Non-Invasive Skin Cancer Diagnosis Using Hyperspectral Imaging for In-Situ Clinical Support
<p>HS dermatologic acquisition system. (<b>a</b>) HS snapshot camera; (<b>b</b>) QTH (Quartz-Tungsten Halogen) source light; (<b>c</b>) Fiber optic ring light guide; (<b>d</b>) 3D printed customized dermoscopic contact structure attached to the ring light; (<b>e</b>) Acquisition software installed onto a laptop; (<b>f</b>) System employed during a data acquisition campaign.</p> "> Figure 2
<p>Patient/image flow scheme in this study. <b><span class="html-italic">n</span></b>: number of patients; <b><span class="html-italic">m</span></b>: number of HS images.</p> "> Figure 3
<p>RGB images obtained with the digital dermoscopic camera with their correspondent image ID above. The first row shows the validation set images and the second row the test set images.</p> "> Figure 4
<p>Repeatability results of the HS dermatologic acquisition system. (<b>a</b>) Gray-scale representation of the two consecutive HS images from the same PSL (<span class="html-italic">Pair1</span>). (<b>b</b>) Gray-scale representation of the two HS images from the same PSL but captured in different spatial positions (<span class="html-italic">Pair2</span>) and binary mask for the segmentation of the PSL pixels (<span class="html-italic">Pair2Masks</span>), where white pixels represent the PSL pixels. (<b>c</b>) Scatterplot of voxel values of <span class="html-italic">Pair1</span>. Repeatability results: <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>D</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>9.52</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>d</b>) Scatterplot of voxel values of <span class="html-italic">Pair2</span>. Repeatability result: <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>D</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>23.68</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>e</b>) Mean and variance of the segmented PSL pixels from <span class="html-italic">Pair2</span>.</p> "> Figure 5
<p>Block diagram of the HS dermatologic segmentation framework.</p> "> Figure 6
<p>Reference spectral signatures included in the skin/PSL library. Benign (<b>a</b>) and malignant (<b>b</b>) PSL spectral signatures. (<b>c</b>–<b>e</b>) Three different normal skin spectral signatures of the training dataset.</p> "> Figure 7
<p>Clustering evaluation to segment the normal skin training dataset. Results of the optimal cluster number evaluation using the following methods: (<b>a</b>) Silhouette (maximum K indicates optimal value), (<b>b</b>) Davies Bouldin (minimum K indicates optimal value) and (<b>c</b>) Calinski Harabasz (maximum K indicates optimal value).</p> "> Figure 8
<p>HS dermatologic segmentation example. (<b>a</b>) Gray-scale image. (<b>b)</b> Segmentation map using five clusters (colors are randomly assigned). (<b>c</b>) Two-class segmentation map obtained after comparing the five centroids with the reference library using the SAM algorithm (red indicates PSL and green normal skin). (<b>d</b>) Two-class segmentation map after applying morphological closing operation.</p> "> Figure 9
<p>Proposed block diagram of the HS dermatologic classification processing framework.</p> "> Figure 10
<p>Block diagram of the HS dermatologic framework for in-situ clinical support.</p> "> Figure 11
<p>Comparison between <span class="html-italic">per centroid</span> and <span class="html-italic">per pixel</span> methods using different number of clusters for the validation data using the Jaccard coefficient. The box boundaries represent the IQR of the results. Central bars and error bars depict median and minimum/maximum values of Jaccard coefficient, respectively. The small dots outside the minimum/maximum values represent the outliers of the Jaccard coefficient found in each method.</p> "> Figure 12
<p>Two-class segmentation maps of the validation database using the <span class="html-italic">per pixel</span> method. (<b>a</b>) Gray-scale images. (<b>b</b>) Ground-truth maps. (<b>c</b>) Results with <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. (<b>d</b>) Results with <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>. (<b>e</b>) Results with <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math> and morphological post-processing. (<b>f</b>) Jaccard coefficient values of the results with <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math> and morphological post-processing.</p> "> Figure 13
<p>Two-class segmentation maps of the test database using <span class="html-italic">per pixel</span> method with <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>. (<b>a</b>) Gray-scale images. (<b>b</b>) Ground-truth maps. (<b>c</b>) Results with morphological post-processing. (<b>d</b>) Jaccard coefficient values of the results with morphological post-processing.</p> "> Figure 14
<p>Average spectral signatures of the labeled PSL (dashed red line) and normal skin (dashed green line) pixels, and reference spectral signatures of PSLs (red line) and normal skin (green line). (<b>a</b>) <span class="html-italic">P28_C1</span> (benign PSL). (<b>b</b>) <span class="html-italic">P100_C1</span> (malignant PSL).</p> "> Figure 15
<p>ROC curves for validation classification results obtained with the five classifiers. (<b>a</b>) Classification results with default parameters. (<b>b</b>) Classification results with optimized hyperparameters.</p> "> Figure 16
<p>Test classification <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>C</mi> <mi>C</mi> </mrow> </semantics></math> results obtained with the SVM Linear classifier. Below each patient ID, the correct diagnosis of the PSL is presented. B: Benign; M: Malignant.</p> "> Figure 17
<p>Average spectral signatures of the labeled PSL (dashed red line) and normal skin (dashed green line) pixels, and reference spectral signatures of PSLs (red line) and normal skin (green line). (<b>a</b>) <span class="html-italic">P13_C1</span> (malignant PSL). (<b>b</b>) <span class="html-italic">P14_C1</span> (benign PSL). (<b>c</b>) <span class="html-italic">P102_C1</span> (malignant PSL).</p> "> Figure 18
<p>Test classification <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>C</mi> <mi>C</mi> </mrow> </semantics></math> results obtained with the SVM Linear classifier and with the pixel segmentation dataset. <b>n/a:</b> HS images without PSL pixels identified in the segmentation stage.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hyperspectral Dermatologic Acquisition System
2.2. Study Design and HS Dataset Description
2.2.1. HS Labeled Dataset
2.2.2. HS labeled Data Partition
2.3. HS Dermatologic Data Pre-Processing
2.4. HS Dermatologic Segmentation Framework
2.5. HS Dermatologic Classification Framework
2.5.1. Support Vector Machine (SVM) Classifier
2.5.2. Random Forest (RF) Classifier
2.5.3. Artificial Neural Network (ANN) Classifier
2.5.4. Genetic Algorithm (GA)
2.6. HS Dermatologic Framework for In-Situ Clinical Support
2.7. Evaluation Metrics
2.7.1. Segmentation Evaluation Metrics
2.7.2. Classification Evaluation Metrics
3. Experimental Results and Discussion
3.1. HS Dermatologic Segmentation Framework Results
3.2. HS Dermatologic Classification Framework Results
3.3. HS Dermatologic Overall Results
4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBoit, P.E.; Burg, G.; Weedon, D.; Sarasin, A. Pathology and Genetics of Skin Tumours; IARC: Lyon, France, 2006; Volume 6. [Google Scholar]
