Exploring the Impact of Nanoclay on Epoxy Nanocomposites: A Comprehensive Review
<p>(<b>a</b>) Comparison of conventional composites and polymer nanocomposites, (<b>b</b>) schematic representation of thermoset polymer, (<b>c</b>) schematic representation of thermoplastic polymer, and (<b>d</b>) surface-to-volume ratios of frequently used particle reinforcements and shapes.</p> "> Figure 2
<p>A graphic representation of the elements of the 3-D phase transition between the fiber and matrix [<a href="#B30-jcs-08-00506" class="html-bibr">30</a>].</p> "> Figure 3
<p>(<b>a</b>) Structure of sodium montmorillonite [<a href="#B64-jcs-08-00506" class="html-bibr">64</a>] and (<b>b</b>) organic modification of nanoclay [<a href="#B2-jcs-08-00506" class="html-bibr">2</a>].</p> "> Figure 4
<p>Types of nanoclay dispersion in polymers and their associated TEM, XRD, and schematic micrographs (<b>a</b>–<b>c</b>) phase-separated/immiscible, (<b>d</b>–<b>f</b>) intercalated, and (<b>g</b>–<b>i</b>) exfoliated morphologies [<a href="#B64-jcs-08-00506" class="html-bibr">64</a>].</p> "> Figure 5
<p>(<b>a</b>) Classification of processing of clay–polymer nanocomposites, (<b>b</b>) melt intercalation synthesis of clay–polymer composites, (<b>c</b>) in situ template synthesis of clay–polymer composites, and (<b>d</b>) in situ polymerization synthesis of clay–polymer composites [<a href="#B83-jcs-08-00506" class="html-bibr">83</a>].</p> "> Figure 6
<p>(<b>a</b>) Diagram depicts the intercalated/exfoliation procedure, illustrating the forces exerted on a pair of nanoclay platelets, modified nanoclay, epoxy intercalated state, and the forces acting on two-particle tactoids, (<b>b</b>) figure illustrating the correlation between the energy of ionic bonding and the positioning of the clay platelets within the tactoids [<a href="#B103-jcs-08-00506" class="html-bibr">103</a>].</p> "> Figure 7
<p>(<b>a</b>,<b>b</b>) XRD patterns of pristine epoxy, nanoclay, and their nanocomposites [<a href="#B117-jcs-08-00506" class="html-bibr">117</a>,<a href="#B118-jcs-08-00506" class="html-bibr">118</a>]; (<b>c</b>) TEM micrographs of 3 wt.% nanoclay reinforced epoxy nanocomposite [<a href="#B102-jcs-08-00506" class="html-bibr">102</a>]; and (<b>d</b>) TEM micrographs of epoxy nanocomposite containing 5 wt.% and 10 wt.% nanoclay [<a href="#B116-jcs-08-00506" class="html-bibr">116</a>].</p> "> Figure 8
<p>(<b>a</b>,<b>b</b>) Influence of modified clay loading on tensile and impact strength at ambient and at 77 K temperature [<a href="#B123-jcs-08-00506" class="html-bibr">123</a>], (<b>c</b>,<b>d</b>) TGA curves of epoxy-containing various loading of hydrated/dehydrated sepiolite [<a href="#B138-jcs-08-00506" class="html-bibr">138</a>], (<b>e</b>) illustration of a zigzag pathway of a liquid/gas through clay–epoxy nanocomposites.</p> ">
Abstract
:1. Introduction
2. Nanocomposite Constituents
2.1. Matrix
Matrix Material | Density (g/cm3) | Glass Transition Temperature (°C) | Tensile Strength (MPa) | Flexural Strength (MPa) | Compressive Strength (MPa) |
---|---|---|---|---|---|
Epoxy | 1.15–1.3 | 37–127 | 27–200 | 74–325 | 116–404 |
Vinyl ester | 1.03–1.15 | 55–145 | 16–95 | 60–163 | 82 |
Unsaturated polyester | 1.1–1.2 | 94–125 | 22–85 | 67–113 | 104–131 |
High density polyethylene | 0.94–1.0 | −113–−133 | 13–51 | 25–40 | 20 |
Polypropylene | 0.84–0.91 | −9–−15 | 26–32 | 41 | 40 |
Poly(ethylene terephthalate) | 1.3–1.4 | 76–88 | 24–41.4 | 69–78 | 80 |
Polyurethane | 1.10–1.25 | −19–−60 | 7.6–66 | 20–120 | – |
Ethylene-propylene diene terpolymer | 0.85–0.90 | −48–−69 | 8.8–25 | 18–23 | – |
2.2. Reinforcement
Material | Density (g/cm3) | Tensile Strength (GPa) | Young’s Modulus (GPa) |
---|---|---|---|
Nanoclay | 2.0–2.7 | 0.05–0.19 | 180–380 |
Graphene | 2.7 | 130.5 | 1000 |
Single-walled/multi-walled carbon nanotubes | 0.7–1.7 | 100–200 | 1000 |
Carbon fiber | 1.75 | 3.5 | 230 |
Kevlar fiber | 1.44 | 3.6 | 60 |
Glass fiber | 2.6 | 3.4 | 22 |
2.3. Interface
3. Polymer Matrix Nanocomposites
4. Materials for Polymer Nanocomposites
4.1. Epoxy Resin
4.2. Nanoclay
5. Structure, Characteristics, and Surface Modification of Nanoclay (Montmorillonite)
2:1 Phyllosilicate | General Formula |
---|---|
Montmorillonite | Mx(Al4–xMgx)Si8O20(OH)4 |
Hectorite | Mx(Mg6–xLix)Si8O20(OH)4 |
Saponite | MxMg6(Si8–xAlx)O20(OH)4 |
6. Morphologies of Polymer Clay Nanocomposite Systems
6.1. Phase-Separated Micro-Composite or Immiscible Nanocomposite
6.2. Intercalated Nanocomposites
6.3. Exfoliated Nanocomposites
7. Fabrication of Clay–Polymer Nanocomposites
7.1. Intercalation of Polymer or Prepolymer from Solution
7.2. Melt Intercalation
7.3. In Situ Template Synthesis
7.4. In Situ Intercalative Polymerization
8. Epoxy Clay Nanocomposites
8.1. Exfoliation Mechanism in Epoxy Clay Nanocomposite Systems
8.2. Influence of Various Curing Agents on Morphology of Clay/Epoxy Nanocomposites
8.3. Influence of Various Processing Techniques on Morphology of Clay–Epoxy Nanocomposites
8.4. Performance of Clay–Epoxy Nanocomposites
