Preparation and Corrosion Resistance of Superhydrophobic Composite Coatings on Shot-Peened AA 7075-T6 Aluminum Alloy
"> Figure 1
<p>Processing to prepare superhydrophobic EP-HDTMS@SiO<sub>2</sub> coatings on shot-peened 7075-T6 aluminum alloy. (1. Mechanism of Superhydrophobic EP-HDTMS@SiO<sub>2</sub> Coating Formation. 2. Processing of Superhydrophobic EP-HDTMS@SiO2 Coating.).</p> "> Figure 2
<p>Low and high magnification SEM images of EP/SiO<sub>2</sub> composite coatings with different ratios, (<b>a<sub>1</sub></b>,<b>a<sub>2</sub></b>) no SiO<sub>2</sub> was added; (<b>b<sub>1</sub></b>,<b>b<sub>2</sub></b>) 3:1; (<b>c<sub>1</sub></b>,<b>c<sub>2</sub></b>) 3:2; (<b>d<sub>1</sub></b>,<b>d<sub>2</sub></b>) 1:1; (<b>e<sub>1</sub></b>,<b>e</b><sub>2</sub>) 3:4.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) EDS without nanosized SiO<sub>2</sub> and EP/SiO<sub>2</sub> mass ratio of 3:2; (<b>c</b>) mapping with an EP/SiO<sub>2</sub> ratio of 3:2.</p> "> Figure 4
<p>EP-HDTMS@SiO<sub>2</sub> FT-IR spectroscopy of superhydrophobic coatings.</p> "> Figure 5
<p>EP-HDTMS@SiO<sub>2</sub> XPS of superhydrophobic coatings: (<b>a</b>) full spectrum; (<b>b</b>) C 1s; (<b>c</b>) O 1s; (<b>d</b>) Si 2p.</p> "> Figure 6
<p>WAC data of aluminum alloy, pretreated aluminum alloy, and coated surface with different contents of SiO<sub>2</sub> nanoparticles.</p> "> Figure 7
<p>Wettability of EP-HDTMS@SiO<sub>2</sub> superhydrophobic coating with 3:2 mass ratio of EP to SiO<sub>2</sub> on different liquids: (<b>a</b>) different pH; (<b>b</b>) different solutions.</p> "> Figure 8
<p>(<b>a</b>) Bode impedance plots with different EP/SiO<sub>2</sub> ratios; (<b>b</b>) phase diagram; (<b>c</b>) freq Z diagram; (<b>d</b>) circuit fitting diagram.</p> "> Figure 9
<p>Tafel curves for the coatings and substrate.</p> "> Figure 10
<p>(<b>a<sub>1</sub></b>,<b>b<sub>1</sub></b>,<b>c<sub>1</sub></b>) EP-HDTMS@SiO<sub>2</sub> self-cleaning comparison between superhydrophobic coating with 3:2 mass ratio of EP to SiO<sub>2</sub> and substrate (<b>a<sub>2</sub></b>,<b>b<sub>2</sub></b>,<b>c<sub>2</sub></b>), blue powder is CuSO<sub>4</sub>. (<b>a<sub>3</sub></b>,<b>b<sub>3</sub></b>,<b>c<sub>3</sub></b>) Self-cleaning theory diagram.</p> "> Figure 11
<p>(<b>a<sub>1</sub></b>,<b>a<sub>2</sub></b>) Tape peeling test. (<b>b<sub>1</sub></b>,<b>b<sub>2</sub></b>) Knife scraping test. (<b>c<sub>1</sub></b>) Shot peening SEM image. (<b>c<sub>2</sub></b>) Schematic of coating–substrate bonding.</p> "> Figure 12
<p>(<b>a</b>) Macroscopic morphologies of EP-HDTMS@SiO<sub>2</sub> superhydrophobic coating and substrate in different days under salt spray test. (<b>b</b>,<b>c</b>) EP-HDTMS@SiO<sub>2</sub> XRD before and after salt spray test between superhydrophobic coating and substrate. (<b>d</b>) Weight change of EP-HDTMS@SiO<sub>2</sub> superhydrophobic coating and substrate.</p> "> Figure 13
<p>(<b>a</b>) Schematic diagram of aluminum alloy pitting corrosion. (<b>b</b>) Schematic diagram of non-added nano-silica coating. (<b>c</b>) EP-HDTMS@SiO<sub>2</sub> coating corrosion resistance schematic diagram.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pre-Treatment of AA 7075-T6 Samples
