHNS | CoC0.06 | FeCN0.6 | 759 ± 31 | 0.5 |
AHNS/AHNS | FeCN0.9 | FeCN0.6 | 655 ± 86 | 0.2 |
ZTA/AHNS | ZTA * | FeCN0.6 | 472 ± 44 | 3.2 * |
Polished Pin/Fluted Cylinder | ΔOCP in V | |
---|---|---|
ZTA/Ti alloy | ZTA/FL-Ti6Al4V | 0.52 ± 0.04 |
ZTA/Co alloy | ZTA/FL-CoC0.06 | 0.32 ± 0.01 |
ZTA/AHNS | ZTA/FL-FeCN0.6 | 0.09 ± 0.02 |
Co alloy/Ti alloy | CoC0.06/FL-Ti6Al4V | 0.31 ± 0.07 |
AHNS/Ti alloy | FeCN0.9/FL-Ti6Al4V | 0.29 ± 0.04 |
FeCN0.6/FL-Ti6Al4V | 0.32 ± 0.06 |
Polished Pin | Fluted Cylinder | Wacc/l in mNm/m | wFC in ng/m | |
---|---|---|---|---|
AHNS/Ti alloy | FeCN0.9 | Ti6Al4V | 573 ± 20 | 0.80 |
FeCN0.6 | Ti6Al4V | 537 ± 33 | 0.92 | |
AHNS/Co alloy | FeCN0.9 | CoC0.06 | 749 ± 35 | 2.77 |
FeCN0.6 | CoC0.06 | 692 ± 72 | 2.67 | |
Co alloy/AHNS | CoC0.06 | FeCN0.6 | 759 ± 31 | 2.13 |
AHNS/AHNS | FeCN0.9 | FeCN0.6 | 655 ± 86 | 1.46 |
ZTA/AHNS | ZTA * | FeCN0.6 | 472 ± 44 | 1.04 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, A.; Telouk, P.; Beckmann, C.; Heermant, S.; Wittrock, A.; Debus, J.; Wimmer, M.A. Performance of Austenitic High-Nitrogen Steels under Gross Slip Fretting Corrosion in Bovine Serum. J. Funct. Biomater. 2024, 15, 110. https://doi.org/10.3390/jfb15040110
Fischer A, Telouk P, Beckmann C, Heermant S, Wittrock A, Debus J, Wimmer MA. Performance of Austenitic High-Nitrogen Steels under Gross Slip Fretting Corrosion in Bovine Serum. Journal of Functional Biomaterials. 2024; 15(4):110. https://doi.org/10.3390/jfb15040110
Chicago/Turabian StyleFischer, Alfons, Philipe Telouk, Christian Beckmann, Saskia Heermant, Adrian Wittrock, Jörg Debus, and Markus A. Wimmer. 2024. "Performance of Austenitic High-Nitrogen Steels under Gross Slip Fretting Corrosion in Bovine Serum" Journal of Functional Biomaterials 15, no. 4: 110. https://doi.org/10.3390/jfb15040110
APA StyleFischer, A., Telouk, P., Beckmann, C., Heermant, S., Wittrock, A., Debus, J., & Wimmer, M. A. (2024). Performance of Austenitic High-Nitrogen Steels under Gross Slip Fretting Corrosion in Bovine Serum. Journal of Functional Biomaterials, 15(4), 110. https://doi.org/10.3390/jfb15040110