8.4.1. Mechanical Performance
8.4.2. Thermal Performance
8.4.3. Barrier Properties
8.4.4. Applications
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 2009, 12, 1–39. [Google Scholar] [CrossRef]
- Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui, D. Epoxy clay nanocomposites—Processing, properties and applications: A review. Compos. Part B Eng. 2013, 45, 308–320. [Google Scholar] [CrossRef]
- Kalendova, A.; Kupkova, J.; Urbaskova, M.; Merinska, D. Applications of Clays in Nanocomposites and Ceramics. Minerals 2024, 14, 93. [Google Scholar] [CrossRef]
- Wang, R.; Xiong, Y.; Yang, K.; Zhang, T.; Zhang, F.; Xiong, B.; Hao, Y.; Zhang, H.; Chen, Y.; Tang, J. Advanced progress on the significant influences of multi-dimensional nanofillers on the tribological performance of coatings. RSC Adv. 2023, 13, 19981–20022. [Google Scholar] [CrossRef]
- Wu, W.; Liu, L.; Goksen, G.; Demir, D.; Shao, P. Multidimensional (0D-3D) nanofillers: Fascinating materials in the field of bio-based food active packaging. Food Res. Int. 2022, 157, 111446. [Google Scholar] [CrossRef]
- Byakodi, M.; Shrikrishna, N.S.; Sharma, R.; Bhansali, S.; Mishra, Y.; Kaushik, A.; Gandhi, S. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. Biosens. Bioelectron. X 2022, 12, 100284. [Google Scholar] [CrossRef]
- Crosby, A.J.; Lee, J.Y. Polymer nanocomposites: The “nano” effect on mechanical properties. Polym. Rev. 2007, 47, 217–229. [Google Scholar] [CrossRef]
- Muralishwara, K.; Sudhakar, Y.N.; Kini, U.A.; Sharma, S.; Gurumurthy, B.M. Moisture absorption and spectroscopic studies of epoxy clay nanocomposite. Polym. Bull. 2022, 79, 5587–5611. [Google Scholar] [CrossRef]
- Fakhreddini-Najafabadi, S.; Torabi, M.; Taheri-Behrooz, F. An investigation on the effects of synthesis on the mechanical properties of nanoclay/epoxy. J. Mater. Res. Technol. 2021, 15, 5375–5395. [Google Scholar] [CrossRef]
- Ardebili, A.; Alaei, M.H.; Kaveh, A.; Jam, J.E. Permeability and mechanical properties of nanoclay/epoxy liner used in type IV liquid oxygen vessel: Experimental and numerical study. Iran. Polym. J. 2024, 33, 1351–1367. [Google Scholar] [CrossRef]
- Geng, J.; Qin, J.; He, J. Preparation of Intercalated Organic Montmorillonite DOPO-MMT by Melting Method and Its Effect on Flame Retardancy to Epoxy Resin. Polymers 2021, 13, 3496. [Google Scholar] [CrossRef]
- Xavier, J.R.; Vinodhini, S.P.; Srinivasan, N. Effects of Incorporating Silanized Nanoclay on the Barrier, Hydrophobic and Mechanical Properties of Epoxy Resin in Chloride Environment. Ind. Eng. Chem. Res. 2022, 61, 6973–6986. [Google Scholar] [CrossRef]
- Al-Qadhi, M.; Merah, N.; Gasem, Z.M. Mechanical properties and water uptake of epoxy–clay nanocomposites containing different clay loadings. J. Mater. Sci. 2013, 48, 3798–3804. [Google Scholar] [CrossRef]
- Bashar, M.; Mertiny, P.; Sundararaj, U. Effect of Nanocomposite Structures on Fracture Behavior of Epoxy-Clay Nanocomposites Prepared by Different Dispersion Methods. J. Nanomater. 2014, 2014, 312813. [Google Scholar] [CrossRef]
- Bindu Sharmila, T.K.; Ayswarya, E.P.; Abraham, B.T.; Sabura Begum, P.M.; Thachil, E.T. Fabrication of partially exfoliated and disordered intercalated cloisite epoxy nanocomposites via in situ polymerization: Mechanical, dynamic mechanical, thermal and barrier properties. Appl. Clay Sci. 2014, 102, 220–230. [Google Scholar] [CrossRef]
- Vijayan, P.P.; Harikrishnan, M.G.; Puglia, D.; Vijayan, P.P.; Kenny, J.M.; Thomas, S. Solvent Uptake of Liquid Rubber Toughened Epoxy/Clay Nanocomposites. Adv. Polym. Technol. 2016, 35, 21531. [Google Scholar] [CrossRef]
- Kim, S.-H.; Park, S.-J.; Lee, S.-Y.; Park, S.-J. Amine functionalization on thermal and mechanical behaviors of graphite nanofibers-loaded epoxy composites. J. Mater. Sci. Technol. 2023, 151, 80–88. [Google Scholar] [CrossRef]
- Callister, W.D.; Rethwisch, D.G.; Blicblau, A.; Bruggeman, K.; Cortie, M.; Long, J.; Hart, J.; Marceau, R.; Mitchell, R. Materials Science and Engineering: An Introduction; John Wiley & Sons: New York, NY, USA, 2007; Volume 7. [Google Scholar]
- Harris, B. Engineering Composite Materials; IoM: London, UK, 1999. [Google Scholar]
- Alarifi, I.M. A comprehensive review on advancements of elastomers for engineering applications. Adv. Ind. Eng. Polym. Res. 2023, 6, 451–464. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Polymers; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Huang, C.; Qian, X.; Yang, R. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Rep. 2018, 132, 1–22. [Google Scholar] [CrossRef]
- Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A.A.; Abdel-Daiem, A. Different Technical Applications of Carbon Nanotubes. Nanoscale Res. Lett. 2015, 10, 358. [Google Scholar] [CrossRef]
- Srinivasa, M.; Rammohan, Y.; Sadashiva, M.; Santhosh, N. Effect of shock waves on the hardness of graphene reinforced aluminium composites. J. Polym. Compos. 2020, 8, 32–38. [Google Scholar]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Smaradhana, D.F.; Surojo, E.; Alnursyah, R. An Overview of Interface/Interphase Modification in Functional Composites. In Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials, Surakarta, Indonesia, 16–17 October 2019. [Google Scholar]