2.3. Preparation of EP-HDTMS@SiO2 Superhydrophobic Coatings
2.4. Characterization
3. Results and Discussion
3.1. Surface Morphology of EP-HDTMS@SiO2 Coatings
3.2. Chemical Composition of EP-HDTMS@SiO2 Coatings
3.3. Wettability of EP-HDTMS@SiO2 Coatings
3.4. Wettability of EP-HDTMS@SiO2 Coatings with Different Solutions
3.5. Electrochemical Behavior of EP-HDTMS@SiO2 Coatings
3.6. Self-Cleaning Performance of EP-HDTMS@SiO2 Coatings
3.7. Adhesion of EP-HDTMS@SiO2 Coatings
3.8. Salt Spray Test for EP-HDTMS@SiO2 Coatings
3.9. Mechanism of Ant-Corrosion Resistance for EP-HDTMS@SiO2 Coatings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Imran, M.; Khan, A.R.A. Characterization of Al-7075 metal matrix composites: A review. J. Mater. Res. 2019, 8, 3347–3356. [Google Scholar] [CrossRef]
- Olugbade, T.O.; Omiyale, B.O.; Ojo, O.T.; Adeyeri, M.K. Stress-Corrosion and Corrosion-Fatigue Properties of Surface-Treated Aluminium Alloys for Structural Applications. Chem. Afr. 2023, 6, 1699–1708. [Google Scholar] [CrossRef]
- Fujii, T.; Ito, D.; Shimamura, Y. Growth characteristics of stress corrosion cracking in high-strength 7075 aluminum alloy in sodium chloride solutions. Eng. Fract. Mech. 2023, 292, 109657. [Google Scholar] [CrossRef]
- Altenbach, C.; Schnatterer, C.; Mercado, U.A.; Suuronen, J.-P.; Zander, D.; Requena, G. Synchrotron-based holotomography and X-Ray fluorescence study on the stress corrosion cracking behavior of the peak-aged 7075 aluminum alloy. J. Alloys Compd. 2020, 817, 152722. [Google Scholar] [CrossRef]
- Yang, M.; Lei, L.; Jiang, Y.; Xu, F.; Yin, C. Simultaneously improving tensile properties and stress corrosion cracking resistance of 7075-T6 aluminum alloy by USRP treatment. Corros. Sci. 2023, 218, 111211. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Wang, L.; Lai, Y.; Li, K.; Zhou, Y. A dislocation density–based comparative study of grain refinement, residual stresses, and surface roughness induced by shot peening and surface mechanical attrition treatment. Int. J. Adv. Manuf. Technol. 2020, 108, 505–525. [Google Scholar] [CrossRef]
- Sun, S.; Fang, Y.; Zhang, L.; Li, C.; Hu, S. Effects of aging treatment and peripheral coarse grain on the exfoliation corrosion behaviour of 2024 aluminium alloy using SR-CT. J. Mater. Res. 2020, 9, 3219–3229. [Google Scholar] [CrossRef]
- Bao, L.; Li, K.; Zheng, J.; Zhang, Y.; Zhan, K.; Yang, Z.; Zhao, B.; Ji, V. Surface characteristics and stress corrosion behavior of AA 7075-T6 aluminum alloys after different shot peening processes. Surf. Coat. Technol 2022, 440, 128481. [Google Scholar] [CrossRef]
- Tian, W.; Chao, B.; Xiong, X.; Li, Z. Effect of Surface Roughness on Pitting Corrosion of 2A12 Aluminum Alloy. Int. J. Electrochem. Sci. 2018, 13, 3107–3123. [Google Scholar] [CrossRef]
- Chi, G.; Yi, D.; Liu, H. Effect of roughness on electrochemical and pitting corrosion of Ti-6Al-4V alloy in 12 wt.% HCl solution at 35 °C. J. Mater. Res. Technol. 2020, 9, 1162–1174. [Google Scholar] [CrossRef]
- Oh, S.; Kim, D.; Kim, K.; Kim, D.-I.; Chung, W.; Shin, B.-H. The effect of surface roughness on re-passivation and pitting corrosion of super duplex stainless steel UNS S 32760. Int. J. Electrochem. Sci. 2023, 18, 100351. [Google Scholar] [CrossRef]
