Investigation of the Impact of SmFeN Doping on the Anisotropic NdFeB/SmFeN Composite Magnets
<p>Pressing principle of anisotropic NdFeB/SmFeN composite magnet: (1) orientation coil; (2) thermocouple; (3) composite magnet; (4) indenter; (5) press the mold.</p> "> Figure 2
<p>Characterization of morphology and corresponding particle size distribution in anisotropic NdFeB (<b>a</b>,<b>c</b>) and anisotropic SmFeN (<b>b</b>,<b>d</b>) magnetic powders.</p> "> Figure 3
<p>Different stacking modes of anisotropic Nd-Fe-B magnetic particles: (<b>a</b>) simple cubic stacking; (<b>b</b>) body-centered cubic packing; (<b>c</b>) hexagonal packing.</p> "> Figure 4
<p>Magnetic field distribution of anisotropic NdFeB magnetic particles under different stacking modes: (<b>a</b>) simple cubic stacking; (<b>b</b>) body-centred cubic packing; (<b>c</b>) hexagonal packing.</p> "> Figure 5
<p>Anisotropic Nd-Fe-B magnetic powder densest stacking: (<b>a</b>) physical model; (<b>b</b>) simplified model; (<b>c</b>) analytical model.</p> "> Figure 6
<p>The microscopic structure of NdFeB/SmFeN composite magnets with different SmFeN content: (<b>a</b>) 0%; (<b>b</b>) 20%; (<b>c</b>) 28%; (<b>d</b>) 40%; (<b>e</b>) 60%; (<b>f</b>) 80%; (<b>g</b>) 100%; and the density variation curves (<b>h</b>).</p> "> Figure 6 Cont.
<p>The microscopic structure of NdFeB/SmFeN composite magnets with different SmFeN content: (<b>a</b>) 0%; (<b>b</b>) 20%; (<b>c</b>) 28%; (<b>d</b>) 40%; (<b>e</b>) 60%; (<b>f</b>) 80%; (<b>g</b>) 100%; and the density variation curves (<b>h</b>).</p> "> Figure 7
<p>Magnetic properties of anisotropic NdFeB/SmFeN composite magnets at different proportions: (<b>a</b>,<b>b</b>) 3 T oriented magnetic field; (<b>c</b>,<b>d</b>) 1.5 T oriented magnetic field; (<b>e</b>,<b>f</b>) 0.8 T oriented magnetic field; (<b>g</b>,<b>h</b>) non-oriented magnetic field.</p> "> Figure 7 Cont.
<p>Magnetic properties of anisotropic NdFeB/SmFeN composite magnets at different proportions: (<b>a</b>,<b>b</b>) 3 T oriented magnetic field; (<b>c</b>,<b>d</b>) 1.5 T oriented magnetic field; (<b>e</b>,<b>f</b>) 0.8 T oriented magnetic field; (<b>g</b>,<b>h</b>) non-oriented magnetic field.</p> "> Figure 8
<p>The demagnetization curves (<b>a</b>) at 0.8 T orientation magnetic field and squareness ratio (<b>b</b>) of NdFeB/SmFeN composite magnets with varying SmFeN contents were analyzed, along with the demagnetization curves (<b>c</b>) and orientation degrees (<b>d</b>) under different orientation magnetic fields.</p> ">
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Theoretical Packing Mode and Filling Rate of Magnetic Particles with Optimal Magnetic Properties
- (1)
- Anisotropic NdFeB magnetic powder and anisotropic SmFeN magnetic powder have good sphericity;
- (2)
- The anisotropic NdFeB/SmFeN composite magnet does not deform; and
- (3)
- The influence of magnetic particle agglomeration is not considered.
3.2. Analysis of Magnetic Properties of Composite Magnets Under Different Doping Ratios
4. Conclusions
- (1)
- Utilizing various stacking methods of magnetic powder, the simulation technique was employed to determine that hexagonal stacking yields the highest magnetic performance and filling density for magnets. The optimal doping amount of anisotropic SmFeN powder is theoretically determined to be 19.22 wt.%. The experimental findings demonstrate that the density of composite magnets initially increases and then decreases as the doping amount of SmFeN powder is increased. When the doping amount reaches 20%, the density of composite magnets reaches its peak, aligning with the calculated theoretical value.