- Tal, N.Y.; Timor, Y.; Dodiuk, H.; Kenig, S. Polymer/Nanoparticle Interface in Polymer Nanocomposites: A Critical Review. Rev. Adhes. Adhes. 2021, 9, 368–400. [Google Scholar]
- Snipes, J.S.; Robinson, C.T.; Baxter, S.C. Effects of scale and interface on the three-dimensional micromechanics of polymer nanocomposites. J. Compos. Mater. 2011, 45, 2537–2546. [Google Scholar] [CrossRef]
- Pitsa, D.; Danikas, M.G. Interfaces features in polymer nanocomposites: A review of proposed models. Nano 2011, 6, 497–508. [Google Scholar] [CrossRef]
- Kim, J.-K.; Mai, Y.-W. Engineered Interfaces in Fiber Reinforced Composites; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Olad, A.; Azar, R.H.; Babaluo, A.A. Investigation on the mechanical and thermal properties of intercalated epoxy/layered silicate nanocomposites. Int. J. Polym. Mater. 2012, 61, 1035–1049. [Google Scholar] [CrossRef]
- Lim, S.; Chow, W. Fracture toughness enhancement of epoxy by organo-montmorillonite. Polym.-Plast. Technol. Eng. 2011, 50, 182–189. [Google Scholar] [CrossRef]
- Kinloch, A.; Taylor, A. Mechanical and fracture properties of epoxy/inorganic micro-and nano-composites. J. Mater. Sci. Lett. 2003, 22, 1439–1441. [Google Scholar] [CrossRef]
- Martinez, P.; Nutt, S. Flax–Reinforced Vitrimer Epoxy Composites Produced via RTM. J. Compos. Sci. 2024, 8, 275. [Google Scholar] [CrossRef]
- Mezeix, L.; Gupta, P.; Bouvet, C.; Wongtimnoi, K. Mechanical Characterization of Recyclable and Non-Recyclable Bio-Epoxy Resins for Aerospace Applications. J. Compos. Sci. 2024, 8, 191. [Google Scholar] [CrossRef]
- Ravindran, B.; Agathocleous, T.; Oswald-Tranta, B.; Fauster, E.; Feuchter, M. Impact Characteristics and Repair Approaches of Distinct Bio-Based Matrix Composites: A Comparative Analysis. J. Compos. Sci. 2024, 8, 126. [Google Scholar] [CrossRef]
- Anidha, S.; Mozhuguan Sekar, S.; Natarajan, E.; Muthukkumar, M.; Markandan, K.; Ang, C.K.; Franz, G. Preliminary Investigations and Support for the Mechanical and Dynamic Characteristics of a Natural Rubber Reinforcement in E-Glass/CNT/Epoxy Composite. J. Compos. Sci. 2024, 8, 140. [Google Scholar] [CrossRef]
- Puttaswamygowda, P.H.; Sharma, S.; Ullal, A.K.; Shettar, M. Synergistic Enhancement of the Mechanical Properties of Epoxy-Based Coir Fiber Composites through Alkaline Treatment and Nanoclay Reinforcement. J. Compos. Sci. 2024, 8, 66. [Google Scholar] [CrossRef]
- Papadopoulos, L.; Terzopoulou, Z.; Vlachopoulos, A.; Klonos, P.A.; Kyritsis, A.; Tzetzis, D.; Papageorgiou, G.Z.; Bikiaris, D. Synthesis and characterization of novel polymer/clay nanocomposites based on poly (butylene 2,5-furan dicarboxylate). Appl. Clay Sci. 2020, 190, 105588. [Google Scholar] [CrossRef]
- Kotsilkova, R. Performance of Thermoset Nanocomposites; Smithers Rapra Technology Limited Shawbury: Shropshire, UK, 2007. [Google Scholar]
- Shundo, A.; Aoki, M.; Yamamoto, S.; Tanaka, K. Cross-Linking Effect on Segmental Dynamics of Well-Defined Epoxy Resins. Macromolecules 2021, 54, 5950–5956. [Google Scholar] [CrossRef]
- Liang, M.; Liu, X.; Liu, D.; Li, X.; Hu, X.; Feng, C.; Li, T.-T.; Lin, J.-H.; Chang, B.; Chen, J. A review of the curing rate and mechanical properties of epoxy resin on polymer matrix composites. J. Polym. Res. 2024, 31, 337. [Google Scholar] [CrossRef]
- Heng, Z.; Wang, L.; Chen, F.; Zhou, J.; Zhang, H.; Zhang, X.; Sun, T.; Ling, Y.; Xia, S.; Liang, M.; et al. In-situ constructing ultra-high-aspect-ratio core–shell nanostructures to achieve high-performance epoxy thermosets and their carbon fiber reinforced epoxy composites. Chem. Eng. J. 2022, 448, 137707. [Google Scholar] [CrossRef]
- Gu, H.; Ma, C.; Gu, J.; Guo, J.; Yan, X.; Huang, J.; Zhang, Q.; Guo, Z. An overview of multifunctional epoxy nanocomposites. J. Mater. Chem. C 2016, 4, 5890–5906. [Google Scholar] [CrossRef]
- Lorenz, N.; Müller-Pabel, M.; Gerritzen, J.; Müller, J.; Gröger, B.; Schneider, D.; Fischer, K.; Gude, M.; Hopmann, C. Characterization and modeling cure- and pressure-dependent thermo-mechanical and shrinkage behavior of fast curing epoxy resins. Polym. Test. 2022, 108, 107498. [Google Scholar] [CrossRef]
- Vázquez, L.S.; López-Beceiro, J.; Díaz-Díaz, A.-M.; Álvarez-García, A.; Pereira, M.; Artiaga, R. Comparison by thermal analysis of Joule-cured versus oven-cured composites. J. Therm. Anal. Calorim. 2024, 149, 10487–10495. [Google Scholar] [CrossRef]
- Guan, C.; Zhan, L.; Sun, F.; Yao, S.; Zhong, S.; Wang, B. Study on the heating mechanism and macro/micro properties of composite materials under microwave curing. Polym. Compos. 2024, 45, 1405–1421. [Google Scholar] [CrossRef]
- Morancho, J.M.; Ramis, X.; Fernández-Francos, X.; Konuray, O.; Salla, J.M.; Serra, À. Dual curing of an epoxy resin with dicarboxylic acids. J. Therm. Anal. Calorim. 2020, 142, 607–615. [Google Scholar] [CrossRef]
