Predicting Cardiac Arrest and Respiratory Failure Using Feasible Artificial Intelligence with Simple Trajectories of Patient Data
<p>Studied populations. ICU = intensive care unit; FAST-PACE = Feasible Artificial intelligence with Simple Trajectories for Predicting Adverse Catastrophic Events.</p> "> Figure 2
<p>Sample trajectories of patient with acute respiratory failure. <span class="html-italic">P<sub>tw</sub></span> = prediction time window; ASA = American Society of Anesthesiologists; EMR = electronic medical record; BP = blood pressure; SpO<sub>2</sub> = peripheral oxygen saturation.</p> "> Figure 3
<p>Prediction model design. LSTM = long short-term memory; <span class="html-italic">x</span> = input; <span class="html-italic">S</span> = memory cell.</p> "> Figure 4
<p>Event distribution after admission.</p> "> Figure 5
<p>AUROC of FAST-PACE, MEWS, and NEWS predicting (<b>a</b>) acute respiratory failure and (<b>b</b>) cardiac arrest within 6 h.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Data Sources
2.2. Feature Construction
- Class 1. Healthy person.
- Class 2. Mild systemic disease.
- Class 3. Severe systemic disease.
- Class 4. Severe systemic disease that is a constant threat to life.
- Class 5. A moribund person who is not expected to survive without an operation.
- Class 6. A declared brain-dead person whose organs are being removed for donor purposes.
2.3. Deep Learning Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alam, N.; Hobbelink, E.L.; van Tienhoven, A.J.; van de Ven, P.M.; Jansma, E.P.; Nanayakkara, P.W. The impact of the use of the early warning score (ews) on patient outcomes: A systematic review. Resuscitation 2014, 85, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Subbe, C.P.; Kruger, M.; Rutherford, P.; Gemmel, L. Validation of a modified early warning score in medical admissions. QJM Mon. J. Assoc. Physicians 2001, 94, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Schuetz, A.; Stewart, W.F.; Sun, J. Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inf. Assoc. 2017, 24, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Churpek, M.M.; Yuen, T.C.; Winslow, C.; Meltzer, D.O.; Kattan, M.W.; Edelson, D.P. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit. Care Med. 2016, 44, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.E.; Ghassemi, M.M.; Nemati, S.; Niehaus, K.E.; Clifton, D.A.; Clifford, G.D. Machine learning and decision support in critical care. Proc. IEEE. Inst. Electr. Electron. Eng. 2016, 104, 444–466. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.M.; Lee, Y.; Lee, Y.; Lee, S.; Park, J. An algorithm based on deep learning for predicting in-hospital cardiac arrest. J. Am. Heart Assoc. 2018, 7, e008678. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Tran, T.; Phung, D.; Venkatesh, S. Predicting healthcare trajectories from medical records: A deep learning approach. J. Biomed. Inform. 2017, 69, 218–229. [Google Scholar] [CrossRef]
- Che, Z.; Purushotham, S.; Khemani, R.; Liu, Y. Interpretable deep models for icu outcome prediction. AMIA Ann. Symp. Proc. AMIA Symp. 2016, 2016, 371–380. [Google Scholar]