- (2)
- With the increase in anisotropic SmFeN magnetic powder content, the coercivity of anisotropic NdFeB/SmFeN composite magnets gradually decreases, while the remanence and maximum energy product initially increase and then decrease. However, achieving the highest residual magnetization and maximum density in anisotropic NdFeB/SmFeN composite magnets requires different doping amounts for different orientation fields. In the absence of an orientation field or with a sufficiently high orientation field (3 T), the highest residual magnetization occurs at a SmFeN doping content of 20%. Conversely, with insufficiently high orientation fields (1.5 T, 0.8 T), the highest residual magnetization occurs at a SmFeN doping content of 28%. This indicates that increasing the amount of smaller-sized and relatively low-coercivity SmFeN dopants can effectively promote the orientational rotation of adjacent large-grain NdFeB magnetic powders under low magnetic fields to exert exchange coupling effects. However, excessive SmFeN powder doping increases frictional resistance and magnetic repulsion between small particles adjacent to each other under compressive force, which affects powder rotation. Therefore, under 1.5 T and 0.8 T orientation fields, composite magnets exhibit their highest degree of anisotropy when doped with 28% SmFeN.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mitarai, H.; Noguchi, K.; Mishima, C.; Matsuoka, H.; Yamazaki, M.; Kawasugi, Y. Development of Compound for Anisotropic Bonded Nd Magnets Using d-HDDR Magnet Powder. IEEE Trans. Magn. 2014, 50, 2105303. [Google Scholar] [CrossRef]
- Ma, B.; Sun, A.; Lu, Z.; Cheng, C.; Xu, C. Effects of surface modification of Nd-Fe-B powders using parylene C by CVDP method on the properties of anisotropic bonded Nd-Fe-B magnets. J. Magn. Magn. Mater. 2016, 416, 150–154. [Google Scholar] [CrossRef]
- Wu, M.; Li, Y.; Wang, X.; Chen, L.; Mu, Y. Anisotropic NdFeB/ SmCoCuFeZr composite bonded magnet prepared by warm compaction process. J. Rare Earths 2017, 35, 1221–1225. [Google Scholar] [CrossRef]
- Kim, H.J.; Koh, C.S.; Shin, P.S. A New Anisotropic Bonded NdFeB Permanent Magnet and Its Application to a Small DC Motor. IEEE Trans. Magn. 2010, 46, 2314–2317. [Google Scholar] [CrossRef]
- Gandha, K.; Li, L.; Nlebedim, I.C.; Post, B.K.; Kunc, V.; Sales, B.C.; Bell, J.; Paranthaman, M.P. Additive manufacturing of anisotropic hybrid NdFeB-SmFeN nylon composite bonded magnets. J. Magn. Magn. Mater. 2018, 467, 8–13. [Google Scholar] [CrossRef]
- Zhang, D.T.; Geng, W.T.; Yue, M.; Liu, W.Q.; Lu, Q.M.; Zhang, J.X.; Guo, Z.H.; Li, W.; Sundararajan, J.A.; Qiang, Y. Magnetic properties and thermal stability of MnBi/SmFeN hybrid bonded magnets. J. Appl. Phys. 2014, 115, 17A746. [Google Scholar] [CrossRef]
- Qin, W.Z.; He, J. Research on Composite Powder and Magnet Properties of Bonded NdFeB Magnets Prepared by Press Molding. In Proceedings of the 3rd International Conference on Mechanical Engineering, Industry and Manufacturing Engineering (MEIME 2013), Wuhan, China, 22–23 June 2013; Volume 345, pp. 218–222. [Google Scholar] [CrossRef]
- Yin, X.; Sui, Y.; Yang, Q.; Shen, Q.; Ma, Y.; Shao, B.; Sun, J.; Guo, D. Preparation and magnetic properties of anisotropic Nd2Fe14B/Sm2Co17 hybrid-bonded magnets. J. Rare Earths 2019, 37, 1047–1052. [Google Scholar] [CrossRef]
- Muljadi, R.; Sardjono, P.; Setiabudidaya, D.; Gulo, F. Mechanical, magnetic properties and corrosion resistance of hybrid bonded magnet NdFeB-BaFe12O19. In Proceedings of the 4th International Symposium on Frontier of Applied Physics (ISFAP), Tangerang Selatan, Indonesia, 1–2 November 2018; Volume 1191. [Google Scholar] [CrossRef]
- Yang, Y.B.; Wei, J.Z.; Peng, X.L.; Xia, Y.H.; Chen, X.G.; Wu, R.; Du, H.L.; Han, J.Z.; Wang, C.S.; Yang, Y.C.; et al. Magnetic properties of the anisotropic MnBi/Sm2Fe17Nx hybrid magnet. J. Appl. Phys. 2014, 115, 17A721. [Google Scholar] [CrossRef]