- Sajid, H.U.; Kiran, R. Influence of corrosion and surface roughness on wettability of ASTM A36 steels. J. Constr. Steel Res. 2018, 144, 310–326. [Google Scholar] [CrossRef]
- Walter, R.; Kannan, M.B. Influence of surface roughness on the corrosion behaviour of magnesium alloy. Mater. Des. 2011, 32, 2350–2354. [Google Scholar] [CrossRef]
- Vazirinasab, E.; Jafari, R.; Momen, G. Application of superhydrophobic coatings as a corrosion barrier: A review. Surf. Coat. Technol. 2018, 341, 40–56. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Kumar Sadasivuni, K.; Xing, R.; Liu, S. Self–cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Lee, D.; Lim, J.W.; Lee, D.G. Cathode/anode integrated composite bipolar plate for high-temperature PEMFC. Compos. Struct. 2017, 167, 144–151. [Google Scholar] [CrossRef]
- Huang, W.; Huang, J.; Guo, Z.; Liu, W. Icephobic/anti-icing properties of superhydrophobic surfaces. Adv. Colloid. Interface Sci. 2022, 304, 102658. [Google Scholar] [CrossRef]
- Luo, G.; Wen, L.; Yang, K.; Li, X.; Xu, S.; Pi, P.; Wen, X. Robust and durable fluorinated 8-MAPOSS-based superamphiphobic fabrics with buoyancy boost and drag reduction. Chem. Eng. J. 2020, 383, 123125. [Google Scholar] [CrossRef]
- Yang, Q.; Cao, J.; Ding, R.; Zhan, K.; Yang, Z.; Zhao, B.; Wang, Z.; Ji, V. The synthesis and mechanism of superhydrophobic coatings with multifunctional properties on aluminum alloys surface: A review. Prog. Org. Coat. 2023, 183, 107786. [Google Scholar] [CrossRef]
- Rasitha, T.P.; Krishna, D.N.G.; Thinaharan, C.; Vanithakumari, S.C.; Philip, J. Optimization of coating parameters for fabrication of robust superhydrophobic (SHP) aluminum and evaluation of corrosion performance in aggressive medium. Prog. Org. Coat. 2022, 172, 107076. [Google Scholar] [CrossRef]
- Abu Jarad, N.; Imran, H.; Imani, S.M.; Didar, T.F.; Soleymani, L. Fabrication of Superamphiphobic Surfaces via Spray Coating; a Review. Adv. Mater. Technol. 2022, 7, 2101702. [Google Scholar] [CrossRef]
- Zou, D.; Xiao, L.; Zhang, Y.; Li, H. Effect of hexadecyltrimethoxysilane modified micro silica particles on workability and compressive strength of ultra-high-performance concrete. Constr. Build. Mater. 2023, 399, 132480. [Google Scholar] [CrossRef]
- Ren, T.; Tang, G.; Yuan, B.; Yang, Y.; Yan, Z.; Ma, L.; Huang, X. Hexadecyltrimethoxysilane-Modified SiO2 Nanoparticle-Coated Halloysite Nanotubes Embedded in Silicone–Acrylic Polymer Films as Durable Fluorine-Free Superhydrophobic Coatings. ACS Appl. Nano Mater. 2020, 3, 5807–5815. [Google Scholar] [CrossRef]
- Jeong, E.; Woo, H.; Moon, Y.; Lee, D.Y.; Jung, M.; Lee, Y.-S.; Bae, J.-S. Self-Cleaning Polyester Fabric Prepared with TiOF2 and Hexadecyltrimethoxysilane. Polymers 2021, 13, 387. [Google Scholar] [CrossRef]
- Dai, X.; Yang, F.; Yang, R.; Huang, X.; Rigdon, W.A.; Li, X.; Li, C. Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement. Appl. Phys. Lett. 2014, 105, 191611. [Google Scholar] [CrossRef]
- Dai, X.; Huang, X.; Yang, F.; Li, X.; Sightler, J.; Yang, Y.; Li, C. Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings. Appl. Phys. Lett. 2013, 102, 161605. [Google Scholar] [CrossRef]