- Madan, V.; Lear, J.T.; Szeimies, R.M. Non-melanoma skin cancer. Lancet 2010, 375, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Tsao, H.; Olazagasti, J.M.; Cordoro, K.M.; Brewer, J.D.; Taylor, S.C.; Bordeaux, J.S.; Chren, M.M.; Sober, A.J.; Tegeler, C.; Bhushan, R.; et al. Early detection of melanoma: Reviewing the ABCDEs American Academy of Dermatology Ad Hoc Task Force for the ABCDEs of Melanoma. J. Am. Acad. Dermatol. 2015, 72, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Jagtap, V.; Pise, N. Computer aided melanoma skin cancer detection using image processing. Procedia Comput. Sci. 2015, 48, 736–741. [Google Scholar] [CrossRef] [Green Version]
- Mokrani, K. Classification of malignant melanoma and benign skin lesions: Implementation of automatic ABCD rule. IET Image Process. 2016, 10, 448–455. [Google Scholar]
- Zherdeva, L.A.; Bratchenko, I.A.; Myakinin, O.O.; Moryatov, A.A.; Kozlov, S.V.; Zakharov, V.P. In Vivo Hyperspectral Imaging and Differentiation of Skin Cancer. In Proceedings of the Optics in Health Care and Biomedical Optics VII, Beijing, China, 12–14 October 2016; Volume 10024, p. 100244G. [Google Scholar]
- Li, Q.; He, X.; Wang, Y.; Liu, H.; Xu, D.; Guo, F. Review of spectral imaging technology in biomedical engineering: Achievements and challenges. J. Biomed. Opt. 2013, 18, 100901. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 10901. [Google Scholar] [CrossRef]
- Halicek, M.; Fabelo, H.; Ortega, S.; Callico, G.M.; Fei, B. In-Vivo and Ex-Vivo Tissue Analysis through Hyperspectral Imaging Techniques: Revealing the Invisible Features of Cancer. Cancers (Basel) 2019, 11, 756. [Google Scholar] [CrossRef] [Green Version]
- Johansen, T.H.; Møllersen, K.; Ortega, S.; Fabelo, H.; Garcia, A.; Callico, G.M.; Godtliebsen, F. Recent advances in hyperspectral imaging for melanoma detection. Wiley Interdiscip. Rev. Comput. Stat. 2019, 12, e1465. [Google Scholar] [CrossRef]
- Tomatis, S.; Carrara, M.; Bono, A.; Bartoli, C.; Lualdi, M.; Tragni, G.; Colombo, A.; Marchesini, R. Automated melanoma detection with a novel multispectral imaging system: Results of a prospective study. Phys. Med. Biol. 2005, 50, 1675–1687. [Google Scholar] [CrossRef]
- Moncrieff, M.; Cotton, S.; Claridge, E.; Hall, P. Spectrophotometric intracutaneous analysis: A new technique for imaging pigmented skin lesions. Br. J. Dermatol. 2002, 146, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Elbaum, M.; Kopf, A.W.; Rabinovitz, H.S.; Langley, R.G.B.; Kamino, H.; Mihm, M.C.; Sober, A.J.; Peck, G.L.; Bogdan, A.; Gutkowicz-Krusin, D.; et al. Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: A feasibility study. J. Am. Acad. Dermatol. 2001, 44, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Monheit, G.; Cognetta, A.B.; Ferris, L.; Rabinovitz, H.; Gross, K.; Martini, M.; Grichnik, J.M.; Mihm, M.; Prieto, V.G.; Googe, P.; et al. The performance of MelaFind: A prospective multicenter study. Arch. Dermatol. 2011, 147, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Fink, C.; Jaeger, C.; Jaeger, K.; Haenssle, H.A. Diagnostic performance of the MelaFind device in a real-life clinical setting. J. Dtsch. Dermatol. Ges. 2017, 15, 414–419. [Google Scholar] [CrossRef]
- Song, E.; Grant-Kels, J.M.; Swede, H.; D’Antonio, J.L.; Lachance, A.; Dadras, S.S.; Kristjansson, A.K.; Ferenczi, K.; Makkar, H.S.; Rothe, M.J. Paired comparison of the sensitivity and specificity of multispectral digital skin lesion analysis and reflectance confocal microscopy in the detection of melanoma in vivo: A cross-sectional study. J. Am. Acad. Dermatol. 2016, 75, 1187–1192. [Google Scholar] [CrossRef]
- Nagaoka, T.; Nakamura, A.; Okutani, H.; Kiyohara, Y.; Koga, H.; Saida, T.; Sota, T. Hyperspectroscopic screening of melanoma on acral volar skin. Ski. Res. Technol. 2013, 19, e290–e296. [Google Scholar] [CrossRef]
- Nagaoka, T.; Nakamura, A.; Okutani, H.; Kiyohara, Y.; Sota, T. A possible melanoma discrimination index based on hyperspectral data: A pilot study. Ski. Res. Technol. 2012, 18, 301–310. [Google Scholar] [CrossRef]
