Novel Functional Polycaprolactone/Hematite Composites with Improved Mechanical, Thermal, UV-Protective and Barrier Properties
<p>Photographs of prepared PCL/hematite composites in the form of the foils.</p> "> Figure 2
<p>SEM images of synthesized uniform hematite particles of different sizes (<b>left</b>) and their XRD patterns (<b>right</b>). All bars given at the bottom of the SEM images correspond to a distance of 1 µm.</p> "> Figure 3
<p>FTIR spectra of pure PCL polymer and PCL/hematite composites containing 1% of hematite particles of different sizes.</p> "> Figure 4
<p>Thermogravimetric (TG) curves for the pure PCL and for PCL/0.25HS1 and PCL/0.25HS2 composites.</p> "> Figure 5
<p>Differential thermogravimetric (DTG) curves for the pure PCL and for PCL/0.25HS1 and PCL/0.25HS2 composites.</p> "> Figure 6
<p>Diffuse reflectance UV–Vis–NIR spectra of the prepared PCL/hematite composites containing 1 wt% of uniform hematite particles of various sizes.</p> "> Figure 7
<p>Diffuse reflectance UV–Vis–NIR spectra of the prepared PCL/hematite composites containing 0.5 wt% of uniform hematite particles of various sizes.</p> "> Figure 8
<p>Diffuse reflectance UV–Vis–NIR spectra of the prepared PCL/hematite composites containing 0.25 wt% of uniform hematite particles of various sizes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Hematite Particles
2.2. Preparation of PCL/Hematite Composites
2.3. Characterization
3. Results and Discussion
3.1. Properties of Synthesized Hematite Particles
3.2. FTIR Spectroscopy
3.3. Mechanical Properties
3.4. Water Vapor Permeability
3.5. Thermogravimetric Analysis
3.6. UV–Vis–NIR Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kayan, G.; Kayan, A. Polycaprolactone Composites/Blends and Their Applications Especially in Water Treatment. Chemengineering 2023, 7, 104. [Google Scholar] [CrossRef]
- Christen, M.-O.; Vercesi, F. Polycaprolactone: How a well-known and futuristic polymer has become an innovative colla-gen-stimulator in esthetics. Clin. Cosmet. Investig. Dermatol. 2020, 13, 31–48. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Zuhri, M.Y.M.; Norrrahim, M.N.F.; Misenan, M.S.M.; Jenol, M.A.; Samsudin, S.A.; Nurazzi, N.M.; Asyraf, M.R.M.; Supian, A.B.M.; Bangar, S.P.; et al. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers 2022, 14, 182. [Google Scholar] [CrossRef] [PubMed]
- Formas, K.; Kurowska, A.; Janusz, J.; Szczygieł, P.; Rajzer, I. Injection Molding Process Simulation of Polycaprolactone Sticks for Further 3D Printing of Medical Implants. Materials 2022, 15, 7295. [Google Scholar] [CrossRef]
- Torretti, M.; Archer, E.; Madbouly, S. Biodegradable polycaprolactone (PCL) based polymer and composites. In Biopolymers and Composites; Madbouly, S.A., Zhang, C., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021; Volume 9, pp. 255–278. [Google Scholar]
- Amini, E.; Valls, C.; Roncero, M.B. Promising nanocomposites for food packaging based on cellulose – PCL films reinforced by using ZnO nanoparticles in an ionic liquid. Ind. Crop. Prod. 2023, 193, 116246. [Google Scholar] [CrossRef]
