Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Study Population
2.2. Patients
2.3. Outcome
2.4. Input Variables
2.5. Data Analysis
3. Results
3.1. Final Scoring System
3.2. Bladder Cancer-Free Survival During Follow-Up
3.3. Model Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Larsson, S.C.; Orsini, N.; Brismar, K.; Wolk, A. Diabetes mellitus and risk of bladder cancer: A meta-analysis. Diabetologia 2006, 49, 2819–2823. [Google Scholar] [CrossRef] [PubMed]
- Jubber, I.; Ong, S.; Bukavina, L.; Black, P.C.; Compérat, E.; Kamat, A.M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S.P.; Meeks, J.J.; et al. Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur. Urol. 2023, 84, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Harrison, H.; Usher-Smith, J.A.; Li, L.; Roberts, L.; Lin, Z.; Thompson, R.E.; Rossi, S.H.; Stewart, G.D.; Walter, F.M.; Griffin, S.; et al. Risk prediction models for symptomatic patients with bladder and kidney cancer: A systematic review. Br. J. Gen. Pract. 2021, 72, e11–e18. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Coupland, C. Symptoms and risk factors to identify men with suspected cancer in primary care: Derivation and validation of an algorithm. Br. J. Gen. Pract. 2013, 63, e1–e10. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Coupland, C. Symptoms and risk factors to identify women with suspected cancer in primary care: Derivation and validation of an algorithm. Br. J. Gen. Pract. 2013, 63, e11–e21. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Coupland, C. Identifying patients with suspected renal tract cancer in primary care: Derivation and validation of an algorithm. Br. J. Gen. Pract. 2012, 62, e251–e260. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.H.; Shah, S.A.; Ann, H.S.; Hemdan, S.N.; Lim, C.S.; Al-Fahmi Abdul Galib, N.; Singam, P.; Kong, C.H.C.; Goh, E.H.; Bahadzor, B.; et al. Stratifying patients with haematuria into high or low risk groups for bladder cancer: A novel clinical scoring system. Asian Pac. J. Cancer Prev. 2013, 14, 6327–6330. [Google Scholar] [CrossRef]
- Tan, W.S.; Ahmad, A.; Feber, A.; Mostafid, H.; Cresswell, J.; Fankhauser, C.D.; Waisbrod, S.; Hermanns, T.; Sasieni, P.; Kelly, J.D.; et al. Development and validation of a haematuria cancer risk score to identify patients at risk of harbouring cancer. J. Intern. Med. 2019, 285, 436–445. [Google Scholar] [CrossRef]
- Tsai, I.J.; Shen, W.C.; Lee, C.L.; Wang, H.D.; Lin, C.Y. Machine learning in prediction of bladder cancer on clinical laboratory data. Diagnostics 2022, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Shakhssalim, N.; Talebi, A.; Pahlevan-Fallahy, M.T.; Sotoodeh, K.; Alavimajd, H.; Borumandnia, N.; Taheri, M. Lifestyle and occupational risks assessment of bladder cancer using machine learning-based prediction models. Cancer Rep. 2023, 6, e1860. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ning, Y.; Yuan, H.; Goldstein, B.A.; Ong, M.E.H.; Liu, N.; Chakraborty, B. AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data. J. Biomed. Inform. 2022, 125, 103959. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2000; Chapter 5, Assessing the fit of the model; pp. 160–164. ISBN 9780471722144. [Google Scholar]
- Udy, A.A.; Scheinkestel, C.; Pilcher, D.; Bailey, M.; Australian and New Zealand Intensive Care Society Centre for Outcomes and Resource Evaluation. The association between low admission peak plasma creatinine concentration and in-hospital mortality in patients admitted to intensive care in Australia and New Zealand. Crit. Care Med. 2016, 44, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Cartin-Ceba, R.; Afessa, B.; Gajic, O. Low baseline serum creatinine concentration predicts mortality in critically ill patients independent of body mass index. Crit. Care Med. 2007, 35, 2420–2423. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Kashani, K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in critically ill patients. J. Thorac. Dis. 2016, 8, E305–E311. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.S.; Ho, F.; Parra-Soto, S.; Celis-Morales, C.; Welsh, P.; Sullivan, M.K.; Jani, B.D.; Sattar, N.; Lang, N.N.; Pell, J.P.; et al. Kidney function and cancer risk: An analysis using creatinine and cystatin C in a cohort study. EClinicalMedicine. 2021, 38, 101030. [Google Scholar] [CrossRef]
- Xu, H.; Matsushita, K.; Su, G.; Trevisan, M.; Ärnlöv, J.; Barany, P.; Lindholm, B.; Elinder, C.G.; Lambe, M.; Carrero, J.J. Estimated glomerular filtration rate and the risk of cancer. Clin. J. Am. Soc. Nephrol. 2019, 14, 530–539. [Google Scholar] [CrossRef]
- Wong, G.; Staplin, N.; Emberson, J.; Baigent, C.; Turner, R.; Chalmers, J.; Zoungas, S.; Pollock, C.; Cooper, B.; Harris, D.; et al. Chronic kidney disease and the risk of cancer: An individual patient data meta-analysis of 32,057 participants from six prospective studies. BMC Cancer 2016, 16, 488. [Google Scholar] [CrossRef]
- Lees, J.S.; Elyan, B.M.P.; Herrmann, S.M.; Lang, N.N.; Jones, R.J.; Mark, P.B. The ’other’ big complication: How chronic kidney disease impacts on cancer risks and outcomes. Nephrol. Dial. Transplant. 2023, 38, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Stengel, B. Chronic kidney disease and cancer: A troubling connection. J. Nephrol. 2010, 23, 253–262. [Google Scholar]
- Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: Mechanisms and therapeutic targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef]
- Russo, P.; Marino, F.; Rossi, F.; Bizzarri, F.P.; Ragonese, M.; Dibitetto, F.; Filomena, G.B.; Marafon, D.P.; Ciccarese, C.; Iacovelli, R.; et al. Is systemic immune-inflammation index a real non-invasive biomarker to predict oncological outcomes in patients eligible for radical cystectomy? Medicina 2023, 59, 2063. [Google Scholar] [CrossRef] [PubMed]
Bladder Cancer | No Cancer random subset | |||||
---|---|---|---|---|---|---|
Characteristics | (n = 644) | (n = 19,320) | χ2/t | p | ||
Demographics | ||||||
Male, n (%) | 499 | (77.48%) | 9783 | (50.64%) | 179.85 | <0.001 |
Age at assessment in year, mean ± SD | 71.21 | ±9.56 | 62.33 | ±11.65 | 23.01 | <0.001 |
Duration of diabetes in year, median (IQR) | 6 | (2–12) | 3 | (1–9) | ||
Behaviors | ||||||
Current or former smoker, n (%) | 346 | (53.73%) | 5741 | (29.72%) | 169.54 | <0.001 |
Current or former drinker, n (%) | 252 | (39.13%) | 5658 | (29.29%) | 28.98 | <0.001 |
Medical history | ||||||
Cardiovascular diseases | ||||||
Ischemic heart disease, n (%) | 88 | (13.66%) | 1340 | (6.94%) | 42.49 | <0.001 |
Cerebrovascular disease, n (%) | 58 | (9.01%) | 1185 | (6.13%) | 8.81 | 0.003 |
Heart failure, n (%) | 26 | (4.04%) | 352 | (1.82%) | 16.47 | <0.001 |
Hypertension, n (%) | 588 | (91.30%) | 16,489 | (85.35%) | 17.88 | <0.001 |
Respiratory diseases | ||||||
Chronic obstructive pulmonary disease, n (%) | 13 | (2.02%) | 120 | (0.62%) | 18.39 | <0.001 |
Pneumonia, n (%) | 38 | (5.90%) | 580 | (3.00%) | 17.46 | <0.001 |
Chronic kidney disease, n (%) | 76 | (11.80%) | 3026 | (15.66%) | 7.08 | 0.008 |
Liver cirrhosis, n (%) | 9 | (1.40%) | 376 | (1.95%) | 0.99 | 0.319 |
Family history of diabetes, n (%) | 249 | (38.66%) | 9098 | (47.09%) | 17.77 | <0.001 |
Medication use | ||||||
Anti-diabetic drugs | ||||||
Metformin, n (%) | 362 | (56.21%) | 7812 | (40.43%) | 64.15 | <0.001 |
Sulfonylurea, n (%) | 263 | (40.84%) | 5274 | (27.30%) | 57.01 | <0.001 |
Insulin, n (%) | 55 | (8.54%) | 1244 | (6.44%) | 4.52 | 0.033 |
Dipeptidyl peptidase-4 inhibitors, n (%) | 21 | (3.26%) | 786 | (4.07%) | 1.05 | 0.306 |
Sodium-glucose cotransporter-2 inhibitors, n (%) | 0 | (0%) | 59 | (0.31%) | ||
Glucagon-like peptide-1 receptor agonists, n (%) | 0 | (0%) | 8 | (0.04%) | ||
Glucosidase inhibitor, n (%) | 4 | (0.62%) | 83 | (0.43%) | ||
Glitazone, n (%) | 3 | (0.47%) | 71 | (0.37%) | ||
Meglitinide, n (%) | 0 | (0%) | 5 | (0.03%) | ||
Any of the above, n (%) | 467 | (72.52%) | 10,203 | (52.81%) | 97.26 | <0.001 |
Aspirin, n (%) | 207 | (32.14%) | 4016 | (20.79%) | 48.19 | <0.001 |
Non-steroidal anti-inflammatory drugs, n (%) | 325 | (50.47%) | 10,522 | (54.46%) | 4.01 | 0.045 |
Anti-coagulants, n (%) | 48 | (7.45%) | 923 | (4.78%) | 9.64 | 0.002 |
Anti-platelets, n (%) | 37 | (5.75%) | 1404 | (7.27%) | 2.16 | 0.142 |
Anti-hypertensive drugs, n (%) | 496 | (77.02%) | 13,293 | (68.80%) | 19.68 | <0.001 |
Statins, n (%) | 327 | (50.78%) | 9524 | (49.30%) | 0.55 | 0.460 |
Anthropometric measurements | ||||||
Body mass index in kg/m 2, mean ± SD | 25.34 | ±3.49 | 26.07 | ±4.23 | 5.18 | <0.001 |
Waist-to-hip ratio, mean ± SD | 0.96 | ±0.06 | 0.94 | ±0.06 | 8.32 | <0.001 |
Laboratory measurements | ||||||
Serum creatinine in µmol/L, mean ± SD | 98.10 | ±48.47 | 81.53 | ±40.40 | 8.58 | <0.001 |
HbA1c in %, mean ± SD | 7.30 | ±1.33 | 7.37 | ±1.46 | 1.31 | 0.190 |
Fasting glucose in mmol/L, mean ± SD | 7.33 | ±1.92 | 7.62 | ±2.25 | 3.75 | <0.001 |
Low-density lipoprotein cholesterol in mmol/L, mean ± SD | 2.61 | ±0.75 | 2.67 | ±0.82 | 1.99 | 0.047 |
High-density lipoprotein cholesterol in mmol/L, mean ± SD | 1.23 | ±0.33 | 1.27 | ±0.33 | 3.03 | 0.002 |
Triglycerides in mmol/L, mean ± SD | 1.49 | ±0.92 | 1.63 | ±1.26 | 3.75 | <0.001 |
Variable | Value | Point |
---|---|---|
Age, years | Less than 43 | 0 |
43 to 52 | 3 | |
53 to 72 | 38 | |
73 to 81 | 56 | |
82 or above | 62 | |
Serum creatinine, µmol/L | Less than 51 | 3 |
51 to 60 | 0 | |
61 to 93 | 3 | |
94 to 125 | 9 | |
126 or above | 12 | |
Sex | Female | 0 |
Male | 16 | |
Smoking | Never smoker | 0 |
Ever smoker | 9 |
Score Interval | ||||
---|---|---|---|---|
Time | 0 to 49 | 50 to 69 | 70 to 89 | 90 to 99 |
t = 2 years | 0.999 | 0.993 | 0.977 | 0.922 |
t = 5 years | 0.997 | 0.979 | 0.948 | 0.802 |
t = 7 years | 0.996 | 0.955 | 0.908 | 0.734 |
Score Interval | Total Number of Patients, n | Number of Patients Who Developed Bladder Cancer During Follow-Up, n (%) | |
---|---|---|---|
0 to 9 | 27,211 | 2 | (0.01%) |
10 to 19 | 9094 | 2 | (0.02%) |
20 to 29 | 19,639 | 5 | (0.03%) |
30 to 39 | 45,798 | 15 | (0.03%) |
40 to 49 | 72,284 | 34 | (0.05%) |
50 to 59 | 72,993 | 90 | (0.12%) |
60 to 69 | 77,467 | 191 | (0.25%) |
70 to 79 | 30,761 | 103 | (0.33%) |
80 to 89 | 15,136 | 105 | (0.69%) |
90 to 99 | 12,387 | 97 | (0.78%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yau, S.T.Y.; Hung, C.T.; Leung, E.Y.M.; Chong, K.C.; Lee, A.; Yeoh, E.K. Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach. J. Clin. Med. 2025, 14, 4. https://doi.org/10.3390/jcm14010004
Yau STY, Hung CT, Leung EYM, Chong KC, Lee A, Yeoh EK. Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach. Journal of Clinical Medicine. 2025; 14(1):4. https://doi.org/10.3390/jcm14010004
Chicago/Turabian StyleYau, Sarah Tsz Yui, Chi Tim Hung, Eman Yee Man Leung, Ka Chun Chong, Albert Lee, and Eng Kiong Yeoh. 2025. "Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach" Journal of Clinical Medicine 14, no. 1: 4. https://doi.org/10.3390/jcm14010004
APA StyleYau, S. T. Y., Hung, C. T., Leung, E. Y. M., Chong, K. C., Lee, A., & Yeoh, E. K. (2025). Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach. Journal of Clinical Medicine, 14(1), 4. https://doi.org/10.3390/jcm14010004