- Patel, A.; Kravchenko, O.; Manas-Zloczower, I. Effect of Curing Rate on the Microstructure and Macroscopic Properties of Epoxy Fiberglass Composites. Polymers 2018, 10, 125. [Google Scholar] [CrossRef]
- Guo, H.; Wang, B.; Fu, X.; Li, N.; Li, G.; Zheng, G.; Wang, Z.; Liu, C.; Chen, Y.; Weng, Z.; et al. A New Strategy to Improve the Toughness of Epoxy Thermosets—By Introducing Poly(ether nitrile ketone)s Containing Phthalazinone Structures. Materials 2023, 16, 2878. [Google Scholar] [CrossRef]
- Li, S.; Chen, D.; Yuan, Y.; Gao, C.; Cui, Y.; Wang, H.; Liu, X.; Liu, M.; Wu, Z. Influence of flexible molecular structure on the cryogenic mechanical properties of epoxy matrix and carbon fiber/epoxy composite laminate. Mater. Des. 2020, 195, 109028. [Google Scholar] [CrossRef]
- Yamamoto, S.; Kuwahara, R.; Tanaka, K. Effects of Chemistry of Silicon Surfaces on the Curing Process and Adhesive Strength for Epoxy Resin. ACS Appl. Polym. Mater. 2022, 4, 6038–6046. [Google Scholar] [CrossRef]
- Qu, C.; Zhang, X.; Wang, D.; Fan, X.; Li, H.; Liu, C.; Feng, H.; Wang, R.; Guo, K.; Tian, Y.; et al. Residual stress and thermal properties of rubber-modified epoxy systems for semiconductor package. J. Appl. Polym. Sci. 2022, 139, 51786. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, X.; Ju, F.; Tsai, S.-B. A Study on Curing Kinetics of Nano-Phase Modified Epoxy Resin. Sci. Rep. 2018, 8, 3045. [Google Scholar] [CrossRef]
- Babayan, E.; Nguyen, H. Epoxy Matrix Toughened with Polyimide Thermoplastic Resin. European Patent 0455755, 10 August 1990. [Google Scholar]
- May, C. Epoxy Resins: Chemistry and Technology; Routledge: London, UK, 2018. [Google Scholar]
- Ashcroft, W.; Ellis, B. Chemistry and Technology of Epoxy Resins. Ellis, B., Ed.; Blackie Academic & Professional: London, UK, 1993; pp. 37–71. [Google Scholar]
- Kumar, S.; Krishnan, S.; Mohanty, S.; Nayak, S.K. Synthesis and characterization of petroleum and biobased epoxy resins: A review. Polym. Int. 2018, 67, 815–839. [Google Scholar] [CrossRef]
- Capricho, J.C.; Fox, B.; Hameed, N. Multifunctionality in Epoxy Resins. Polym. Rev. 2020, 60, 1–41. [Google Scholar] [CrossRef]
- Ligon-Auer, S.C.; Schwentenwein, M.; Gorsche, C.; Stampfl, J.; Liska, R. Toughening of photo-curable polymer networks: A review. Polym. Chem. 2016, 7, 257–286. [Google Scholar] [CrossRef]
- Abulyazied, D.E.; Ene, A. An Investigative Study on the Progress of Nanoclay-Reinforced Polymers: Preparation, Properties, and Applications: A Review. Polymers 2021, 13, 4401. [Google Scholar] [CrossRef]
- Ke, Y.; Stroeve, P. Polymer-Layered Silicate and Silica Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Pavlidou, S.; Papaspyrides, C. A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Liu, J.; Boo, W.-J.; Clearfield, A.; Sue, H.-J. Intercalation and exfoliation: A review on morphology of polymer nanocomposites reinforced by inorganic layer structures. Mater. Manuf. Process. 2006, 21, 143–151. [Google Scholar] [CrossRef]
- Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar]
- Blumstein, A. Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. J. Polym. Sci. Part A Gen. Pap. 1965, 3, 2665–2672. [Google Scholar] [CrossRef]
- Krishnamoorti, R.; Vaia, R.A.; Giannelis, E.P. Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 1996, 8, 1728–1734. [Google Scholar] [CrossRef]
- Fornes, T.; Paul, D. Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 2003, 44, 4993–5013. [Google Scholar] [CrossRef]
- Heinz, H.; Vaia, R.; Krishnamoorti, R.; Farmer, B. Self-assembly of alkylammonium chains on montmorillonite: Effect of chain length, head group structure, and cation exchange capacity. Chem. Mater. 2007, 19, 59–68. [Google Scholar] [CrossRef]
- Paul, D.; Zeng, Q.; Yu, A.; Lu, G. The interlayer swelling and molecular packing in organoclays. J. Colloid Interface Sci. 2005, 292, 462–468. [Google Scholar] [CrossRef]
- Shelly, D.; Nanda, T.; Mehta, R. Addition of compatibilized nanoclay to GFRCs for improved izod impact strength and tensile properties. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235, 2022–2035. [Google Scholar] [CrossRef]
- Bruce, A.N.; Lieber, D.; Hua, I.; Howarter, J.A. Rational interface design of epoxy–organoclay nanocomposites: Role of structure-property relationship for silane modifiers. J. Colloid Interface Sci. 2014, 419, 73–78. [Google Scholar] [CrossRef]
- Asgari, M.; Sundararaj, U. Silane functionalization of sodium montmorillonite nanoclay: The effect of dispersing media on intercalation and chemical grafting. Appl. Clay Sci. 2018, 153, 228–238. [Google Scholar] [CrossRef]
- LeBaron, P.C.; Wang, Z.; Pinnavaia, T.J. Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 1999, 15, 11–29. [Google Scholar] [CrossRef]
- Zeng, Q.; Yu, A.; Lu, G.; Paul, D. Clay-based polymer nanocomposites: Research and commercial development. J. Nanosci. Nanotechnol. 2005, 5, 1574–1592. [Google Scholar] [CrossRef]
- Kim, G.-M.; Lee, D.-H.; Hoffmann, B.; Kressler, J.; Stöppelmann, G. Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer 2001, 42, 1095–1100. [Google Scholar] [CrossRef]
