Impact of the Spinal Instability Neoplastic Score on Postoperative Prognosis in Patients with Metastatic Cancer of the Cervical Spine
<p>Kaplan–Meier survival curve showing the overall survival of 106 patients with metastatic cervical spine cancer.</p> "> Figure 2
<p>Kaplan–Meier survival curve comparing overall survival between the low-to-moderate SINS group (median survival: 8.6 months) and the high SINS group (median survival: 5.3 months; <span class="html-italic">p</span> = 0.023).</p> "> Figure 3
<p>Surgical complications across the low-to-moderate and high SINS groups.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Participants
2.3. Outcome Measures and Data Collection
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics and Comparison of Low-to-Moderate and High SINS Groups
3.2. Survival Analysis
3.3. Changes in Functional Status
3.4. Surgical Burden and Postoperative Complications
3.5. Cox Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sciubba, D.M.; Petteys, R.J.; Dekutoski, M.B.; Fisher, C.G.; Fehlings, M.G.; Ondra, S.L.; Rhines, L.D.; Gokaslan, Z.L. Diagnosis and management of metastatic spine disease: A review. J. Neurosurg. Spine 2010, 13, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Chang, B.-S.; Kim, H.; Kang, D.-H.; Chang, S.Y. An Updated Review on the Treatment Strategy for Spinal Metastasis from the Spine Surgeon’s Perspective. Asian Spine J. 2022, 16, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.Y.; Mok, S.; Park, S.C.; Kim, H.; Chang, B.S. Treatment Strategy for Metastatic Spinal Tumors: A Narrative Review. Asian Spine J. 2020, 14, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Park, J.S.; Lee, C.S.; Kang, B.J.; Jung, C.W. Trends in Survival and Surgical Methods in Patients Surgically Treated for Metastatic Spinal Tumors: 25-Year Experience in a Single Institution. Clin. Orthop. Surg. 2023, 15, 109–117. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, J.; Chang, S.Y.; Kim, H.; Chang, B.S. Treatment Strategy for Impending Instability in Spinal Metastases. Clin. Orthop. Surg. 2020, 12, 337–342. [Google Scholar] [CrossRef]
- Bogduk, N.; Mercer, S. Biomechanics of the cervical spine. I: Normal kinematics. Clin. Biomech. 2000, 15, 633–648. [Google Scholar] [CrossRef]
- Molina, C.A.; Gokaslan, Z.L.; Sciubba, D.M. Diagnosis and management of metastatic cervical spine tumors. Orthop. Clin. N. Am. 2012, 43, 75–87. [Google Scholar] [CrossRef]
- Fisher, C.G.; Dipaola, C.P.; Ryken, T.C.; Bilsky, M.H.; Shaffrey, C.I.; Berven, S.H.; Harrop, J.S.; Fehlings, M.G.; Boriani, S.; Chou, D.; et al. A novel classification system for spinal instability in neoplastic disease: An evidence-based approach and expert consensus from the spine oncology study group. Spine 2010, 35, E1221–E1229. [Google Scholar] [CrossRef]
- Versteeg, A.L.; Verlaan, J.J.; Sahgal, A.; Mendel, E.; Quraishi, N.A.; Fourney, D.R.; Fisher, C.G. The Spinal Instability Neoplastic Score: Impact on Oncologic Decision-Making. Spine 2016, 41 (Suppl. S20), S231–S237. [Google Scholar] [CrossRef]
- Ha, K.Y.; Kim, Y.H.; Ahn, J.H.; Park, H.Y. Factors Affecting Survival in Patients Undergoing Palliative Spine Surgery for Metastatic Lung and Hepatocellular Cancer: Dose the Type of Surgery Influence the Surgical Results for Metastatic Spine Disease? Clin. Orthop. Surg. 2015, 7, 344–350. [Google Scholar] [CrossRef]
- Zadnik, P.L.; Hwang, L.; Ju, D.G.; Groves, M.L.; Sui, J.; Yurter, A.; Witham, T.F.; Bydon, A.; Wolinsky, J.P.; Gokaslan, Z.L.; et al. Prolonged survival following aggressive treatment for metastatic breast cancer in the spine. Clin. Exp. Metastasis 2014, 31, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Zadnik, P.L.; Goodwin, C.R.; Karami, K.J.; Mehta, A.I.; Amin, A.G.; Groves, M.L.; Wolinsky, J.P.; Witham, T.F.; Bydon, A.; Gokaslan, Z.L.; et al. Outcomes following surgical intervention for impending and gross instability caused by multiple myeloma in the spinal column. J. Neurosurg. Spine 2015, 22, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Tokuhashi, Y.; Matsuzaki, H.; Oda, H.; Oshima, M.; Ryu, J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine 2005, 30, 2186–2191. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Ferrone, M.L.; Blucher, J.A.; Agaronnik, N.; Nguyen, L.; Tobert, D.G.; Balboni, T.A.; Schwab, J.H.; Shin, J.H.; Sciubba, D.M.; et al. Prospective comparison of the accuracy of the New England Spinal Metastasis Score (NESMS) to legacy scoring systems in prognosticating outcomes following treatment of spinal metastases. Spine J. 2022, 22, 39–48. [Google Scholar] [CrossRef]
- Paulino Pereira, N.R.; Janssen, S.J.; van Dijk, E.; Harris, M.B.; Hornicek, F.J.; Ferrone, M.L.; Schwab, J.H. Development of a Prognostic Survival Algorithm for Patients with Metastatic Spine Disease. J. Bone Jt. Surgery. Am. Vol. 2016, 98, 1767–1776. [Google Scholar] [CrossRef]
- Truong, V.T.; Al-Shakfa, F.; Roberge, D.; Masucci, G.L.; Tran, T.P.Y.; Dib, R.; Yuh, S.J.; Wang, Z. Assessing the Performance of Prognostic Scores in Patients with Spinal Metastases from Lung Cancer Undergoing Non-surgical Treatment. Asian Spine J. 2023, 17, 739–749. [Google Scholar] [CrossRef]
- Miyaji, Y.; Nakanishi, K.; Yamamoto, A.; Yoden, E.; Tokiya, R.; Okawaki, M.; Inubushi, M.; Katsui, K. Spinal Instability as a Prognostic Factor in Patients with Spinal Metastasis of Castration-resistant Prostate Cancer. Cancer Diagn. Progn. 2023, 3, 449–456. [Google Scholar] [CrossRef]
- Moon, K.Y.; Chung, C.K.; Jahng, T.A.; Kim, H.J.; Kim, C.H. Postoperative Survival and Ambulatory Outcome in Metastatic Spinal Tumors: Prognostic Factor Analysis. J. Korean Neurosurg. Soc. 2011, 50, 216–223. [Google Scholar] [CrossRef]
- Lau, D.; Leach, M.R.; Than, K.D.; Ziewacz, J.; La Marca, F.; Park, P. Independent predictors of complication following surgery for spinal metastasis. Eur. Spine J. 2013, 22, 1402–1407. [Google Scholar] [CrossRef]
- Tan, J.H.J.; Hallinan, J.; Ang, S.W.; Tan, T.H.; Tan, H.I.J.; Tan, L.T.I.; Sin, Q.S.; Lee, R.; Hey, H.W.D.; Chan, Y.H.; et al. Outcomes and Complications of Surgery for Symptomatic Spinal Metastases; a Comparison Between Patients Aged ≥ 70 and <70. Glob. Spine J. 2023, 21925682231209624. [Google Scholar] [CrossRef]
- Hashimoto, K.; Nishimura, S.; Miyamoto, H.; Toriumi, K.; Ikeda, T.; Akagi, M. Comprehensive treatment outcomes of giant cell tumor of the spine: A retrospective study. Medicine 2022, 101, e29963. [Google Scholar] [CrossRef]
Characteristics | All Patients (N = 106) | Low-to-Moderate SINS (N = 71) | High SINS (N = 35) | p-Value |
