Condylar Parameters and Mandibular Movement Patterns in Bruxers Using an Optical Jaw Tracking System
<p>Modjaw<sup>®</sup> examination: (<b>A</b>). real hinge axis computation; (<b>B</b>). SCI—computation; (<b>C</b>). BA—computation.</p> "> Figure 2
<p>Mastication for a bruxer: interincisal inferior point, left condyle, and right condyle in the frontal, sagittal, and horizontal planes.</p> "> Figure 3
<p>Mastication for a non-bruxer: interincisal inferior point, left condyle, and right condyle in the frontal, sagittal, and horizontal planes.</p> "> Figure 4
<p>Simulated eccentric bruxism for a bruxer: interincisal inferior point, left condyle, and right condyle in frontal, sagittal, and horizontal planes.</p> "> Figure 5
<p>Simulated eccentric bruxism for a non-bruxer: interincisal inferior point, left condyle, and right condyle in frontal, sagittal, and horizontal planes.</p> "> Figure 6
<p>Receiver–operator characteristic curve for interincisal inferior point in frontal, sagittal, and horizontal plane. The blue dot represents the optimal sensitivity to specificity ratio (Youden index) and corresponds to the ideal cut-off value for the area of eccentric bruxism. ROC—receiver–operator characteristic; IIP—interincisal inferior point.</p> "> Figure 7
<p>Receiver–operator characteristic curve for left condyle in frontal, sagittal, and horizontal plane. The blue dot represents the optimal sensitivity to specificity ratio (Youden index) and corresponds to the ideal cut-off value for the area of eccentric bruxism. ROC—receiver–operator characteristic; LC—left condyle.</p> "> Figure 8
<p>Receiver–operator characteristic curve for right condyle in frontal, sagittal, and horizontal plane. The blue dot represents the optimal sensitivity to specificity ratio (Youden index) and corresponds to the ideal cut-off value for the area of eccentric bruxism. ROC—receiver–operator characteristic; RC—right condyle.</p> ">
Abstract
:1. Introduction
- To compare the SCI and BA at 5 mm condylar displacement between bruxer group and the control group during protrusive and laterotrusive movements using Modjaw®;
- To compare the area of mastication and the area of eccentric bruxism for between the bruxer group and control group during mastication and simulated eccentric bruxism using Modjaw®;
- To assess the diagnostic quality of a digital method for quantifying eccentric bruxism using Modjaw®.
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Modjaw® Examination
2.4. Outcome Measurements
2.5. Statistical Analysis
3. Results
3.1. Flow of Participants
3.2. Intraclass Correlations
3.3. Modjaw® and Mandibular Kinematics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
STAB | Standardized Tool for the Assessment of Bruxism |
TMJ | Temporo-mandibular joint |
PSG | Polysomnography |
SCI | Sagittal condylar inclination |
BA | Bennett angle |
CBCT | Cone beam computed tomography |
CR | Centric relation |
TMD | Temporo-mandibular disorders |
RDC/TMD | Research diagnostic criteria for temporo-mandibular disorders |
IOS | Intraoral scanner |
STL | Stereolithography |
IIP | Interincisal inferior point |
LC | Left condyle |
RC | Right condyle |
F | Frontal |
S | Sagittal |
H | Horizontal |
Quantile–quantile | |
ICC | Intraclass correlations coefficients |
ROC | Receiver–operator characteristic |
AUC | Area under the curve |
CI | Confidence interval |
CBCT | Cone-beam computed tomography |
References
- Driscoll, C.F.; Freilich, M.A.; Guckes, A.D.; Knoernschild, K.L.; Mcgarry, T.J.; Goldstein, G.; Goodacre, C.; Guckes, A.; Mor, S.; Rosenstiel, S.; et al. The Glossary of Prosthodontic Terms: Ninth Edition. J. Prosthet. Dent. 2017, 117, e1–e105. [Google Scholar] [CrossRef] [PubMed]
- Matusz, K.; Maciejewska-Szaniec, Z.; Gredes, T.; Pobudek-Radzikowska, M.; Glapiński, M.; Górna, N.; Przystańska, A. Common therapeutic approaches in sleep and awake bruxism—An overview. Neurol. Neurochir. Pol. 2022, 56, 455–463. [Google Scholar] [CrossRef]
- Beddis, H.; Pemberton, M.; Davies, S. Sleep bruxism: An overview for clinicians. Br. Dent. J. 2018, 225, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Ommerborn, M.A.; Giraki, M.; Schneider, C.; Schaefer, R.; Gotter, A.; Franz, M.; Raab, W.H. A new analyzing method for quantification of abrasion on the Bruxcore device for sleep bruxism diagnosis. J. Orofac. Pain 2005, 19, 232–238. [Google Scholar] [PubMed]
- Ommerborn, M.A.; Giraki, M.; Schneider, C.; Fuck, L.M.; Handschel, J.; Franz, M.; Hans-Michael Raab, W.; Schäfer, R. Effects of sleep bruxism on functional and occlusal parameters: A prospective controlled investigation. Int. J. Oral Sci. 2012, 4, 141–145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gutiérrez, M.F.; Miralles, R.; Fuentes, A.; Cavada, G.; Valenzuela, S.; Santander, H.; Fresno, M.J. The effect of tooth clenching and grinding on anterior temporalis electromyographic activity in healthy subjects. Cranio 2010, 28, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.W.; Jiang, L.L.; Yan, Y. Comparative study of surface electromyography of masticatory muscles in patients with different types of bruxism. World J. Clin. Cases 2022, 10, 6876–6889. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manfredini, D.; Ahlberg, J.; Aarab, G.; Bender, S.; Bracci, A.; Cistulli, P.A.; Conti, P.C.; De Leeuw, R.; Durham, J.; Emodi-Perlman, A.; et al. Standardised Tool for the Assessment of Bruxism. J. Oral Rehabil. 2024, 51, 29–58. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, G.; Pająk, A.; Wójcicki, M. Global Prevalence of Sleep Bruxism and Awake Bruxism in Pediatric and Adult Populations: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 4259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stuginski-Barbosa, J.; Porporatti, A.L.; Costa, Y.M.; Svensson, P.; Conti, P.C. Agreement of the International Classification of Sleep Disorders Criteria with polysomnography for sleep bruxism diagnosis: A preliminary study. J. Prosthet. Dent. 2017, 117, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Maoddi, P.; Bianco, E.; Letizia, M.; Pollis, M.; Manfredini, D.; Maddalone, M. Correlation between a Force-Sensing Oral Appliance and Electromyography in the Detection of Tooth Contact Bruxism Events. J. Clin. Med. 2022, 11, 5532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McAuliffe, P.; Kim, J.H.; Diamond, D.; Lau, K.T.; O’Connell, B.C. A sleep bruxism detection system based on sensors in a splint—Pilot clinical data. J. Oral Rehabil. 2015, 42, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Khayat, N.; Winocur, E.; Emodi Perelman, A.; Friedman-Rubin, P.; Gafni, Y.; Shpack, N. The prevalence of posterior crossbite, deep bite, and sleep or awake bruxism in temporomandibular disorder (TMD) patients compared to a non-TMD population: A retrospective study. Cranio 2021, 39, 398–404. [Google Scholar] [CrossRef]
- Mortazavi, N.; Tabatabaei, A.H.; Mohammadi, M.; Rajabi, A. Is bruxism associated with temporomandibular joint disorders? A systematic review and meta-analysis. Evid. Based Dent. 2023, 24, 144. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, D.; Poggio, C.E. Prosthodontic planning in patients with temporomandibular disorders and/or bruxism: A systematic review. J. Prosthet. Dent. 2017, 117, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Celar, A.G.; Tamaki, K. Accuracy of recording horizontal condylar inclination and Bennett angle with the Cadiax compact. J. Oral Rehabil. 2002, 29, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, Ł.; Nowak, Z.; Orthlieb, J.D.; Żółtowska, A. Complicated Relationships between Anterior and Condylar Guidance and Their Clinical Implications-Comparison by Cone Beam Computed Tomography and Electronic Axiography-An Observational Cohort Cross-Sectional Study. Life 2023, 13, 335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Revilla-León, M.; Kois, D.E.; Zeitler, J.M.; Att, W.; Kois, J.C. An overview of the digital occlusion technologies: Intraoral scanners, jaw tracking systems, and computerized occlusal analysis devices. J. Esthet. Restor. Dent. 2023, 35, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Lepidi, L.; Grande, F.; Baldassarre, G.; Suriano, C.; Li, J.; Catapano, S. Preliminary clinical study of the accuracy of a digital axiographic recording system for the assessment of sagittal condylar inclination. J. Dent. 2023, 135, 104583. [Google Scholar] [CrossRef] [PubMed]
- Torabi, K.; Pour, S.R.; Ahangari, A.H.; Ghodsi, S. A clinical comparative study of Cadiax Compact II and intraoral records using wax and addition silicone. Int. J. Prosthodont. 2014, 27, 541–543. [Google Scholar] [CrossRef] [PubMed]
- Bapelle, M.; Dubromez, J.; Savoldelli, C.; Tillier, Y.; Ehrmann, E. Modjaw® device: Analysis of mandibular kinematics recorded for a group of asymptomatic subjects. Cranio 2021, 42, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Zeitler, J.M.; Kois, J.C. Digital maxillomandibular relationship and mandibular motion recording by using an optical jaw tracking system to acquire a dynamic virtual patient. J. Prosthet. Dent. 2022, 132, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Rompré, P.H.; Daigle-Landry, D.; Guitard, F.; Montplaisir, J.Y.; Lavigne, G.J. Identification of a sleep bruxism subgroup with a higher risk of pain. J. Dent. Res. 2007, 86, 837–842. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 2nd ed.; Diagnostic and Coding Manual; American Academy of Sleep Medicine: Westchester, IL, USA, 2005. [Google Scholar]
- Orthlieb, J.D.; Duminil, G. Diagnostic: Identifier le bruxeur [Diagnostic: Identify patient with bruxism]. In Le Bruxisme, Tout Simplement [Bruxism, Simply]; Espace, I.D., Duminil, G., Orthlieb, J.-D., Eds.; Editions Espace id: Paris, France, 2015; pp. 75–89. Available online: https://www.livres-medicaux.com/occlusodontie/11918-le-bruxisme-tout-simplement.html?srsltid=AfmBOorCt3J2mePSjzYwsvdC3uwIbAgLsepYV8T4D0_iin8km7xu_drW (accessed on 5 December 2024).
- Diedrich, P.; Mutschelknauss, R. Vergleichende Untersuchungen der Einschleifmethoden nach Jankelson und Lauritzen [Comparative studies of the grinding methods by Jankelson and Lauritzen]. Dtsch. Zahnarztl. Z. 1975, 30, 20–26. [Google Scholar] [PubMed]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.-P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group†. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 5 December 2024).
- Kerby; Dave, S. The simple difference formula: An approach to teaching nonparametric correlation. Compr. Psychol. 2014, 3, 11-IT. [Google Scholar] [CrossRef]
- Colton, T. Statistics in Medicine Little; Brown and Company: Boston, MA, USA, 1974; pp. 164–168. [Google Scholar]
- Šimundić, A.M. Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC 2009, 19, 203–211. [Google Scholar] [PubMed] [PubMed Central]
- Nigam, A.A.; Lee, J.D.; Lee, S.J. A clinical comparison of sagittal condylar inclination and Bennett angle derived from a conventional electronic tracking device and an optical jaw tracking device. J. Prosthet. Dent. 2023, 28. [Google Scholar] [CrossRef] [PubMed]
- Cimić, S.; Simunković, S.K.; Catić, A. The relationship between Angle type of occlusion and recorded Bennett angle values. J. Prosthet. Dent. 2016, 115, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Ciancaglini, R.; Radaelli, G. The relationship between headache and symptoms of temporomandibular disorder in the general population. J. Dent. 2001, 29, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, D.; Lobbezoo, F. Relationship between bruxism and temporomandibular disorders: A systematic review of literature from 1998 to 2008. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, e26–e50. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Silva, A.; Peña-Durán, C.; Tobar-Reyes, J.; Frugone-Zambra, R. Sleep and awake bruxism in adults and its relationship with temporomandibular disorders: A systematic review from 2003 to 2014. Acta Odontol. Scand. 2017, 75, 36–58. [Google Scholar] [CrossRef] [PubMed]
- Sagl, B.; Schmid-Schwap, M.; Piehslinger, E.; Kundi, M.; Stavness, I. Effect of facet inclination and location on TMJ loading during bruxism: An in-silico study. J. Adv. Res. 2021, 35, 25–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Revilla-León, M.; Fernández-Estevan, L.; Barmak, A.B.; Kois, J.C.; Pérez-Barquero, J.A. Accuracy of the maxillomandibular relationship at centric relation position recorded by using 3 different intraoral scanners with or without an optical jaw tracking system: An in vivo pilot study. J. Dent. 2023, 132, 104478. [Google Scholar] [CrossRef] [PubMed]
- Farfán, N.C.; Lezcano, M.F.; Navarro-Cáceres, P.E.; Sandoval-Vidal, H.P.; Martinez-Gomis, J.; Muñoz, L.; Marinelli, F.; Fuentes, R. Characterization of Mandibular Border Movements and Mastication in Each Skeletal Class Using 3D Electromagnetic Articulography: A Preliminary Study. Diagnostics 2023, 13, 2405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fuentes, R.; Arias, A.; Lezcano, M.F.; Saravia, D.; Kuramochi, G.; Navarro, P.; Dias, F.J. A New Tridimensional Insight into Geometric and Kinematic Characteristics of Masticatory Cycles in Participants with Normal Occlusion. Biomed. Res. Int. 2018, 2018, 2527463. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flores-Orozco, E.I.; Rovira-Lastra, B.; Willaert, E.; Peraire, M.; Martinez-Gomis, J. Relationship between jaw movement and masticatory performance in adults with natural dentition. Acta Odontol. Scand. 2016, 74, 103–107. [Google Scholar] [CrossRef]
- Lobbezoo, F.; Ahlberg, J.; Raphael, K.G.; Wetselaar, P.; Glaros, A.G.; Kato, T.; Santiago, V.; Winocur, E.; De Laat, A.; De Leeuw, R.; et al. International consensus on the assessment of bruxism: Report of a work in progress. J. Oral Rehabil. 2018, 45, 837–844. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palinkas, M.; Bataglion, C.; de Luca Canto, G.; Machado Camolezi, N.; Theodoro, G.T.; Siéssere, S.; Semprini, M.; Regalo, S.C. Impact of sleep bruxism on masseter and temporalis muscles and bite force. Cranio 2016, 34, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Câmara-Souza, M.B.; Figueredo, O.M.C.; Rodrigues Garcia, R.C.M. Masticatory function and oral stereognosis in bruxers. Cranio 2019, 37, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Lobbezoo, F.; Naeije, M. Bruxism is mainly regulated centrally, not peripherally. J. Oral Rehabil. 2001, 28, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, D.; Ahlberg, J.; Lobbezoo, F. Bruxism definition: Past, present, and future—What should a prosthodontist know? J. Prosthet. Dent. 2022, 128, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, D.; Winocur, E.; Guarda-Nardini, L.; Paesani, D.; Lobbezoo, F. Epidemiology of bruxism in adults: A systematic review of the literature. J. Orofac. Pain. 2013, 27, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Melo, G.; Duarte, J.; Pauletto, P.; