Immune Checkpoint Inhibitor in Hepatocellular Carcinoma: Response Rates, Adverse Events, and Predictors of Response
<p>Flow chart of the study.</p> "> Figure 2
<p>Kaplan–Meier curve showing a comparison of overall survival and progression-free survival among Child–Pugh classes (<b>a</b>,<b>b</b>), ALBI grades (<b>c</b>,<b>d</b>), those who received prior therapy vs. immunotherapy alone (<b>e</b>,<b>f</b>), and various etiologies of liver disease (<b>g</b>,<b>h</b>).</p> ">
1. Introduction
2. Materials and Methods
2.1. Patients and Recruitment
2.2. Outcomes
2.3. Definitions
2.4. Follow Up
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
Characteristics | n = 63 |
---|---|
Age (Mean, SD), years | 56.0 (12.7) |
Sex (Males, %) | 52 (82.5%) |
Etiology of cirrhosis | |
Alcohol | 08 (12.6%) |
MASLD | 15 (23.8%) |
Viral hepatitis | 26 (41.2%) |
Others | 14 (22.2%) |
BCLC stage | |
A | 9 (14.2%) |
B | 11 (17.4%) |
C | 43 (68.2%) |
Child–Pugh class | |
A | 35 (55.5%) |
B | 28 (44.4%) |
Immunotherapy alone | 29 (46.0%) |
Prior therapy (Locoregional therapy/TKIs) | 34 (54.0%) |
Prior therapies | 34 (54.0%) |
Locoregional therapy * | 31 (49.2%) |
Oral TKI (Sorafenib/Lenvatinib) | 15 (23.8%) |
MELD | 8.7 (8.1–11.1) |
Hemoglobin (g/dL) | 12.2 (10.7–13.4) |
Total leucocyte count (/mm3) | 5585 (3550–7400) |
Platelets (×103) | 145 (89–197) |
Urea (mg/dL) | 24 (18.3–30) |
Creatinine (mg/dL) | 0.8 (0.6–0.9) |
Bilirubin (mg/dL) | 0.9 (0.6–1.6) |
Alanine aminotransferase (U/L) | 49 (32–89) |
Aspartate aminotransferase (U/L) | 52 (42–90) |
Alkaline phosphatase (IU/L) | 166 (124–222) |
Albumin (g/dL) | 3.8 (3.4–4.3) |
International normalized ratio | 1.2 (1.1–1.3) |
ALBI grades | |
1 | 27 (42.8%) |
2 | 34 (53.9%) |
3 | 2 (3.1%) |
Diabetes mellitus | 22 (34.9%) |
Number of ICI doses, median (IQR) | 4 (2–7) |
Whole Cohort (n = 63) | Only Immunotherapy (n = 29) | Prior Therapy * (n = 34) | |
---|---|---|---|
Child–Pugh class | |||
A | 35 (55.5%) | 15 (51.7%) | 20 (58.8%) |
B | 28 (44.4%) | 14 (48.3%) | 14 (41.1%) |
MELD (Median, IQR) | 8.7 (8.1–11.1) | 9.3 (8.3–12.2) | 8.4 (7.6–10.5) |
Median (IQR) follow-up duration (days) | 163 (90–309) | 162 (90–264) | 194 (105–310) |
Median (IQR) overall survival (days) | 316 (194–438) | 195 (135–341) | 413 (306–NE) |
6-month overall survival (%, 95% CI) | 66.9% (53.4–77.3%) | 62.3% (40.8–77.9%) | 70.6% (52.2–82.9%) |
1-year overall survival (% 95% CI) | 39.3% (23.5–54.8%) | 27.9% (10–49.3%) | 50.5% (27.2–69.8%) |
Median (IQR) progression-free survival (days) | 194 (124–309) | 194 (105–NE) | 240 (116–264) |
3.2. Characteristics of HCC
3.3. Clinical Outcomes
3.4. Radiological Response
3.5. Clinical Outcomes Stratified by Residual Liver Function Assessment (Child–Pugh Class and ALBI Grades)
3.6. Outcomes in AFP Responders Versus Non-Responders
3.7. Predictors of Overall Response
3.8. Predictors of Overall Survival
3.9. Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Singh, A. Epidemiology of Hepatocellular Carcinoma in India—An Updated Review for 2024. J. Clin. Exp. Hepatol. 2024, 14, 101447. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://gco.iarc.who.int/media/globocan/factsheets/populations/356-india-fact-sheet (accessed on 10 November 2024).