- Khanmohammadi, S.; Karimian, R.; Ghanbari Mehrabani, M.; Mehramuz, B.; Ganbarov, K.; Ejlali, L.; Tanomand, A.; Ka-mounah, F.S.; Ahangarzadeh Rezaee, M.; Yousefi, M.; et al. Poly (ε-caprolactone)/cellulose nanofiber blend nanocomposites containing ZrO2 nanoparticles: A new biocompatible wound dressing bandage with antimi-crobial activity. Adv. Pharm. Bull. 2020, 10, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Rusli, M.S.I.C.; Hassan, M.I.; Sultana, N.; Ismail, A.F. Characterization of PCL/Zeolite Electrospun Membrane for the Removal of Silver in Drinking Water. J. Teknol. 2017, 79. [Google Scholar] [CrossRef]
- del Ángel-Sánchez, K.; Borbolla-Torres, C.I.; Palacios-Pineda, L.-M.; Ulloa-Castillo, N.A.; Elías-Zúñiga, A. Development, fabrication, and characterization of composite polycaprolactone membranes reinforced with TiO2 nanoparticles. Polymers 2019, 11, 1955. [Google Scholar] [CrossRef]
- Ramírez-Cedillo, E.; Ortega-Lara, W.; Rocha-Pizaña, M.R.; Gutierrez-Uribe, J.A.; Elías-Zúñiga, A.; Rodríguez, C.A. Electrospun polycaprolactone fibrous membranes containing Ag, TiO2 and Na2Ti6O13 particles for potential use in bone regeneration. Membranes 2019, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Li, L.; Chen, J.; Zhang, J.; Liang, C. Extraordinary Superhydrophobic Polycaprolactone-Based Composite Membrane with an Alternated Micro–Nano Hierarchical Structure as an Eco-friendly Oil/Water Separator. ACS Appl. Mater. Interfaces 2021, 13, 24117–24129. [Google Scholar] [CrossRef] [PubMed]
- Johansson, C.; Bras, J.; Mondragon, I.; Nechita, P.; Plackett, D.; Šimon, P.; Svetec, D.G.; Virtanen, S.; Baschetti, M.G.; Breen, C.; et al. Renewable fibers and bio-based materials for packaging applications – A review of recent developments. BioResources 2012, 7, 2506–2552. [Google Scholar] [CrossRef]
- Chouzouri, G.; Xanthos, M. Degradation of Aliphatic Polyesters in the Presence of Inorganic Fillers. J. Plast. Film Sheeting 2007, 23, 19–36. [Google Scholar] [CrossRef]
- Gradinaru, L.M.; Mandru, M.B.; Drobota, M.; Aflori, M.; Butnaru, M.; Spiridon, M.; Doroftei, F.; Aradoaei, M.; Ciobanu, R.C.; Vlad, S. Composite Materials Based on Iron Oxide Nanoparticles and Polyurethane for Improving the Quality of MRI. Polymers 2021, 13, 4316. [Google Scholar] [CrossRef] [PubMed]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, 2nd ed; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Sivula, K.; Le Formal, F.; Grätzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432–449. [Google Scholar] [CrossRef]
- Park, J.; Kang, J.; Chaule, S.; Jang, J.-H. Recent progress and perspectives on heteroatom doping of hematite photoanodes for photoelectrochemical water splitting. J. Mater. Chem. A 2023, 11, 24551–24565. [Google Scholar] [CrossRef]
- Popov, N.; Ristić, M.; Bošković, M.; Perović, M.; Musić, S.; Stanković, D.; Krehula, S. Influence of Sn doping on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe2O3) nanoparticles. J. Phys. Chem. Solids 2022, 161, 110372. [Google Scholar] [CrossRef]
- Huang, X.; Song, D.; Zhao, Q.; Young, R.P.; Chen, Y.; Walter, E.D.; Lahiri, N.; Taylor, S.D.; Wang, Z.; Hofmockel, K.S.; et al. Photolysis of Dissolved Organic Matter over Hematite Nanoplatelets. Environ. Sci. Technol. 2024, 58, 2798–2807. [Google Scholar] [CrossRef]