- Qu, Z.; Wu, Q.; Zhang, M.; Yue, M.; Liu, W. Facile preparation of bonded NdFeB/SmFeN hybrid magnets with flexibility, anisotropy and high energy density. J. Magn. Magn. Mater. 2023, 584, 171084. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Yang, L.; Ren, R.; Chen, Y.; Dong, B.; Liu, J.; Fang, X.; Gao, Q. The Preparation and Properties of ZnAl Coating for Ring-Shaped Bonded NdFeB Magnet with High Corrosion Resistance. J. Mater. Eng. Perform. 2022, 31, 1003–1008. [Google Scholar] [CrossRef]
- Gandha, K.; Paranthaman, M.P.; Wang, H.; Liu, X.; Nlebedim, I.C. Thermal stability of anisotropic bonded magnets prepared by additive manufacturing. J. Am. Ceram. Soc. 2023, 106, 166–171. [Google Scholar] [CrossRef]
- Muljadi, M.; Sardjono, P.; Djauhari, N.R.; Suprapedi, S.; Ramlan, R. Preparation and Characterization of Hybrid Bonded Magnet Ba-Ferrite/NdFeB with Epoxy Resin. Mater. Sci. Forum 2016, 864, 65–69. [Google Scholar] [CrossRef]
- Kurniawan, C.; Wahyuni, S.; Setiadi, E.A.; Sebayang, P. Effect of Particle Size Distribution on the Preparation of Bonded NdFeB Permanent Magnet. In Proceedings of the 3rd Materials-Research-Society-of-Indonesia Meeting (MRS-Id), Bali, Indonesia, 4 November 2019; Volume 622. [Google Scholar] [CrossRef]
- Aryanto, D.; Ray, Z.; Sudiro, T.; Wismogroho, A.S.; Sudrajat, N. The Effect of Powder Particle Size on the Structural and Magnetic Properties of Bonded NdFeB Magnet. Adv. Mater. Res. 2015, 1123, 88–91. [Google Scholar] [CrossRef]
- Rodrigues, D.; Concilio, G.V.; de Castro, J.A.; de Campos, M.F. Effect of Compaction Pressure on the Hysteresis Loop of NdFeB Bonded Magnets. Mater. Sci. Forum 2017, 899, 576–580. [Google Scholar] [CrossRef]
- Tian, J.; Tang, Z.; Zuo, Z.; Pan, D.A.; Zhang, S. Architecturing high magnetic properties of NdFeB/SmFeN hybrid magnets. Mater. Lett. 2013, 105, 87–89. [Google Scholar] [CrossRef]
- Ma, B.; Sun, A.; Gao, X.; Bao, X.; Li, J.; Lang, H. Preparation of anisotropic bonded NdFeB/SmFeN hybrid magnets by mixing two different size powders. J. Magn. Magn. Mater. 2018, 457, 70–74. [Google Scholar] [CrossRef]
- Parmar, H.; Paranthaman, M.P.; Nlebedim, I.C. Bi-modal particle size distribution for high energy product hybrid Nd–Fe–B—Sm–Fe–N bonded magnets. AIP Adv. 2024, 14, 015329. [Google Scholar] [CrossRef]
- Luo, Q.; Luo, Y.; Wang, Z.; Peng, H.; Yan, W.; Yan, W.; Li, T.; Zhu, S.; Yu, D. Magnetic properties and magnetization mechanism of anisotropic NdFeB/SmFeN hybrid bonded magnets prepared with different coercivity NdFeB powders. J. Rare Earths 2023, 41, 1353–1359. [Google Scholar] [CrossRef]
Magnetic Powder | Br (T) | Hcj (KOe) | (BH)max (MGOe) | Density (ρ) (g/cm3) |
---|---|---|---|---|
Nd-Fe-B | 1.36 | 12.7 | 41 | 7.6 |
Sm-Fe-N | 1.32 | 10.3 | 38.2 | 7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, W.; Zhang, X.; Shi, Z.; Chen, H.; Zhu, Q.; Jiang, K.; Qiao, L.; Ying, Y.; Li, W.; Yu, J.; et al. Investigation of the Impact of SmFeN Doping on the Anisotropic NdFeB/SmFeN Composite Magnets. J. Compos. Sci. 2024, 8, 514. https://doi.org/10.3390/jcs8120514
Cai W, Zhang X, Shi Z, Chen H, Zhu Q, Jiang K, Qiao L, Ying Y, Li W, Yu J, et al. Investigation of the Impact of SmFeN Doping on the Anisotropic NdFeB/SmFeN Composite Magnets. Journal of Composites Science. 2024; 8(12):514. https://doi.org/10.3390/jcs8120514
Chicago/Turabian StyleCai, Wei, Xinqi Zhang, Zhiping Shi, Haibo Chen, Qiaomin Zhu, Kun Jiang, Liang Qiao, Yao Ying, Wangchang Li, Jing Yu, and et al. 2024. "Investigation of the Impact of SmFeN Doping on the Anisotropic NdFeB/SmFeN Composite Magnets" Journal of Composites Science 8, no. 12: 514. https://doi.org/10.3390/jcs8120514
APA StyleCai, W., Zhang, X., Shi, Z., Chen, H., Zhu, Q., Jiang, K., Qiao, L., Ying, Y., Li, W., Yu, J., Li, J., Zheng, J., & Che, S. (2024). Investigation of the Impact of SmFeN Doping on the Anisotropic NdFeB/SmFeN Composite Magnets. Journal of Composites Science, 8(12), 514. https://doi.org/10.3390/jcs8120514