- Hsieh, M.H.; Hsieh, M.J.; Chen, C.M.; Hsieh, C.C.; Chao, C.M.; Lai, C.C. An artificial neural network model for predicting successful extubation in intensive care units. J. Clin. Med. 2018, 7, 240. [Google Scholar] [CrossRef]
- Ge, W.; Huh, J.W.; Park, Y.R.; Lee, J.H.; Kim, Y.H.; Turchin, A. An interpretable icu mortality prediction model based on logistic regression and recurrent neural networks with lstm units. AMIA Ann. Symp. Proc. AMIA Symp. 2018, 2018, 460–469. [Google Scholar]
- Harutyunyan, H.; Khachatrian, H.; Kale, D.C.; Ver Steeg, G.; Galstyan, A. Multitask learning and benchmarking with clinical time series data. Sci. Data 2019, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Aczon, M.; Ledbetter, D.; Ho, L.; Gunny, A.; Flynn, A.; Williams, J.; Wetzel, R. Dynamic mortality risk predictions in pediatric critical care using recurrent neural networks. arXiv 2017, arXiv:1701.06675. [Google Scholar]
- Plutowski, M.; White, H. Selecting concise training sets from clean data. IEEE Trans. Neural Netw. 1993, 4, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, R.L.; Zeng-Treitler, Q.; Kandula, S.; Ngo, L.H. Predicting sample size required for classification performance. BMC Med. Inform. Decis. Mak. 2012, 12, 8. [Google Scholar] [CrossRef]
- Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Chawla, N.V.; Japkowicz, N.; Kotcz, A. Special issue on learning from imbalanced data sets. ACM Sigkdd Explor. Newsl. 2004, 6, 1–6. [Google Scholar] [CrossRef]
- Lin, W.-C.; Tsai, C.-F.; Hu, Y.-H.; Jhang, J.-S. Clustering-based undersampling in class-imbalanced data. Inf. Sci. 2017, 409, 17–26. [Google Scholar] [CrossRef]
- Velicer, W.F.; Colby, S.M. A comparison of missing-data procedures for arima time-series analysis. Educ. Psychol. Meas. 2005, 65, 596–615. [Google Scholar] [CrossRef]
- Mayhew, D.; Mendonca, V.; Murthy, B.V.S. A review of asa physical status—Historical perspectives and modern developments. Anaesthesia 2019, 74, 373–379. [Google Scholar] [CrossRef]
- Lee, C.K.; Hofer, I.; Gabel, E.; Baldi, P.; Cannesson, M. Development and validation of a deep neural network model for prediction of postoperative in-hospital mortality. Anesthesiology 2018, 129, 649–662. [Google Scholar] [CrossRef]
- Jones, M. Newsdig: The national early warning score development and implementation group. Clin. Med. 2012, 12, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 2018, 8, 6085. [Google Scholar] [CrossRef] [PubMed]
- Lipton, Z.C.; Kale, D.C.; Wetzel, R. Modeling missing data in clinical time series with rnns. arXiv 2016, arXiv:1606.04130. [Google Scholar]
- Baytas, I.M.; Xiao, C.; Zhang, X.; Wang, F.; Jain, A.K.; Zhou, J. Patient subtyping via time-aware LSTM networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 65–74. [Google Scholar]
- Lin, C.; Zhangy, Y.; Ivy, J.; Capan, M.; Arnold, R.; Huddleston, J.M.; Chi, M. Early diagnosis and prediction of sepsis shock by combining static and dynamic information using convolutional-LSTM. In Proceedings of the 2018 IEEE International Conference on Healthcare Informatics (ICHI), New York, NY, USA, 4–7 June 2018; pp. 219–228. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Krogh, A.; Hertz, J.A. A simple weight decay can improve generalization. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 30 November–3 December 1992; pp. 950–957. [Google Scholar]
- Smale, S.; Zhou, D.-X. Learning theory estimates via integral operators and their approximations. Constr. Approx. 2007, 26, 153–172. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. Available online: https://www.tensorflow.org/ (accessed on 20 July 2019).
- Aushev, A.; Ripoll, V.R.; Vellido, A.; Aletti, F.; Pinto, B.B.; Herpain, A.; Post, E.H.; Medina, E.R.; Ferrer, R.; Baselli, G.; et al. Feature selection for the accurate prediction of septic and cardiogenic shock ICU mortality in the acute phase. PLoS ONE 2018, 13, e0199089. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.M.; Dobb, G.J.; Knuiman, M.; Finn, J.; Lee, K.Y.; Webb, S.A. A comparison of admission and worst 24-h acute physiology and chronic health evaluation ii scores in predicting hospital mortality: A retrospective cohort study. Crit. Care 2006, 10, R4. [Google Scholar] [CrossRef]
- Moreno, R.P.; Metnitz, P.G.; Almeida, E.; Jordan, B.; Bauer, P.; Campos, R.A.; Iapichino, G.; Edbrooke, D.; Capuzzo, M.; Le Gall, J.R. Saps 3--from evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at icu admission. Intensive Care Med. 2005, 31, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; de Mendonca, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the sofa score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Working group on “sepsis-related problems” of the european society of intensive care medicine. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef]
- Higgins, T.L.; Teres, D.; Copes, W.S.; Nathanson, B.H.; Stark, M.; Kramer, A.A. Assessing contemporary intensive care unit outcome: An updated mortality probability admission model (mpm0-iii). Crit. Care Med. 2007, 35, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Kim, J.H.; Choi, S.-W.; Lee, H.J.; Hong, J.; Kwon, S.H. Physician confidence in artificial intelligence: An online mobile survey. J. Med. Internet Res. 2019, 21, e12422. [Google Scholar] [CrossRef] [PubMed]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. Smote: Synthetic minority over-sampling technique. J. Artifi. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Weiss, G.M.; McCarthy, K.; Zabar, B. Cost-sensitive learning vs. Sampling: Which is best for handling unbalanced classes with unequal error costs? Dmin 2007, 7, 24. [Google Scholar]
Category | Feature | Data Type | Range | Missing (%) |
---|---|---|---|---|
Vital | Pulse rate (bpm) | continuous | 0–300 | 11.46 |
Sign | Systolic BP (mmHg) | continuous | 0–300 | 7.78 |
Diastolic BP (mmHg) | continuous | 0–300 | 6.81 | |
Respiratory rate (breaths/min) | continuous | 0–150 | 12.76 | |
SpO2 (%) | continuous | 0–100 | 24.01 | |
Body temperature (°C) | continuous | 2–45 | 14.36 | |
History | Treatment history † (yes or no) | categorical | 0, 1 | |
Operation ‡ | ASA classification | continuous | 1–6 | |
History of recent surgery (yes or no) | categorical | 0, 1 |
MEWS | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
Respiratory rate (breaths/min) | >35 | 31–35 | 21–30 | 9–20 | <7 | ||
SpO2 (%) | <85 | 85–89 | 90–92 | >92 | |||
Temperature (°C) | >38.9 | 38–38.9 | 36–37.9 | 35–35.9 | 34–34.9 | <34 | |
Systolic BP (mmHg) | >199 | 100–199 | 80–99 | 70–79 | <70 | ||
Heart rate (bpm) | >129 | 110–129 | 100–109 | 50–99 | 40–49 | 30–39 | <30 |
AVPU † | Alert | Verbal | Pain | Unresponsive | |||
NEWS | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
Respiratory rate (breaths/min) | ≥25 | 21–24 | 12–20 | ≤8 | |||
SpO2 (%) | ≤91 | 92–93 | 94–95 | ≥96 | |||
Temperature (°C) | ≥39.1 | 38.1–39 | 36.1–38.0 | 35.1–36 | ≤35 | ||
Systolic BP (mmHg) | ≥220 | 111–219 | 101–110 | 91–100 | ≤90 | ||
Heart rate (bpm) | ≥131 | 111–130 | 91–110 | 51–90 | 41–50 | ≤40 | |
AVPU † | Alert | Verbal, pain, Unresponsive |
Feature | FAST-PACE Training | FAST-PACE Test | MEWS, NEWS Score | ||||||
---|---|---|---|---|---|---|---|---|---|
Acute Respiratory Failure (n = 1388) | Cardiac Arrest (n = 604) | Non-Event (n = 1992) | Acute Respiratory Failure (n = 350) | Cardiac Arrest (n = 154) | Non-Event (n = 9520) | Acute Respiratory Failure (n = 746) | Cardiac Arrest (n = 102) | Non-Event (n = 19,903) | |
Age (years) | 62.2 ± 15.7 | 62.9 ± 15.4 | 62.9 ± 15.3 | 62.1 ± 14.9 | 63.6 ± 14.4 | 61.5 ± 15.5 | 63.9 ± 15.5 | 64.3 ± 14.1 | 61.7 ± 15.8 |
Gender (male), n (%) | 842 (60.6) | 382 (63.2) | 1225 (61.4) | 225 (64.2) | 106 (68.8) | 5805 (60.9) | 451 (60.4) | 73 (71.5) | 12,001 (60.2) |
Race, Asian | 1388 | 604 | 1992 | 350 | 154 | 9520 | 746 | 102 | 19,903 |
Pulse rate, (bpm) | 100.7 ± 22.2 | 107.4 ± 24.4 | 97.3 ± 23.3 | 100.1 ± 20.7 | 108.5 ± 25.3 | 91.0 ± 21.4 | 99.3 ± 21.8 | 103.9 ± 23.1 | 89.8 ± 20.9 |
Systolic BP (mmHg) | 127.6 ± 24.5 | 110.3 ± 26.1 | 125.6 ± 24.2 | 126.9 ± 23.3 | 107.8 ± 26.2 | 126.4 ± 26. | 127.7 ± 23.8 | 110.6 ± 27.7 | 127.4 ± 25 |
Diastolic BP (mmHg) | 67.5 ± 14.4 | 59.2 ± 15 | 66.7 ± 14.3 | 66.9 ± 13.3 | 58.5 ± 14.8 | 66.7 ± 13.9 | 67.3 ± 14 | 58.8 ± 14.5 | 67.2 ± 13.7 |
Respiratory Rate (breaths/min) | 22.8 ± 6.8 | 22.5 ± 6.3 | 21.4 ± 6.4 | 23.4 ± 7. | 22.9 ± 6.3 | 18.6 ± 5.3 | 23 ± 7 | 21.7 ± 5.5 | 18.7 ± 5.2 |
SpO2, (%) | 96.4 ± 7.1 | 91.3 ± 19.1 | 96.9 ± 6.6 | 96.9 ± 3.8 | 92.8 ± 16.4 | 98.2 ± 6.1 | 95.8 ± 8.4 | 91.9 ± 19.2 | 98.3 ± 5.1 |
Body Temperature, (°C) | 36.9 ± 0.7 | 36.5 ± 1.8 | 36.8 ± 0.7 | 36.8 ± 0.8 | 36.6 ± 1.2 | 36.7 ± 0.9 | 36.9 ± 0.5 | 36.6 ± 0.6 | 36.7 ± 0.8 |
ASA Classification, (1–6) | 3.4 ± 1.1 | 3.6 ± 0.9 | 3.1 ± 1.1 | 4.0 ± 1.1 | 3.3 ± 0.8 | 2.7 ± 0.9 | 3.5 ± 0.9 | 4.1 ± 0.9 | 2.6 ± 0.9 |
Treatment History †, n (%) | 9 (0.6) | 76 (12.5) | 10 (0.5) | 2 (0.6) | 16 (10.3) | 44 (0.5) | 9 (1.2) | 14 (13.7) | 70 (0.3) |
Operation ‡, n (%) | 116 (8.4) | 45 (7.4) | 175 (8.7) | 20 (5.7) | 12 (7.8) | 5768 (60.5) | 66 (8.8) | 8 (7.8) | 11,673 (58.6) |
Time | Model | AUROC | Sensitivity | Specificity | PPV | NPV | Accuracy | F2-Score |
---|---|---|---|---|---|---|---|---|
1 h | MEWS | 0.634 | 0.245 | 0.876 | 0.156 | 0.925 | 0.822 | 0.191 |
NEWS | 0.641 | 0.518 | 0.705 | 0.141 | 0.940 | 0.689 | 0.222 | |
FAST-PACE | 0.886 | 0.830 | 0.777 | 0.259 | 0.980 | 0.782 | 0.394 | |
2 h | MEWS | 0.624 | 0.229 | 0.876 | 0.137 | 0.930 | 0.825 | 0.171 |
NEWS | 0.628 | 0.498 | 0.705 | 0.127 | 0.943 | 0.689 | 0.202 | |
FAST-PACE | 0.886 | 0.881 | 0.742 | 0.226 | 0.986 | 0.753 | 0.360 | |
4 h | MEWS | 0.615 | 0.213 | 0.876 | 0.120 | 0.934 | 0.827 | 0.154 |
NEWS | 0.616 | 0.479 | 0.705 | 0.114 | 0.945 | 0.689 | 0.184 | |
FAST-PACE | 0.868 | 0.771 | 0.800 | 0.234 | 0.978 | 0.798 | 0.359 | |
6 h | MEWS | 0.607 | 0.201 | 0.876 | 0.109 | 0.935 | 0.829 | 0.142 |
NEWS | 0.608 | 0.467 | 0.705 | 0.107 | 0.946 | 0.689 | 0.174 | |
FAST-PACE | 0.869 | 0.837 | 0.748 | 0.201 | 0.984 | 0.754 | 0.324 |
Time | Model | AUROC | Sensitivity | Specificity | PPV | NPV | Accuracy | F2-Score |
---|---|---|---|---|---|---|---|---|
1 h | MEWS | 0.746 | 0.410 | 0.876 | 0.089 | 0.981 | 0.863 | 0.146 |
NEWS | 0.759 | 0.702 | 0.705 | 0.066 | 0.988 | 0.705 | 0.120 | |
FAST-PACE | 0.896 | 0.836 | 0.777 | 0.100 | 0.994 | 0.779 | 0.178 | |
2 h | MEWS | 0.745 | 0.406 | 0.876 | 0.085 | 0.981 | 0.863 | 0.140 |
NEWS | 0.757 | 0.697 | 0.705 | 0.063 | 0.988 | 0.705 | 0.115 | |
FAST-PACE | 0.891 | 0.870 | 0.742 | 0.087 | 0.995 | 0.745 | 0.158 | |
4 h | MEWS | 0.741 | 0.397 | 0.876 | 0.078 | 0.982 | 0.864 | 0.130 |
NEWS | 0.753 | 0.691 | 0.705 | 0.058 | 0.989 | 0.705 | 0.107 | |
FAST-PACE | 0.893 | 0.814 | 0.800 | 0.097 | 0.994 | 0.801 | 0.173 | |
6 h | MEWS | 0.737 | 0.388 | 0.876 | 0.075 | 0.982 | 0.864 | 0.125 |
NEWS | 0.750 | 0.685 | 0.705 | 0.056 | 0.989 | 0.705 | 0.104 | |
FAST-PACE | 0.886 | 0.857 | 0.748 | 0.080 | 0.995 | 0.751 | 0.147 |
Time | Model | NRI (Event) | NRI (No Event) | NRI |
---|---|---|---|---|
1 h | MEWS to FAST-PACE | 0.426 | −0.099 | 0.327 |
NEWS to FAST-PACE | 0.134 | 0.072 | 0.206 | |
2 h | MEWS to FAST-PACE | 0.464 | −0.135 | 0.329 |
NEWS to FAST-PACE | 0.173 | 0.036 | 0.209 | |
4 h | MEWS to FAST-PACE | 0.418 | −0.076 | 0.342 |
NEWS to FAST-PACE | 0.124 | 0.095 | 0.219 | |
6 h | MEWS to FAST-PACE | 0.469 | −0.128 | 0.341 |
NEWS to FAST-PACE | 0.172 | 0.043 | 0.215 |
Time | Model | NRI (Event) | NRI (No Event) | NRI |
---|---|---|---|---|
1 h | MEWS to FAST-PACE | 0.585 | −0.099 | 0.486 |
NEWS to FAST-PACE | 0.312 | 0.072 | 0.384 | |
2 h | MEWS to FAST-PACE | 0.651 | −0.135 | 0.517 |
NEWS to FAST-PACE | 0.383 | 0.036 | 0.419 | |
4 h | MEWS to FAST-PACE | 0.558 | −0.076 | 0.482 |
NEWS to FAST-PACE | 0.292 | 0.095 | 0.387 | |
6 h | MEWS to FAST-PACE | 0.636 | −0.128 | 0.507 |
NEWS to FAST-PACE | 0.370 | 0.043 | 0.412 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Chae, M.; Chang, H.-J.; Kim, Y.-A.; Park, E. Predicting Cardiac Arrest and Respiratory Failure Using Feasible Artificial Intelligence with Simple Trajectories of Patient Data. J. Clin. Med. 2019, 8, 1336. https://doi.org/10.3390/jcm8091336
Kim J, Chae M, Chang H-J, Kim Y-A, Park E. Predicting Cardiac Arrest and Respiratory Failure Using Feasible Artificial Intelligence with Simple Trajectories of Patient Data. Journal of Clinical Medicine. 2019; 8(9):1336. https://doi.org/10.3390/jcm8091336
Chicago/Turabian StyleKim, Jeongmin, Myunghun Chae, Hyuk-Jae Chang, Young-Ah Kim, and Eunjeong Park. 2019. "Predicting Cardiac Arrest and Respiratory Failure Using Feasible Artificial Intelligence with Simple Trajectories of Patient Data" Journal of Clinical Medicine 8, no. 9: 1336. https://doi.org/10.3390/jcm8091336
APA StyleKim, J., Chae, M., Chang, H.-J., Kim, Y.-A., & Park, E. (2019). Predicting Cardiac Arrest and Respiratory Failure Using Feasible Artificial Intelligence with Simple Trajectories of Patient Data. Journal of Clinical Medicine, 8(9), 1336. https://doi.org/10.3390/jcm8091336