- Nagaoka, T.; Kiyohara, Y.; Koga, H.; Nakamura, A.; Saida, T.; Sota, T. Modification of a melanoma discrimination index derived from hyperspectral data: A clinical trial conducted in 2 centers between March 2011 and December 2013. Ski. Res. Technol. 2015, 21, 278–283. [Google Scholar] [CrossRef]
- Stamnes, J.J.; Ryzhikov, G.; Biryulina, M.; Hamre, B.; Zhao, L.; Stamnes, K. Optical detection and monitoring of pigmented skin lesions. Biomed. Opt. Express 2017, 8, 2946–2964. [Google Scholar] [CrossRef] [Green Version]
- Fabelo, H.; Carretero, G.; Almeida, P.; Garcia, A.; Hernandez, J.A.; Godtliebsen, F.; Melian, V.; Martinez, B.; Beltran, P.; Ortega, S.; et al. Dermatologic Hyperspectral Imaging System for Skin Cancer Diagnosis Assistance. In Proceedings of the IEEE XXXIV Conference on Design of Circuits and Integrated Systems (DCIS), Bilbao, Spain, 20–22 November 2019; pp. 1–6. [Google Scholar]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Fabelo, H.; Ortega, S.; Szolna, A.; Bulters, D.; Pineiro, J.F.; Kabwama, S.; O’Shanahan, A.J.; Bulstrode, H.; Bisshopp, S.; Kiran, B.R.; et al. In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection. IEEE Access 2019, 7, 39098–39116. [Google Scholar] [CrossRef]
- Fabelo, H.; Ortega, S.; Ravi, D.; Kiran, B.R.; Sosa, C.; Bulters, D.; Callicó, G.M.; Bulstrode, H.; Szolna, A.; Piñeiro, J.F.; et al. Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations. PLoS ONE 2018, 13, e0193721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Caliñski, T.; Harabasz, J. A Dendrite Method Foe Cluster Analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhao, C. Hyperspectral Image Processing; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-47455-6. [Google Scholar]
- Tang, Y.; Zhang, Y.-Q.; Chawla, N.V.; Krasser, S. Correspondence SVMs Modeling for Highly Imbalanced Classification. Cybernetics 2009, 39, 281–288. [Google Scholar]
- Fabelo, H.; Ortega, S.; Lazcano, R.; Madroñal, D.; Callicó, G.M.; Juárez, E.; Salvador, R.; Bulters, D.; Bulstrode, H.; Szolna, A.; et al. An Intraoperative Visualization System Using Hyperspectral Imaging to Aid in Brain Tumor Delineation. Sensors 2018, 18, 430. [Google Scholar] [CrossRef] [Green Version]
- Ortega, S.; Fabelo, H.; Camacho, R.; de la Luz Plaza, M.; Callicó, G.M.G.M.; Sarmiento, R.; Plaza, M.L.; Callicó, G.M.G.M.; Sarmiento, R. Detecting brain tumor in pathological slides using hyperspectral imaging. Biomed. Opt. Express 2018, 9, 818–831. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble Methods in Machine Learning. In Multiple Classifier Systems; Springer Nature: Berlin/Heidelberg, Germany, 2000; pp. 1–15. [Google Scholar]
- Lu, G.; Qin, X.; Wang, D.; Muller, S.; Zhang, H.; Chen, A.; Chen, Z.G.; Fei, B. Hyperspectral imaging of neoplastic progression in a mouse model of oral carcinogenesis. Prog. Biomed. Opt. Imaging–Proc. SPIE 2016, 27, 9788. [Google Scholar]
- Jahed Armaghani, D.; Hasanipanah, M.; Mahdiyar, A.; Abd Majid, M.Z.; Bakhshandeh Amnieh, H.; Tahir, M.M.D. Airblast prediction through a hybrid genetic algorithm-ANN model. Neural Comput. Appl. 2018, 29, 619–629. [Google Scholar] [CrossRef]
- Nathan, M.; Kabatznik, A.S.; Mahmood, A. Hyperspectral imaging for cancer detection and classification. In Proceedings of the IEEE 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC), Stellenbosch, South Africa, 4–6 April 2018; pp. 1–4. [Google Scholar]
- Holland, J.H. Genetic Algorithms and the Optimal Allocation of Trials. SIAM J. Comput. 1973, 2, 88–105. [Google Scholar] [CrossRef]
- García-Martínez, C.; Rodriguez, F.J.; Lozano, M. Genetic Algorithms. In Handbook of Heuristics; Springer International Publishing: Cham, Switzerland, 2018; pp. 431–464. ISBN 9783319071244. [Google Scholar]
- Alzubaidi, A.; Cosma, G.; Brown, D.; Pockley, A.G. Breast Cancer Diagnosis Using a Hybrid Genetic Algorithm for Feature Selection Based on Mutual Information. In Proceedings of the IEEE International Conference on Interactive Technologies and Games (ITAG), Notthingham, UK, 26–27 October 2016; pp. 70–76. [Google Scholar]