- Varlot, K.; Reynaud, E.; Kloppfer, M.; Vigier, G.; Varlet, J. Clay-reinforced polyamide: Preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 1360–1370. [Google Scholar] [CrossRef]
- Weon, J.-I.; Sue, H.-J. Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 2005, 46, 6325–6334. [Google Scholar] [CrossRef]
- Chee, S.S.; Jawaid, M.; Sultan, M.T.H.; Alothman, O.Y.; Abdullah, L.C. Effects of nanoclay on physical and dimensional stability of Bamboo/Kenaf/nanoclay reinforced epoxy hybrid nanocomposites. J. Mater. Res. Technol. 2020, 9, 5871–5880. [Google Scholar] [CrossRef]
- Kim, S.W.; Jo, W.H.; Lee, M.S.; Ko, M.B.; Jho, J.Y. Preparation of clay-dispersed poly(styrene-co-acrylonitrile) nanocomposites using poly(ϵ-caprolactone) as a compatibilizer. Polymer 2001, 42, 9837–9842. [Google Scholar] [CrossRef]
- Beyer, G. Nanocomposites—A new class of flame retardants. Plast. Addit. Compd. 2009, 11, 16–21. [Google Scholar] [CrossRef]
- Uysal Unalan, I.; Cerri, G.; Marcuzzo, E.; Cozzolino, C.A.; Farris, S. Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): Current applications and future opportunities in the food packaging sector. RSC Adv. 2014, 4, 29393–29428. [Google Scholar] [CrossRef]
- Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater. 2006, 40, 1511–1575. [Google Scholar] [CrossRef]
- Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. Synthesis and properties of polyimide–clay hybrid. J. Polym. Sci. Part A Polym. Chem. 1993, 31, 2493–2498. [Google Scholar] [CrossRef]
- Rehab, A.; Salahuddin, N. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay. Mater. Sci. Eng. A 2005, 399, 368–376. [Google Scholar] [CrossRef]
- Kornmann, X.; Lindberg, H.; Berglund, L.A. Synthesis of epoxy–clay nanocomposites: Influence of the nature of the clay on structure. Polymer 2001, 42, 1303–1310. [Google Scholar] [CrossRef]
- Jeon, H.G.; Jung, H.T.; Lee, S.W.; Hudson, S.D. Morphology of polymer/silicate nanocomposites High density polyethylene and a nitrile copolymer. Polym. Bull. 1998, 41, 107–113. [Google Scholar] [CrossRef]
- Lim, S.-H.; Dasari, A.; Wang, G.-T.; Yu, Z.-Z.; Mai, Y.-W.; Yuan, Q.; Liu, S.; Yong, M.S. Impact fracture behaviour of nylon 6-based ternary nanocomposites. Compos. Part B Eng. 2010, 41, 67–75. [Google Scholar] [CrossRef]
- Ferreira, J.A.M.; Reis, P.N.B.; Costa, J.D.M.; Richardson, B.C.H.; Richardson, M.O.W. A study of the mechanical properties on polypropylene enhanced by surface treated nanoclays. Compos. Part B Eng. 2011, 42, 1366–1372. [Google Scholar] [CrossRef]
- Timmaraju, M.V.; Gnanamoorthy, R.; Kannan, K. Influence of imbibed moisture and organoclay on tensile and indentation behavior of polyamide 66/hectorite nanocomposites. Compos. Part B Eng. 2011, 42, 466–472. [Google Scholar] [CrossRef]
- Su, F.-H.; Huang, H.-X.; Zhao, Y. Microstructure and mechanical properties of polypropylene/poly (ethylene-co-octene copolymer)/clay ternary nanocomposites prepared by melt blending using supercritical carbon dioxide as a processing aid. Compos. Part B Eng. 2011, 42, 421–428. [Google Scholar] [CrossRef]
- Vaia, R.A.; Giannelis, E.P. Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment. Macromolecules 1997, 30, 8000–8009. [Google Scholar] [CrossRef]
- Tomasko, D.L.; Han, X.; Liu, D.; Gao, W. Supercritical fluid applications in polymer nanocomposites. Curr. Opin. Solid State Mater. Sci. 2003, 7, 407–412. [Google Scholar] [CrossRef]
- Zanetti, M.; Lomakin, S.; Camino, G. Polymer layered silicate nanocomposites. Macromol. Mater. Eng. 2000, 279, 1–9. [Google Scholar] [CrossRef]
- Yalcin, B.; Cakmak, M. Superstructural hierarchy developed in coupled high shear/high thermal gradient conditions of injection molding in nylon 6 nanocomposites. Polymer 2004, 45, 2691–2710. [Google Scholar] [CrossRef]
- Okamoto, M.; Morita, S.; Kotaka, T. Dispersed structure and ionic conductivity of smectic clay/polymer nanocomposites. Polymer 2001, 42, 2685–2688. [Google Scholar] [CrossRef]
- Park, J.H.; Jana, S.C. Mechanism of exfoliation of nanoclay particles in epoxy–clay nanocomposites. Macromolecules 2003, 36, 2758–2768. [Google Scholar] [CrossRef]
- Wu, C.L.; Zhang, M.Q.; Rong, M.Z.; Friedrich, K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 2002, 62, 1327–1340. [Google Scholar] [CrossRef]
- Chin, I.-J.; Thurn-Albrecht, T.; Kim, H.-C.; Russell, T.P.; Wang, J. On exfoliation of montmorillonite in epoxy. Polymer 2001, 42, 5947–5952. [Google Scholar] [CrossRef]
- Ke, Y.; Lü, J.; Yi, X.; Zhao, J.; Qi, Z. The effects of promoter and curing process on exfoliation behavior of epoxy/clay nanocomposites. J. Appl. Polym. Sci. 2000, 78, 808–815. [Google Scholar] [CrossRef]
- Dean, D.; Walker, R.; Theodore, M.; Hampton, E.; Nyairo, E. Chemorheology and properties of epoxy/layered silicate nanocomposites. Polymer 2005, 46, 3014–3021. [Google Scholar] [CrossRef]
- Chen, C.; Tolle, T.B. Fully exfoliated layered silicate epoxy nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 3981–3986. [Google Scholar] [CrossRef]