- Li, X. Nanoscale structural and mechanical characterization of natural nanocomposites: Seashells. JOM 2007, 59, 71–74. [Google Scholar] [CrossRef]
- Li, F.; Nan, S.; Zhu, R.; Yao, R.; Wang, H.; Zhang, T.; Zhang, J. Abundant octadecylamine modified epoxy resin for superhydrophobic and durable composite coating. Sustain. Mater. Technol. 2023, 37, e00690. [Google Scholar] [CrossRef]
- Wang, Y.; Ou, B.; Zhu, P.; Niu, B.; Guo, Y.; Zhi, Q. High mechanical strength aluminum foam epoxy resin composite material with superhydrophobic, anticorrosive and wear-resistant surface. Surf. Interfaces 2022, 29, 101747. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, X.; Jin, Z.; Wang, P.; Fan, L.; Deng, J.; Yuan, S.; Sun, Y.; Duan, J. Mechanism of an organic-inorganic composite coating with anticorrosive and versatile superhydrophobic properties: A combined electrochemical and molecular dynamics exploration. Prog. Org. Coat. 2023, 182, 107610. [Google Scholar] [CrossRef]
- Liu, P.; Yang, F.; Zhang, R.; Zhou, H.; Wang, Y.; Cheng, Y. Fabrication of superhydrophobic coating on brass based on polysiloxane and expanded vermiculite via spraying method and its excellent environmental adaptability. Prog. Org. Coat. 2023, 182, 107670. [Google Scholar] [CrossRef]
- Le Guen-Geffroy, A.; Le Gac, P.Y.; Habert, B.; Davies, P. Physical ageing of epoxy in a wet environment: Coupling between plasticization and physical ageing. Polym. Degrad. Stab. 2019, 168, 108947. [Google Scholar] [CrossRef]
Element | Cu | Mn | Mg | Zn | Cr | Ti | Si | Fe |
---|---|---|---|---|---|---|---|---|
Content | 1.2–2.0 | 0.30 | 2.1–2.9 | 5.1–6.1 | 0.18–0.28 | 0.20 | 0.40 | 0.50 |
EP:SiO2 | Without SiO2 | 3:1 | 3:2 | 1:1 | 3:4 |
---|---|---|---|---|---|
RS/Ω | 13.34 | 7.004 | 8.492 | 12.89 | 13.38 |
R1/Ω | 41,238 | 333,640 | 520,971 | 3917 | 5498 |
R2/Ω | 125,140 | 583,180 | 690,701 | 9919 | — |
EP:SiO2 | Without SiO2 | 3:1 | 3:2 | 1:1 | 3:4 | Pure Al |
---|---|---|---|---|---|---|
Ecorr vs. SCE (V) | −0.972 | −0.790 | −0.828 | −1.197 | −1.174 | −1.429 |
Icorr (A cm−2) | 1.321 × 10−7 | 2.295 × 10−8 | 2.562 × 10−7 | 8.606 × 10−6 | 4.097 × 10−6 | 2.398 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, K.; Ding, R.; Liu, Z.; Yang, Q.; Ji, V. Preparation and Corrosion Resistance of Superhydrophobic Composite Coatings on Shot-Peened AA 7075-T6 Aluminum Alloy. J. Compos. Sci. 2024, 8, 502. https://doi.org/10.3390/jcs8120502
Zhan K, Ding R, Liu Z, Yang Q, Ji V. Preparation and Corrosion Resistance of Superhydrophobic Composite Coatings on Shot-Peened AA 7075-T6 Aluminum Alloy. Journal of Composites Science. 2024; 8(12):502. https://doi.org/10.3390/jcs8120502
Chicago/Turabian StyleZhan, Ke, Ruiqing Ding, Ziliang Liu, Qingchao Yang, and Vincent Ji. 2024. "Preparation and Corrosion Resistance of Superhydrophobic Composite Coatings on Shot-Peened AA 7075-T6 Aluminum Alloy" Journal of Composites Science 8, no. 12: 502. https://doi.org/10.3390/jcs8120502
APA StyleZhan, K., Ding, R., Liu, Z., Yang, Q., & Ji, V. (2024). Preparation and Corrosion Resistance of Superhydrophobic Composite Coatings on Shot-Peened AA 7075-T6 Aluminum Alloy. Journal of Composites Science, 8(12), 502. https://doi.org/10.3390/jcs8120502