---|---|---|---|---|
Age, year, mean ± SD | 58.2 ± 10.1 | 58.9 ± 9.7 | 56.8 ± 10.9 | 0.321 |
Male, n (%) | 61 (57.5) | 44 (62.0) | 17 (48.6) | 0.189 |
Primary cancer, n (%) | 0.086 | |||
Lung | 28 (26.4) | 21 (29.6) | 7 (20.0) | |
Liver | 21 (19.8) | 17 (23.9) | 4 (11.4) | |
Breast | 13 (12.3) | 6 (8.5) | 7 (20.0) | |
Colorectal | 6 (5.7) | 5 (7.0) | 1 (2.9) | |
Kidney | 5 (4.7) | 4 (5.6) | 1 (2.9) | |
Prostate | 2 (1.9) | 2 (2.8) | 0 (0.0) | |
Thyroid | 2 (1.9) | 2 (2.8) | 0 (0.0) | |
Others | 29 (27.4) | 14 (19.7) | 15 (42.9) | |
ECOG-PS, n (%) | 0.559 | |||
0 | 2 (1.9) | 1 (1.4) | 1 (2.9) | |
1 | 40 (37.7) | 30 (42.3) | 10 (28.6) | |
2 | 35 (33.0) | 22 (31.0) | 13 (37.1) | |
3 | 23 (21.7) | 15 (21.1) | 8 (22.9) | |
4 | 6 (5.7) | 3 (4.2) | 3 (8.6) | |
Frankel grade, n (%) | 0.999 | |||
E | 48 (45.3) | 32 (45.1) | 16 (45.7) | |
C and D | 56 (52.8) | 37 (52.1) | 19 (54.3) | |
A and B | 2 (1.9) | 2 (2.8) | 0 (0.0) | |
Karnofsky performance status, n (%) | 0.841 | |||
Good (80–100%) | 34 (32.1) | 24 (33.8) | 10 (28.6) | |
Moderate (50–70%) | 53 (50.0) | 35 (49.3) | 18 (51.4) | |
Poor (10–40%) | 19 (17.9) | 12 (16.9) | 7 (20.0) | |
Number of extraspinal bony metastases, n (%) | 0.572 | |||
0 | 50 (47.2) | 31 (43.7) | 19 (54.3) | |
1–2 | 23 (21.7) | 17 (23.9) | 6 (17.1) | |
≥3 | 33 (31.1) | 23 (32.4) | 10 (28.6) | |
Metastasis to visceral organs, n (%) | 0.999 | |||
No metastases | 56 (52.8) | 38 (53.5) | 18 (51.4) | |
Removable | 5 (4.7) | 3 (4.2) | 2 (5.7) | |
Unremovable | 45 (42.5) | 30 (42.3) | 15 (42.9) | |
Number of metastases in the vertebral body, n (%) | 0.345 | |||
1 | 32 (30.2) | 22 (31.0) | 10 (28.6) | |
2 | 26 (24.5) | 20 (28.2) | 6 (17.1) | |
≥3 | 48 (45.3) | 29 (40.8) | 19 (54.3) | |
Main cervical lesion | 0.482 | |||
C1 | 1 (0.9) | 1 (1.4) | 0 (0.0) | |
C2 | 18 (17.0) | 15 (21.1) | 3 (8.6) | |
C3 | 9 (8.5) | 7 (9.9) | 2 (5.7) | |
C4 | 20 (18.9) | 12 (16.9) | 8 (22.9) | |
C5 | 15 (14.2) | 10 (14.1) | 5 (14.3) | |
C6 | 21 (19.8) | 11 (15.5) | 10 (28.6) | |
C7 | 22 (20.8) | 15 (21.1) | 7 (20.0) | |
SINS | <0.001 | |||
0–6 | 7 (6.6) | 7 (9.9) | 0 (0.0) | |
7–12 | 64 (60.4) | 64 (90.1) | 0 (0.0) | |
≥13 | 35 (33.0) | 0 (0.0) | 35 (100.0) | |
Operation type, n (%) | 0.105 | |||
Fixation only | 15 (14.2) | 12 (16.9) | 3 (8.6) | |
Posterior debulking and fixation | 31 (29.2) | 24 (33.8) | 7 (20.0) | |
Anterior debulking and fixation | 60 (56.6) | 35 (49.3) | 25 (71.4) | |
Usage of occiput plate | 8 (7.5) | 6 (8.5) | 2 (5.7) | 0.999 |
Preoperative chemotherapy, n (%) | 56 (52.8) | 36 (50.7) | 20 (57.1) | 0.532 |
Preoperative radiotherapy, n (%) | 38 (26.4) | 24 (33.8) | 14 (40.0) | 0.532 |
Postoperative chemotherapy, n (%) | 50 (47.2) | 33 (46.5) | 17 (48.6) | 0.839 |
Postoperative radiotherapy, n (%) | 64 (60.4) | 45 (63.4) | 19 (54.3) | 0.368 |
Preoperative ECOG-PS | Postoperative ECOG-PS | Total | |||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | ||
0 | 0 | 1 b | 0 b | 0 b | 0 b | 0 b | 1 |
1 | 1 a | 17 | 7 b | 3 b | 1 b | 1 b | 30 |
2 | 0 a | 2 a | 15 | 5 b | 0 b | 0 b | 22 |
3 | 0 a | 1 a | 6 a | 7 | 1 b | 0 b | 15 |
4 | 0 a | 0 a | 1 a | 2 a | 0 | 0 b | 3 |
Total | 1 | 21 | 29 | 17 | 2 | 1 | 71 |