- Wang, Q.; Song, C.; Lin, W. Study of the exfoliation process of epoxy–clay nanocomposites by different curing agents. J. Appl. Polym. Sci. 2003, 90, 511–517. [Google Scholar] [CrossRef]
- Tolle, T.B.; Anderson, D.P. Morphology development in layered silicate thermoset nanocomposites. Compos. Sci. Technol. 2002, 62, 1033–1041. [Google Scholar] [CrossRef]
- Brown, J.M.; Curliss, D.; Vaia, R.A. Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem. Mater. 2000, 12, 3376–3384. [Google Scholar] [CrossRef]
- Lan, T.; Kaviratna, P.D.; Pinnavaia, T.J. On the nature of polyimide-clay hybrid composites. Chem. Mater. 1994, 6, 573–575. [Google Scholar] [CrossRef]
- Lan, T.; Kaviratna, P.D.; Pinnavaia, T.J. Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem. Mater. 1995, 7, 2144–2150. [Google Scholar] [CrossRef]
- United States Department of Commerce. Microstructure of Ceramic Materials. In Proceedings of the American Ceramic Society Symposium, Pittsburgh, PA, USA, 27–28 April 1963. [Google Scholar]
- Jiankun, L.; Yucai, K.; Zongneng, Q.; Xiao-Su, Y. Study on intercalation and exfoliation behavior of organoclays in epoxy resin. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 115–120. [Google Scholar] [CrossRef]
- Xu, W.B.; Bao, S.P.; He, P.S. Intercalation and exfoliation behavior of epoxy resin/curing agent/montmorillonite nanocomposite. J. Appl. Polym. Sci. 2002, 84, 842–849. [Google Scholar] [CrossRef]
- Kong, D.; Park, C.E. Real time exfoliation behavior of clay layers in epoxy–clay nanocomposites. Chem. Mater. 2003, 15, 419–424. [Google Scholar] [CrossRef]
- Isik, I.; Yilmazer, U.; Bayram, G. Impact modified epoxy/montmorillonite nanocomposites: Synthesis and characterization. Polymer 2003, 44, 6371–6377. [Google Scholar] [CrossRef]
- Bakar, M.; Białkowska, A.; Molenda, J.; Piasek, J. Preparation and properties evaluation of thermoplastic modified epoxy nanocomposites. J. Macromol. Sci. Part B 2012, 51, 1159–1171. [Google Scholar] [CrossRef]
- Lu, H.; Liang, G.; Ma, X.; Zhang, B.; Chen, X. Epoxy/clay nanocomposites: Further exfoliation of newly modified clay induced by shearing force of ball milling. Polym. Int. 2004, 53, 1545–1553. [Google Scholar] [CrossRef]
- Yasmin, A.; Abot, J.L.; Daniel, I.M. Processing of clay/epoxy nanocomposites by shear mixing. Scr. Mater. 2003, 49, 81–86. [Google Scholar] [CrossRef]
- Ho, M.-W.; Lam, C.-K.; Lau, K.-t.; Ng, D.H.; Hui, D. Mechanical properties of epoxy-based composites using nanoclays. Compos. Struct. 2006, 75, 415–421. [Google Scholar] [CrossRef]
- Kusmono, Wildan, M.W.; Mohd Ishak, Z.A. Preparation and properties of clay-reinforced epoxy nanocomposites. Int. J. Polym. Sci. 2013, 2013, 690675. [Google Scholar]
- Al-Qadhi, M.; Merah, N.; Gasem, Z.; Abu-Dheir, N.; Aleem, B.A. Effect of water and crude oil on mechanical and thermal properties of epoxy-clay nanocomposites. Polym. Compos. 2014, 35, 318–326. [Google Scholar] [CrossRef]
- Zunjarrao, S.; Sriraman, R.; Singh, R. Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites. J. Mater. Sci. 2006, 41, 2219–2228. [Google Scholar] [CrossRef]
- Wang, K.; Chen, L.; Wu, J.; Toh, M.L.; He, C.; Yee, A.F. Epoxy nanocomposites with highly exfoliated clay: Mechanical properties and fracture mechanisms. Macromolecules 2005, 38, 788–800. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.; Wu, J.; Chen, L.; He, C. Preparation of highly exfoliated epoxy/clay nanocomposites by “slurry compounding”: Process and mechanisms. Langmuir 2005, 21, 3613–3618. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-P.; Yang, G.; Xu, G.; Fu, S.-Y. Cryogenic mechanical behaviors of MMT/epoxy nanocomposites. Compos. Sci. Technol. 2007, 67, 2934–2940. [Google Scholar] [CrossRef]
- Mohan, T.; Kanny, K.; Velmurugan, R. Epoxy—Clay nanocomposites—Effect of curing temperature in mechanical properties. Int. J. Plast. Technol. 2009, 13, 123–132. [Google Scholar] [CrossRef]
- Daniel, I.; Miyagawa, H.; Gdoutos, E.; Luo, J. Processing and characterization of epoxy/clay nanocomposites. Exp. Mech. 2003, 43, 348–354. [Google Scholar] [CrossRef]
- Luo, J.-J.; Daniel, I.M. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 2003, 63, 1607–1616. [Google Scholar] [CrossRef]
- Lam, C.-K.; Cheung, H.-y.; Lau, K.-t.; Zhou, L.-m.; Ho, M.-w.; Hui, D. Cluster size effect in hardness of nanoclay/epoxy composites. Compos. Part B Eng. 2005, 36, 263–269. [Google Scholar] [CrossRef]
- Miyagawa, H.; Foo, K.H.; Daniel, I.M.; Drzal, L.T. Mechanical properties and failure surface morphology of amine-cured epoxy/clay nanocomposites. J. Appl. Polym. Sci. 2005, 96, 281–287. [Google Scholar] [CrossRef]
- Miyagawa, H.; Drzal, L.T. The effect of chemical modification on the fracture toughness of montmorillonite clay/epoxy nanocomposites. J. Adhes. Sci. Technol. 2004, 18, 1571–1588. [Google Scholar] [CrossRef]
- Qi, B.; Zhang, Q.; Bannister, M.; Mai, Y.-W. Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives. Compos. Struct. 2006, 75, 514–519. [Google Scholar] [CrossRef]