- Mirzaei, A.; Hashemi, B.; Janghorban, K. α-Fe2O3 based nanomaterials as gas sensors. J. Mater. Sci. Mater. Electron. 2015, 27, 3109–3144. [Google Scholar] [CrossRef]
- Zhu, K.; Zhu, Z.; Xu, S.; Zhao, C.; Ni, T. Controlled synthesis of α-Fe2O3 nanocubes for gas-sensing applications: Feasibility of assessing crucian carp (Carassius auratus) freshness via trimethylamine levels. Food Chem. 2024, 441, 138361. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Wei, X.; Liu, C. Construction of conductive network in hematite for lithium, sodium and potassium storage. J. Alloys Compd. 2021, 889, 161766. [Google Scholar] [CrossRef]
- Zabara, M.A.; Ölmez, B.; Gürsel, S.A.; Yürüm, A. Morphology-dependent investigation of Li-ion insertion into single crystal hematite α-Fe2O3 nanostructures. J. Phys. Chem. C 2023, 127, 20608–20619. [Google Scholar] [CrossRef]
- Tadic, M.; Kopanja, L.; Panjan, M.; Lazovic, J.; Vucetic Tadic, B.; Stanojevic, B.; Motte, L. Rhombohedron and plate-like hematite (α-Fe2O3) nanoparticles: Synthesis, structure, morphology, magnetic properties and potential biomedical applications for MRI. Mater. Res. Bull. 2021, 133, 111055. [Google Scholar] [CrossRef]
- Tadic, M.; Panjan, M.; Lalatone, Y.; Milosevic, I.; Vucetic Tadic, B.; Lazovic, J. Magnetic properties, phase evolution, hollow structure and biomedical application of hematite (α-Fe2O3) and QUAIPH. Adv. Powder Technol. 2022, 33, 103847. [Google Scholar] [CrossRef]
- Kausar, A. Polymeric materials filled with hematite nanoparticle: Current state and prospective application. Polym. Technol. Mater. 2019, 59, 323–338. [Google Scholar] [CrossRef]
- Saeed, K.; Khan, N.; Shah, T.; Sadiq, M. Morphology, properties and application of iron oxide/polycaprolactone nanocompo-sites. J. Chem. Soc. Pak. 2021, 43, 34–40. [Google Scholar]
- Mensah, E.E.; Abbas, Z.; Azis, R.S.; Ibrahim, N.A.; Khamis, A.M.; Abdalhadi, D.M. Complex permittivity and power loss characteristics of α-Fe2O3/polycaprolactone (PCL) nanocomposites: Effect of recycled α-Fe2O3 nanofiller. Heliyon 2020, 6, e05595. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, T.; Sakata, K. Preparation of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel. J. Colloid Interface Sci. 1992, 152, 587–590. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; JohnWiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Elzein, T.; Nasser-Eddine, M.; Delaite, C.; Bistac, S.; Dumas, P. FTIR study of polycaprolactone chain organization at interfaces. J. Colloid Interface Sci. 2004, 273, 381–387. [Google Scholar] [CrossRef]
- Wang, Y.; Muramatsu, A.; Sugimoto, T. FTIR analysis of well-defined α-Fe2O3 particles. Colloids Surf. A Physicochem. Eng. Asp. 1998, 134, 281–297. [Google Scholar] [CrossRef]
- Vogel, C.; Siesler, H.W. Thermal degradation of poly(e-caprolactone), poly(l-lactic acid) and their blends with poly(3-hydroxy-butyrate) studied by TGA/FT-IR spectroscopy. Macromol. Symp. 2008, 265, 183–194. [Google Scholar] [CrossRef]
- Murariu, M.; Dubois, P. PLA composites: From production to properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef]