- Ronagh, M.; Eshghi, M. Hybrid Genetic Algorithm and Particle Swarm Optimization Based Microwave Tomography for Breast Cancer Detection. In Proceedings of the IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Kota Kinabalu, Sabah, Malaysia, 27–28 April 2019; pp. 244–248. [Google Scholar]
- Martinez, B.; Leon, R.; Fabelo, H.; Ortega, S.; Piñeiro, J.F.; Szolna, A.; Hernandez, M.; Espino, C.; O’Shanahan, A.J.; Carrera, D.; et al. Most Relevant Spectral Bands Identification for Brain Cancer Detection Using Hyperspectral Imaging. Sensors 2019, 19, 5481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Jaccard, P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Société Vaudoise Sci. Nat. 1901, 37, 547–579. [Google Scholar]
- Muschelli, J. ROC and AUC with a Binary Predictor: A Potentially Misleading Metric. J. Classif. 2019. [Google Scholar] [CrossRef] [Green Version]
- Probst, P.; Wright, M.N.; Boulesteix, A. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Günther, F.; Fritsch, S. neuralnet: Training of Neural Networks. R J. 2010, 2, 30. [Google Scholar] [CrossRef] [Green Version]
Type | #Patients | #Images | #Labeled Pixels |
---|---|---|---|
Benign | 27 | 40 | 7471 |
Malignant | 36 | 36 | 8490 |
Total | 618 * | 76 | 15,961 |
K Value | Silhouette | Calinski Harabasz | Davies Bouldin |
---|---|---|---|
Minimum | 2 | 2 | 2 |
Maximum | 6 | 6 | 7 |
Most Frequent | 2 | 2 | 2 |
Classifier | Default Hyperparameters | AUC | Optimized Hyperparameters | AUC |
---|---|---|---|---|
SVM Linear | 0.70 | 0.89 | ||
SVM RBF | 0.66 | 0.77 | ||
SVM Sigmoid | ; | 0.50 | 0.83 | |
RF | 0.61 | 0.61 | ||
ANN | 0.59 | 0.61 |
Reference | #Patients | #Images | #Bands | Spectral Range (nm) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|
Tomatis et al. [12] | 1278 | 1391 | 15 | 483–950 | 80.4 * | 75.6 |
Moncrieff et al. [13] | 311 | 348 | 8 | 400–1000 | 100.0 *,¥ | 5.5 |
Fink et al. [16] | 111 | 360 | 10 | 430–950 | 100.0 *,¥ | 5.5 |
Song et al. [17] | 55 | 36 | 10 | 430–950 | 71.4 *,α | 25.0 |
Monheit et al. [15] | 1257 | 1612 | 10 | 430–950 | 98.2 * | 9.5 |
Nagaoka et al. [20] | 97 | 134 | 124 | 380–780 | 96.0 * | 87.0 |
Stamnes et al. [21] | - | 157 | 10 | 365–1000 | 97.0 | 97.0 |
Stamnes et al. [21] | - | 712 | 10 | 365–1000 | 99.0 | 93.0 |
Proposed | 61 | 76 | 116 | 450–950 | 87.5/100.0 * | 100.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon, R.; Martinez-Vega, B.; Fabelo, H.; Ortega, S.; Melian, V.; Castaño, I.; Carretero, G.; Almeida, P.; Garcia, A.; Quevedo, E.; et al. Non-Invasive Skin Cancer Diagnosis Using Hyperspectral Imaging for In-Situ Clinical Support. J. Clin. Med. 2020, 9, 1662. https://doi.org/10.3390/jcm9061662
Leon R, Martinez-Vega B, Fabelo H, Ortega S, Melian V, Castaño I, Carretero G, Almeida P, Garcia A, Quevedo E, et al. Non-Invasive Skin Cancer Diagnosis Using Hyperspectral Imaging for In-Situ Clinical Support. Journal of Clinical Medicine. 2020; 9(6):1662. https://doi.org/10.3390/jcm9061662
Chicago/Turabian StyleLeon, Raquel, Beatriz Martinez-Vega, Himar Fabelo, Samuel Ortega, Veronica Melian, Irene Castaño, Gregorio Carretero, Pablo Almeida, Aday Garcia, Eduardo Quevedo, and et al. 2020. "Non-Invasive Skin Cancer Diagnosis Using Hyperspectral Imaging for In-Situ Clinical Support" Journal of Clinical Medicine 9, no. 6: 1662. https://doi.org/10.3390/jcm9061662
APA StyleLeon, R., Martinez-Vega, B., Fabelo, H., Ortega, S., Melian, V., Castaño, I., Carretero, G., Almeida, P., Garcia, A., Quevedo, E., Hernandez, J. A., Clavo, B., & M. Callico, G. (2020). Non-Invasive Skin Cancer Diagnosis Using Hyperspectral Imaging for In-Situ Clinical Support. Journal of Clinical Medicine, 9(6), 1662. https://doi.org/10.3390/jcm9061662