- Wang, M.; Fan, X.; Thitsartarn, W.; He, C. Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughnesses. Polymer 2015, 58, 43–52. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, H.; Gong, F.; Feng, M.; Zhang, S.; Yang, M. Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym. Degrad. Stab. 2005, 87, 183–189. [Google Scholar] [CrossRef]
- Peeterbroeck, S.; Alexandre, M.; Jérôme, R.; Dubois, P. Poly (ethylene-co-vinyl acetate)/clay nanocomposites: Effect of clay nature and organic modifiers on morphology, mechanical and thermal properties. Polym. Degrad. Stab. 2005, 90, 288–294. [Google Scholar] [CrossRef]
- Zhu, J.; Uhl, F.M.; Morgan, A.B.; Wilkie, C.A. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem. Mater. 2001, 13, 4649–4654. [Google Scholar] [CrossRef]
- Ray, S.S.; Bousmina, M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 2005, 50, 962–1079. [Google Scholar]
- Becker, O.; Varley, R.J.; Simon, G.P. Thermal stability and water uptake of high performance epoxy layered silicate nanocomposites. Eur. Polym. J. 2004, 40, 187–195. [Google Scholar] [CrossRef]
- Zanetti, M.; Camino, G.; Thomann, R.; Mülhaupt, R. Synthesis and thermal behaviour of layered silicate–EVA nanocomposites. Polymer 2001, 42, 4501–4507. [Google Scholar] [CrossRef]
- Zotti, A.; Borriello, A.; Ricciardi, M.; Antonucci, V.; Giordano, M.; Zarrelli, M. Effects of sepiolite clay on degradation and fire behaviour of a bisphenol A-based epoxy. Compos. Part B Eng. 2015, 73, 139–148. [Google Scholar] [CrossRef]
- Kaya, E.; Tanoğlu, M.; Okur, S. Layered clay/epoxy nanocomposites: Thermomechanical, flame retardancy, and optical properties. J. Appl. Polym. Sci. 2008, 109, 834–840. [Google Scholar] [CrossRef]
- Miyagawa, H.; Rich, M.J.; Drzal, L.T. Amine-cured epoxy/clay nanocomposites. I. Processing and chemical characterization. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 4384–4390. [Google Scholar] [CrossRef]
- Ying, Z.; Xianggao, L.; Bin, C.; Fei, C.; Jing, F. Highly exfoliated epoxy/clay nanocomposites: Mechanism of exfoliation and thermal/mechanical properties. Compos. Struct. 2015, 132, 44–49. [Google Scholar] [CrossRef]
- Liu, T.; Tjiu, W.C.; Tong, Y.; He, C.; Goh, S.S.; Chung, T.S. Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. J. Appl. Polym. Sci. 2004, 94, 1236–1244. [Google Scholar] [CrossRef]
- Triantafillidis, C.S.; LeBaron, P.C.; Pinnavaia, T.J. Homostructured mixed inorganic–organic ion clays: A new approach to epoxy polymer–exfoliated clay nanocomposites with a reduced organic modifier content. Chem. Mater. 2002, 14, 4088–4095. [Google Scholar] [CrossRef]
- Becker, O.; Varley, R.; Simon, G. Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 2002, 43, 4365–4373. [Google Scholar] [CrossRef]
- Chen, K.H.; Yang, S.M. Synthesis of epoxy–montmorillonite nanocomposite. J. Appl. Polym. Sci. 2002, 86, 414–421. [Google Scholar] [CrossRef]
- Chung, S.K.; Wie, J.J.; Park, B.Y.; Kim, S.C. Synthesis of Reactive Organifier for the Epoxy/layered Silicate Nanocomposite and the Properties of the Epoxy Nanocomposites. J. Macromol. Sci. Part A 2008, 46, 205–214. [Google Scholar] [CrossRef]
- Gârea, S.-A.; Nicolescu, A.; Deleanu, C.; Iovu, H. New nanocomposites based on epoxy resins reinforced with modified montmorillonite. Int. J. Polym. Anal. Charact. 2010, 15, 497–508. [Google Scholar] [CrossRef]
- Ávila, A.F.; Yoshida, M.I.; Carvalho, M.G.R.; Dias, E.C.; de Ávila Junior, J. An investigation on post-fire behavior of hybrid nanocomposites under bending loads. Compos. Part B Eng. 2010, 41, 380–387. [Google Scholar] [CrossRef]
- Camino, G.; Tartaglione, G.; Frache, A.; Manferti, C.; Costa, G. Thermal and combustion behaviour of layered silicate–epoxy nanocomposites. Polym. Degrad. Stab. 2005, 90, 354–362. [Google Scholar] [CrossRef]
- Merah, N.; Ashraf, F.; Shaukat, M.M. Mechanical and Moisture Barrier Properties of Epoxy–Nanoclay and Hybrid Epoxy–Nanoclay Glass Fibre Composites: A Review. Polymers 2022, 14, 1620. [Google Scholar] [CrossRef]
- Nielsen, L.E. Models for the Permeability of Filled Polymer Systems. J. Macromol. Sci. Part A Chem. 1967, 1, 929–942. [Google Scholar] [CrossRef]
- Bharadwaj, R.K. Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites. Macromolecules 2001, 34, 9189–9192. [Google Scholar] [CrossRef]
- Mittal, V. Epoxy—Vermiculite Nanocomposites as Gas Permeation Barrier. J. Compos. Mater. 2008, 42, 2829–2839. [Google Scholar] [CrossRef]
- Khanbabaei, G.; Aalaie, J.; Rahmatpour, A.; Khoshniyat, A.; Gharabadian, M.A. Preparation and Properties of Epoxy-Clay Nanocomposites. J. Macromol. Sci. Part B 2007, 46, 975–986. [Google Scholar] [CrossRef]
- Zaarei, D.; Sarabi, A.A.; Sharif, F.; Gudarzi, M.M.; Kassiriha, S.M. Using of p-Phenylenediamine as Modifier of Montmorrilonite for Preparation of Epoxy-Clay Nanocomposites: Morphology and Solvent Resistance Properties. Polym.-Plast. Technol. Eng. 2010, 49, 285–291. [Google Scholar] [CrossRef]
- Kim, J.-K.; Hu, C.; Woo, R.S.C.; Sham, M.-L. Moisture barrier characteristics of organoclay–epoxy nanocomposites. Compos. Sci. Technol. 2005, 65, 805–813. [Google Scholar] [CrossRef]