- Pal, S.; Ramachandran, J.; Kurien, R.T.; Eapen, A.; Ramakrishna, B.; Keshava, S.N.; Goel, A.; Sajith, K.; Eapen, C. Hepatocellular carcinoma continues to be diagnosed in the advanced stage: Profile of hepatocellular carcinoma in a tertiary care hospital in South India. Trop. Dr. 2013, 43, 25–26. [Google Scholar] [CrossRef] [PubMed]
- Jearth, V.; Patil, P.S.; Mehta, S.; Sundaram, S.; Seth, V.; Goel, M.; Patkar, S.; Bal, M.; Rao, V. Correlation of Clinicopathological Profile, Prognostic Factors, and Survival Outcomes with Baseline Alfa-Fetoprotein Levels in Patients with Hepatocellular Carcinoma: A Biomarker that is Bruised but Not Broken. J. Clin. Exp. Hepatol. 2022, 12, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Uchino, K.; Tateishi, R.; Shiina, S.; Kanda, M.; Masuzaki, R.; Kondo, Y.; Goto, T.; Omata, M.; Yoshida, H.; Koike, K. Hepatocellular carcinoma with extrahepatic metastasis: Clinical features and prognostic factors. Cancer 2011, 117, 4475–4483. [Google Scholar] [CrossRef] [PubMed]
- Parra, N.S.; Ross, H.M.; Khan, A.; Wu, M.; Goldberg, R.; Shah, L.; Mukhtar, S.; Beiriger, J.; Gerber, A.; Halegoua-DeMarzio, D. Advancements in the Diagnosis of Hepatocellular Carcinoma. Int. J. Transl. Med. 2023, 3, 51–65. [Google Scholar] [CrossRef]
- Paul, S.B.; Chalamalasetty, S.B.; Vishnubhatla, S.; Madan, K.; Gamanagatti, S.R.; Batra, Y.; Gupta, S.D.; Panda, S.K.; Acharya, S.K. Clinical profile, etiology and therapeutic outcome in 324 hepatocellular carcinoma patients at a tertiary care center in India. Oncology 2009, 77, 162–171. [Google Scholar] [CrossRef]
- Singal, A.G.; Llovet, J.M.; Yarchoan, M.; Mehta, N.; Heimbach, J.K.; Dawson, L.A.; Jou, J.H.; Kulik, L.M.; Agopian, V.G.; Marrero, J.A.; et al. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023, 78, 1922–1965. [Google Scholar] [CrossRef]
- Reig, M. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Hegde, P.S.; Wallin, J.J.; Mancao, C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin. Cancer Biol. 2018, 52, 117–124. [Google Scholar] [CrossRef]
- Bendell, J.C. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 2016, 7, 12624. [Google Scholar]
- D’alessio, A.; Fulgenzi, C.A.M.; Nishida, N.; Schönlein, M.; von Felden, J.; Schulze, K.; Wege, H.; Gaillard, V.E.; Saeed, A.; Wietharn, B.; et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: A real-world study. Hepatology 2022, 76, 1000–1012. [Google Scholar] [CrossRef]
- Cheng, A.L. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Fulgenzi, C.A.M. Reproducible safety and efficacy of atezolizumab plus bevacizumab for HCC in clinical practice: Results of the AB-real study. Eur. J. Cancer 2022, 175, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Song, Y.; Tang, J.; Zhang, B. What is the optimal duration of immune checkpoint inhibitors in malignant tumors? Front. Immunol. 2022, 13, 983581. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Brunetti, O.; Brandi, G. Hepatocellular Carcinoma Immunotherapy: Predictors of Response, Issues, and Challenges. Int. J. Mol. Sci. 2024, 25, 11091. [Google Scholar] [CrossRef]