- Hashim, H.B.; Emran, N.A.A.B.; Isono, T.; Katsuhara, S.; Ninoyu, H.; Matsushima, T.; Yamamoto, T.; Borsali, R.; Satoh, T.; Tajima, K. Improving the mechanical properties of polycaprolactone using functionalized nanofibrillated bacterial cellulose with high dispersibility and long fiber length as a reinforcement material. Compos. Part A Appl. Sci. Manuf. 2022, 158. [Google Scholar] [CrossRef]
- Kausar, A. A review of high-performance polymer nanocomposites for packaging applications in electronics and food indus-tries. J. Plast. Film Sheeting 2020, 36, 94–112. [Google Scholar] [CrossRef]
- Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. 2006, 45, 3216–3251. [Google Scholar] [CrossRef]
- Djoković, V.; Nedeljković, J.M. Stress relaxation in hematite nanoparticles-polystyrene composites. Macromol. Rapid Commun. 2000, 21, 994–997. [Google Scholar] [CrossRef]
- Bogdanovic, G.; Kovač, T.S.; Džunuzović, E.S.; Spírková, M.; Ahrenkiel, P.S.; Nedeljković, J.M. Influence of hematite nanorods on the mechanical properties of epoxy resin. J. Serbian Chem. Soc. 2017, 82, 437–447. [Google Scholar] [CrossRef]
- Beikzadeh, S.; Hosseini, S.M.; Mofid, V.; Ramezani, S.; Ghorbani, M.; Ehsani, A.; Mortazavian, A.M. Electrospun ethyl cel-lulose/polycaprolactone/gelatin nanofibers: The investigation of mechanical, antioxidant, and antifungal properties for food packaging. Int. J. Biol. Macromol. 2021, 191, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Lange, J.; Wyser, Y. Recent innovations in barrier technologies for plastic packaging—A review. Packag. Technol. Sci. 2003, 16, 149–158. [Google Scholar] [CrossRef]
- Hrnjak Murgić, Z.; Rešček, A.; Ptiček Siročić, A.; Kratofil Krehula, L.; Katančić, Z. Nanoparticles in Active Polymer Food Packaging; Smithers Pira Technology Ltd.: Shawbury, UK, 2015. [Google Scholar]
- Silvestre, C.; Duraccio, D.; Cimmino, S. Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 2011, 36, 1766–1782. [Google Scholar] [CrossRef]
- Idris, A.; Muntean, A.; Mesic, B. A review on predictive tortuosity models for composite films in gas barrier applications. J. Coatings Technol. Res. 2022, 19, 699–716. [Google Scholar] [CrossRef]
- Wang, G.; Yang, S.; Wei, Z.; Dong, X.; Wang, H.; Qi, M. Facile preparation of poly(e-caprolactone)/Fe3O4@graphene oxide superparamagnetic nanocomposites. Polym. Bull. 2013, 70, 2359–2371. [Google Scholar] [CrossRef]
- Fan, Y.; Nishida, H.; Mori, T.; Shirai, Y.; Endo, T. Thermal degradation of poly(l-lactide): Effect of alkali earth metal oxides for selective l,l-lactide formation. Polymer 2004, 45, 1197–1205. [Google Scholar] [CrossRef]
- Marinović-Cincović, M.; Šaponjić, Z.V.; Djoković, V.; Milonjić, S.K.; Nedeljković, J.M. The influence of hematite nano-crystals on the thermal stability of polystyrene. Polym. Degrad. Stab. 2006, 91, 313–316. [Google Scholar] [CrossRef]
- Cipitria, A.; Skelton, A.; Dargaville, T.R.; Dalton, P.D.; Hutmacher, D.W. Design, fabrication and characterization of PCL electrospun scaffolds—a review. J. Mater. Chem. 2011, 21, 9419. [Google Scholar] [CrossRef]
- He, J.; Shao, W.; Zhang, L.; Deng, C.; Li, C. Crystallization behavior and UV-protection property of PET-ZnO nanocomposites prepared by in situ polymerization. J. Appl. Polym. Sci. 2009, 114, 1303–1311. [Google Scholar] [CrossRef]