- Kint, D.P.R.; Seeley, G.; Gio-Batta, M.; Burgess, A.N. Structure and Properties of Epoxy-Based Layered Silicate Nanocomposites. J. Macromol. Sci. Part B 2005, 44, 1021–1040. [Google Scholar] [CrossRef]
- Alamri, H.; Low, I.M. Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Mater. Des. 2012, 42, 214–222. [Google Scholar] [CrossRef]
- Bagherzadeh, M.R.; Mahdavi, F. Preparation of epoxy–clay nanocomposite and investigation on its anti-corrosive behavior in epoxy coating. Prog. Org. Coat. 2007, 60, 117–120. [Google Scholar] [CrossRef]
- Nanda, T.; Singh, K.; Shelly, D.; Mehta, R. Advancements in multi-scale filler reinforced epoxy nanocomposites for improved impact strength: A review. Crit. Rev. Solid State Mater. Sci. 2021, 46, 281–329. [Google Scholar] [CrossRef]
- Shelly, D.; Nanda, T.; Mehta, R. Addition of compatibilized nanoclay and UHMWPE fibers to epoxy based GFRPs for improved mechanical properties. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106371. [Google Scholar] [CrossRef]
- Shelly, D.; Nanda, T.; Mehta, R. Novel epoxy-based glass fiber reinforced composites containing compatibilized para-aramid fibers and silanized nanoclay for improved impact strength. Polym. Compos. 2022, 43, 1357–1370. [Google Scholar] [CrossRef]
- Shelly, D.; Nanda, T.; Mehta, R. Synergistic effect of compatibilized nanoclay/polyethylene fibers on the impact strength of epoxy-glass fiber nanocomposites. Polym. Compos. 2023, 44, 6528–6541. [Google Scholar] [CrossRef]
- Shelly, D.; Nanda, T.; Mehta, R. Reinforcement of compatibilized nanoclay/Inviya fibers to epoxy-based glass fiber nanocomposites for high-impact strength applications. Arch. Civ. Mech. Eng. 2023, 23, 84. [Google Scholar] [CrossRef]
- Shelly, D.; Lee, S.-Y.; Park, S.-J. Compatibilization of ultra-high molecular weight polyethylene (UHMWPE) fibers and their composites for superior mechanical performance: A concise review. Compos. Part B Eng. 2024, 275, 111294. [Google Scholar] [CrossRef]
- Raturi, M.; Singh, B.J.; Shelly, D.; Singh, K.; Nanda, T.; Mehta, R. Tensile behaviour and characterization of epoxy-clay-poly (ethylene terephthalate) nanocomposites. Mater. Res. Express 2019, 6, 115014. [Google Scholar] [CrossRef]
- Nanda, T.; Sharma, G.; Mehta, R.; Shelly, D.; Singh, K. Mechanisms for enhanced impact strength of epoxy based nanocomposites reinforced with silicate platelets. Mater. Res. Express 2019, 6, 065061. [Google Scholar] [CrossRef]
- Shelly, D.; Singh, K.; Nanda, T.; Mehta, R. Addition of nanomer clays to GFRPs for enhanced impact strength and fracture toughness. Mater. Res. Express 2018, 5, 105013. [Google Scholar] [CrossRef]
- Njuguna, J.; Pielichowski, K.; Alcock, J.R. Epoxy-Based Fibre Reinforced Nanocomposites. Adv. Eng. Mater. 2007, 9, 835–847. [Google Scholar] [CrossRef]
- Khan, S.U.; Munir, A.; Hussain, R.; Kim, J.-K. Fatigue damage behaviors of carbon fiber-reinforced epoxy composites containing nanoclay. Compos. Sci. Technol. 2010, 70, 2077–2085. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, H.-S. Waterproof characteristics of nanoclay/epoxy nanocomposite in adhesively bonded joints. Compos. Part B Eng. 2013, 55, 86–95. [Google Scholar] [CrossRef]
- Sancaktar, E.; Kuznicki, J. Nanocomposite adhesives: Mechanical behavior with nanoclay. Int. J. Adhes. Adhes. 2011, 31, 286–300. [Google Scholar] [CrossRef]
- Feldman, D. Polymer Nanocomposite Barriers. J. Macromol. Sci. Part A 2013, 50, 441–448. [Google Scholar] [CrossRef]
- Ianchis, R.; Rosca, I.D.; Ghiurea, M.; Spataru, C.I.; Nicolae, C.A.; Gabor, R.; Raditoiu, V.; Preda, S.; Fierascu, R.C.; Donescu, D. Synthesis and properties of new epoxy-organolayered silicate nanocomposites. Appl. Clay Sci. 2015, 103, 28–33. [Google Scholar] [CrossRef]
- Unuabonah, E.I.; Taubert, A. Clay–polymer nanocomposites (CPNs): Adsorbents of the future for water treatment. Appl. Clay Sci. 2014, 99, 83–92. [Google Scholar] [CrossRef]
- Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A 2008, 25, 241–258. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shelly, D.; Singhal, V.; Singh, S.; Nanda, T.; Mehta, R.; Lee, S.-Y.; Park, S.-J. Exploring the Impact of Nanoclay on Epoxy Nanocomposites: A Comprehensive Review. J. Compos. Sci. 2024, 8, 506. https://doi.org/10.3390/jcs8120506
Shelly D, Singhal V, Singh S, Nanda T, Mehta R, Lee S-Y, Park S-J. Exploring the Impact of Nanoclay on Epoxy Nanocomposites: A Comprehensive Review. Journal of Composites Science. 2024; 8(12):506. https://doi.org/10.3390/jcs8120506
Chicago/Turabian StyleShelly, Daksh, Varun Singhal, Surinder Singh, Tarun Nanda, Rajeev Mehta, Seul-Yi Lee, and Soo-Jin Park. 2024. "Exploring the Impact of Nanoclay on Epoxy Nanocomposites: A Comprehensive Review" Journal of Composites Science 8, no. 12: 506. https://doi.org/10.3390/jcs8120506
APA StyleShelly, D., Singhal, V., Singh, S., Nanda, T., Mehta, R., Lee, S. -Y., & Park, S. -J. (2024). Exploring the Impact of Nanoclay on Epoxy Nanocomposites: A Comprehensive Review. Journal of Composites Science, 8(12), 506. https://doi.org/10.3390/jcs8120506