- Jardim, D.L.; Goodman, A.; de Melo Gagliato, D.; Kurzrock, R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell 2021, 39, 154–173. [Google Scholar] [CrossRef]
- Yoo, S.-K.; Fitzgerald, C.W.; Cho, B.A.; Fitzgerald, B.G.; Han, C.; Koh, E.S.; Pandey, A.; Sfreddo, H.; Crowley, F.; Korostin, M.R.; et al. Prediction of checkpoint inhibitor immunotherapy efficacy for cancer using routine blood tests and clinical data. Nat. Med. 2025, 1–12, online ahead of print. [Google Scholar]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Wang, Y.; Attar, B.M.; Fuentes, H.E.; Jaiswal, P.; Tafur, A.J. Evaluation of the prognostic value of platelet to lymphocyte ratio in patients with hepatocellular carcinoma. J. Gastrointest. Oncol. 2017, 8, 1065. [Google Scholar] [CrossRef]
- Ledenko, M.; Mercado, L.; Patel, T. Predictors of Survival in Patients with Hepatocellular Cancer Receiving Atezolizumab and Bevacizumab. Am. J. Clin. Oncol. 2024, 47, 105. [Google Scholar] [CrossRef]
- Mouchli, M.; Reddy, S.; Gerrard, M.; Boardman, L.; Rubio, M. Usefulness of neutrophil-to-lymphocyte ratio (NLR) as a prognostic predictor after treatment of hepatocellular carcinoma. Review article. Ann. Hepatol. 2021, 22, 100249. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-C.; Chao, Y.; Chen, M.-H.; Lan, K.-H.; Lee, C.-J.; Lee, I.-C.; Chen, S.-C.; Hou, M.-C.; Huang, Y.-H. Predictors of Response and Survival in Immune Checkpoint Inhibitor-Treated Unresectable Hepatocellular Carcinoma. Cancers 2020, 12, 182. [Google Scholar] [CrossRef]
- Llovet, J.M.; Lencioni, R. mRECIST for HCC: Performance and novel refinements. J. Hepatol. 2020, 72, 288–306. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Eisenhauer, E.; Tregear, M.; Booth, C.M. Progression-free survival: It is time for a new name. Lancet Oncol. 2022, 23, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.I.; Lim, J.; Shim, J.H. Role of the alpha-fetoprotein response in immune checkpoint inhibitor-based treatment of patients with hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2022, 148, 2069–2077. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef]
- Angeli, P. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef]
- de Franchis, R.; Bosch, J.; Garcia-Tsao, G.; Reiberger, T.; Ripoll, C. Baveno VII—Renewing consensus in portal hypertension. J. Hepatol. 2022, 76, 959–974. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, R.; Ma, H.; Zuo, S. Efficacy and safety of atezolizumab plus bevacizumab treatment for advanced hepatocellular carcinoma in the real world: A single-arm meta-analysis. BMC Cancer 2023, 23, 635. [Google Scholar] [CrossRef]
- Xie, E.; Yeo, Y.H.; Scheiner, B.; Zhang, Y.; Hiraoka, A.; Tantai, X.; Fessas, P.; De Castro, T.; D’Alessio, A.; Fulgenzi, C.A.M.; et al. Immune Checkpoint Inhibitors for Child-Pugh Class B Advanced Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. JAMA Oncol. 2023, 9, 1423–1431. [Google Scholar] [CrossRef]