- Truffault, L.; Choquenet, B.; Konstantinov, K.; Devers, T.; Couteau, C.; Coiffard, L.J.M. Synthesis of Nano-Hematite for Possible Use in Sunscreens. J. Nanosci. Nanotechnol. 2011, 11, 2413–2420. [Google Scholar] [CrossRef] [PubMed]
Sample | PCL (wt%) | Hematite (wt%) |
---|---|---|
PCL | 100 | 0.00 |
PCL/0.25%HC1 | 99.75 | 0.25 |
PCL/0.5%HC1 | 99.50 | 0.50 |
PCL/1%HC1 | 99.00 | 1.00 |
PCL/0.25%HC2 | 99.75 | 0.25 |
PCL/0.5%HC2 | 99.50 | 0.50 |
PCL/1%HC2 | 99.00 | 1.00 |
PCL/0.25%HS1 | 99.75 | 0.25 |
PCL/0.5%HS1 | 99.50 | 0.50 |
PCL/1%HS1 | 99.00 | 1.00 |
PCL/0.25%HS2 | 99.75 | 0.25 |
PCL/0.5%HS2 | 99.50 | 0.50 |
PCL/1%HS2 | 99.00 | 1.00 |
Sample | Tensile Strength/MPa | Elongation at Break/% |
---|---|---|
PCL | 12.01 | 461.76 |
PCL/0.25%HC1 | 12.26 | 461.39 |
PCL/0.5%HC1 | 12.69 | 459.58 |
PCL/1%HC1 | 13.92 | 460.43 |
PCL/0.25%HC2 | 4.85 | 50.24 |
PCL/0.5%HC2 | 13.10 | 458.49 |
PCL/1%HC2 | 12.52 | 459.09 |
PCL/0.25%HS1 | 14.83 | 461.17 |
PCL/0.5%HS1 | 12.83 | 460.43 |
PCL/1%HS1 | 12.86 | 462.50 |
PCL/0.25%HS2 | 14.99 | 462.44 |
PCL/0.5%HS2 | 16.19 | 538.12 |
PCL/1%HS2 | 16.18 | 460.96 |
Sample | Water Loss After 24 h/g | Total Water Loss (After 48 h)/g |
---|---|---|
PCL | 0.065 | 0.117 |
PCL/0.25%HC1 | 0.035 | 0.051 |
PCL/0.5%HC1 | 0.046 | 0.075 |
PCL/1%HC1 | 0.022 | 0.034 |
PCL/0.25%HC2 | 0.017 | 0.036 |
PCL/0.5%HC2 | 0.038 | 0.083 |
PCL/1%HC2 | 0.037 | 0.061 |
PCL/0.25%HS1 | 0.048 | 0.090 |
PCL/0.5%HS1 | 0.037 | 0.061 |
PCL/1%HS1 | 0.047 | 0.063 |
PCL/0.25%HS2 | 0.084 | 0.154 |
PCL/0.5%HS2 | 0.029 | 0.140 |
PCL/1%HS2 | 0.047 | 0.089 |
Sample | T95% (°C) | Tmax (°C) |
---|---|---|
PCL | 366.52 | 404.72 |
PCL/0.25%HC1 | 355.21 | 382.85 |
PCL/0.5%HC1 | 342.32 | 389.80 |
PCL/1%HC1 | 353.94 | 420.07 |
PCL/0.25%HC2 | 348.05 | 405.81 |
PCL/0.5%HC2 | 353.74 | 403.36 |
PCL/1%HC2 | 353.35 | 397.96 |
PCL/0.25%HS1 | 397.37 | 453,60 |
PCL/0.5%HS1 | 343.80 | 392.40 |
PCL/1%HS1 | 334.55 | 380.01 |
PCL/0.25%HS2 | 353.94 | 420.07 |
PCL/0.5%HS2 | 341.26 | 405.87 |
PCL/1%HS2 | 332.99 | 370.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krehula, L.K.; Peršić, A.; Popov, N.; Krehula, S. Novel Functional Polycaprolactone/Hematite Composites with Improved Mechanical, Thermal, UV-Protective and Barrier Properties. J. Compos. Sci. 2024, 8, 544. https://doi.org/10.3390/jcs8120544
Krehula LK, Peršić A, Popov N, Krehula S. Novel Functional Polycaprolactone/Hematite Composites with Improved Mechanical, Thermal, UV-Protective and Barrier Properties. Journal of Composites Science. 2024; 8(12):544. https://doi.org/10.3390/jcs8120544
Chicago/Turabian StyleKrehula, Ljerka Kratofil, Ana Peršić, Nina Popov, and Stjepko Krehula. 2024. "Novel Functional Polycaprolactone/Hematite Composites with Improved Mechanical, Thermal, UV-Protective and Barrier Properties" Journal of Composites Science 8, no. 12: 544. https://doi.org/10.3390/jcs8120544
APA StyleKrehula, L. K., Peršić, A., Popov, N., & Krehula, S. (2024). Novel Functional Polycaprolactone/Hematite Composites with Improved Mechanical, Thermal, UV-Protective and Barrier Properties. Journal of Composites Science, 8(12), 544. https://doi.org/10.3390/jcs8120544