Preoperative ECOG-PS | Postoperative ECOG-PS | Total | |||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | ||
0 | 1 | 0 b | 0 b | 0 b | 0 b | 0 b | 1 |
1 | 0 a | 5 | 4 b | 1 b | 0 b | 0 b | 10 |
2 | 0 a | 1 a | 9 | 2 b | 1 b | 0 b | 13 |
3 | 0 a | 0 a | 4 a | 3 | 1 b | 0 b | 8 |
4 | 0 a | 0 a | 0 a | 1 a | 1 | 1 b | 3 |
Total | 1 | 6 | 17 | 7 | 3 | 1 | 35 |
All Patients (N = 106) | Low-to-Moderate SINS (N = 71) | High SINS (N = 35) | p-Value | |
---|---|---|---|---|
Surgical variables | ||||
Operation time (h) | 5.6 ± 2.2 | 5.9 ± 2.5 | 5.0 ± 1.5 | 0.020 |
Estimated blood loss (mL) | 641.2 ± 1030.5 | 684.5 ± 1215.9 | 553.4 ± 473.4 | 0.541 |
Surgical complications | ||||
Total events requiring revision surgery, n (%) | 7 (6.6) | 4 (5.6) | 3 (8.6) | 0.682 |
Wound infection, n (%) | 4 (3.8) | 2 (2.8) | 2 (5.7) | 0.597 |
Increased neurology due to tumor relapse, n (%) | 2 (1.9) | 2 (2.8) | 0 (0.0) | 0.999 |
Further fracture, n (%) | 1 (0.9) | 0 (0.0) | 1 (2.9) | 0.330 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | |
Sex (male) | 0.086 | 0.430 | ||
Low-to-moderate SINS | Reference | |||
High SINS | 1.637 (1.064–2.517) | 0.025 | 1.959 (1.221–3.143) | 0.005 |
Preoperative Frankel grade | 0.639 (0.429–0.950) | 0.026 | 0.084 | |
Modified Tokuhashi score | 0.923 (0.847–1.006) | 0.067 | 0.838 | |
Primary cancer group of the modified Tokuhashi score | 0.003 | 0.008 | ||
5 (thyroid, breast, prostate, carcinoid tumor) | Reference | |||
4 (rectum) | 3.049 (1.099–8.459) | 0.032 | 3.293 (1.126–9.632) | 0.029 |
3 (kidney, uterus) | 1.314 (0.417–4.138) | 0.641 | 0.337 | |
2 (other) | 3.154 (1.556–6.394) | 0.001 | 2.648 (1.295–5.415) | 0.008 |
1 (liver, gallbladder) | 2.636 (1.240–5.605) | 0.012 | 2.715 (1.227–6.011) | 0.014 |
0 (lung, pancreas, etc.) | 3.686 (1.777–7.646) | <0.001 | 4.004 (1.878–8.535) | <0.001 |
Preoperative radiotherapy | 1.866 (1.217–2.860) | 0.004 | 0.881 | |
Postoperative chemotherapy | 0.477 (0.314–0.725) | 0.001 | 0.591 (0.381–0.917) | 0.019 |
Postoperative radiotherapy | 0.502 (0.330–0.763) | 0.001 | 0.531 (0.340–0.827) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.-H.; Jung, K.; Park, J.-S.; Kang, M.; Lee, C.-S.; Park, S.-J. Impact of the Spinal Instability Neoplastic Score on Postoperative Prognosis in Patients with Metastatic Cancer of the Cervical Spine. J. Clin. Med. 2024, 13, 7860. https://doi.org/10.3390/jcm13247860
Kang D-H, Jung K, Park J-S, Kang M, Lee C-S, Park S-J. Impact of the Spinal Instability Neoplastic Score on Postoperative Prognosis in Patients with Metastatic Cancer of the Cervical Spine. Journal of Clinical Medicine. 2024; 13(24):7860. https://doi.org/10.3390/jcm13247860
Chicago/Turabian StyleKang, Dong-Ho, Kyunghun Jung, Jin-Sung Park, Minwook Kang, Chong-Suh Lee, and Se-Jun Park. 2024. "Impact of the Spinal Instability Neoplastic Score on Postoperative Prognosis in Patients with Metastatic Cancer of the Cervical Spine" Journal of Clinical Medicine 13, no. 24: 7860. https://doi.org/10.3390/jcm13247860
APA StyleKang, D. -H., Jung, K., Park, J. -S., Kang, M., Lee, C. -S., & Park, S. -J. (2024). Impact of the Spinal Instability Neoplastic Score on Postoperative Prognosis in Patients with Metastatic Cancer of the Cervical Spine. Journal of Clinical Medicine, 13(24), 7860. https://doi.org/10.3390/jcm13247860