- Kulkarni, A.V.; Krishna, V.; Kumar, K.; Sharma, M.; Patodiya, B.; Khan, A.; Shaik, S.; Pasumarthy, A.; Chhabra, P.; Da, P.K.; et al. Safety and Efficacy of Atezolizumab-Bevacizumab in Real World: The First Indian Experience. J. Clin. Exp. Hepatol. 2023, 13, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Teng, W.; Lin, C.-C.; Su, C.-W.; Lin, P.-T.; Hsieh, Y.-C.; Chen, W.-T.; Ho, M.-M.; Wang, C.-T.; Chai, P.-M.; Hsieh, J.C.-H.; et al. Combination of CRAFITY score with Alpha-fetoprotein response predicts a favorable outcome of atezolizumab plus bevacizumab for unresectable hepatocellular carcinoma. Am. J. Cancer Res. 2022, 12, 1899–1911. [Google Scholar] [CrossRef] [PubMed]
- D’Avola, D.; Granito, A.; de la Torre-Aláez, M.; Piscaglia, F. The importance of liver functional reserve in the non-surgical treatment of hepatocellular carcinoma. J. Hepatol. 2022, 76, 1185–1198. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kudo, M.; Venook, A.P.; Ye, S.-L.; Bronowicki, J.-P.; Chen, X.-P.; Dagher, L.; Furuse, J.; Geschwind, J.-F.H.; de Guevara, L.L.; et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study. J. Hepatol. 2016, 65, 1140–1147. [Google Scholar] [CrossRef]
- Ganten, T.M.; Stauber, R.E.; Schott, E.; Malfertheiner, P.; Buder, R.; Galle, P.R.; Göhler, T.; Walther, M.; Koschny, R.; Gerken, G. Sorafenib in Patients with Hepatocellular Carcinoma-Results of the Observational INSIGHT Study. Clin. Cancer Res. 2017, 23, 5720–5728. [Google Scholar] [CrossRef]
- Tada, T.; Kumada, T.; Hiraoka, A.; Michitaka, K.; Atsukawa, M.; Hirooka, M.; Tsuji, K.; Ishikawa, T.; Takaguchi, K.; Kariyama, K.; et al. Neutrophil-to-lymphocyte ratio is associated with survival in patients with unresectable hepatocellular carcinoma treated with lenvatinib. Liver Int. 2020, 40, 968–976. [Google Scholar] [CrossRef]
- Pinto, E.; Meneghel, P.; Farinati, F.; Russo, F.P.; Pelizzaro, F.; Gambato, M. Efficacy of immunotherapy in hepatocellular carcinoma: Does liver disease etiology have a role? Dig. Liver Dis. 2024, 56, 579–588. [Google Scholar] [CrossRef]
- Mon, H.-C.; Lee, P.-C.; Hung, Y.-P.; Hung, Y.-W.; Wu, C.-J.; Lee, C.-J.; Chi, C.-T.; Lee, I.-C.; Hou, M.-C.; Huang, Y.-H. Functional cure of hepatitis B in patients with cancer undergoing immune checkpoint inhibitor therapy. J. Hepatol. 2025, 82, 51–61. [Google Scholar] [CrossRef]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef]
- Meyer, T.; Galani, S.; Lopes, A.; Vogel, A. Aetiology of liver disease and response to immune checkpoint inhibitors: An updated meta-analysis confirms benefit in those with non-viral liver disease. J. Hepatol. 2023, 79, e73–e76. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Chen, Q.; Deng, Y.; Chen, J.; Dai, Y.; Luo, S.; Xu, J.; Zhao, H.; Cai, J. Adverse Events of Immune Checkpoint Inhibitor-Based Therapies for Unresectable Hepatocellular Carcinoma in Prospective Clinical Trials: A Systematic Review and Meta-Analysis. Liver Cancer 2022, 12, 521–538. [Google Scholar] [CrossRef]
Median (IQR) size, cm (largest observation) | 7.1 (4–10) |
Distribution of lesions among patients in our cohort (n, %) | |
1 | 26 (41.2%) |
2 | 14 (22.2%) |
3 | 7 (11.1%) |
>3 | 16 (25.3%) |
Tumor in vein (TIV) * | 32 (50.7%) |
Main portal vein | 17 (26.9%) |
Branch portal vein | 15 (23.8%) |
Metastasis (No of patients) # | 21 (33.3%) |
Lungs | 8 (34.7%) |
Lymph nodes | 8 (34.7%) |
Adrenal | 4 (17.4%) |
Vertebral | 2 (8.6%) |
Omentum | 1 (4.3%) |
Alpha-fetoprotein (ng/mL) | 398 (40.3–10,000) |
Radiological response evaluated | 43 (68.3%) |
Overall response rate | 21 (48.8%) |
Complete response | 4 (9.3%) |
Partial response | 17 (39.5%) |
Stable disease | 6 (13.9%) |
Disease control rate | 27 (62.7%) |
Progressive disease | 16 (37.2 %) |
Could not be evaluated | 20 (31.7%) |
Died before scheduled MRI | 14 (22.2%) |
Did not come for follow-up MRI | 6 (9.5%) |
Type of Adverse Event | n (%) | Severity (CTCAE v5) |
---|---|---|
Bleeding-related adverse events | 12 (19.0%) | |
Variceal GI bleed | 8 (12.6%) | Grade 4/5 |
Non-variceal GI bleed | 0 (0 %) | |
IC bleed | 2 (3.1%) | Grade 5 |
Epistaxis | 2 (3.1%) | Grade 2 |
Oral ulcers | 2 (3.1%) | Grade 2 |
Skin rashes | 1 (1.6%) | Grade 2 |
Colitis | 1 (1.6%) | Grade 2 |
Worsening Jaundice > 3x ULN | 10 (16.0%) | Grade 3 |
AST increase | ||
>3x | 7 (11.1%) | Grade 2 |
>5x | 4 (6.3%) | Grade 3 |
ALT increase | ||
>3x | 6 (9.5%) | Grade 2 |
>5x | 1 (1.5%) | Grade 3 |
New onset/aggravation of ascites | 13 (20.6%) | Grade 2 |
New onset/aggravation of HE | 1 (1.6%) | Grade 3 |
Number of patients | 31 (49.2%) | Any grade |
Number of patients | 18 (28.5%) | Grade 3 and above |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swaroop, S.; Biswas, S.; Mehta, S.; Aggarwal, A.; Arora, U.; Agarwal, S.; Chavan, A.; Nayak, B.; Shalimar. Immune Checkpoint Inhibitor in Hepatocellular Carcinoma: Response Rates, Adverse Events, and Predictors of Response. J. Clin. Med. 2025, 14, 1034. https://doi.org/10.3390/jcm14031034
Swaroop S, Biswas S, Mehta S, Aggarwal A, Arora U, Agarwal S, Chavan A, Nayak B, Shalimar. Immune Checkpoint Inhibitor in Hepatocellular Carcinoma: Response Rates, Adverse Events, and Predictors of Response. Journal of Clinical Medicine. 2025; 14(3):1034. https://doi.org/10.3390/jcm14031034
Chicago/Turabian StyleSwaroop, Shekhar, Sagnik Biswas, Shubham Mehta, Arnav Aggarwal, Umang Arora, Samagra Agarwal, Amitkumar Chavan, Baibaswata Nayak, and Shalimar. 2025. "Immune Checkpoint Inhibitor in Hepatocellular Carcinoma: Response Rates, Adverse Events, and Predictors of Response" Journal of Clinical Medicine 14, no. 3: 1034. https://doi.org/10.3390/jcm14031034
APA StyleSwaroop, S., Biswas, S., Mehta, S., Aggarwal, A., Arora, U., Agarwal, S., Chavan, A., Nayak, B., & Shalimar. (2025). Immune Checkpoint Inhibitor in Hepatocellular Carcinoma: Response Rates, Adverse Events, and Predictors of Response. Journal of Clinical Medicine, 14(3), 1034. https://doi.org/10.3390/jcm14031034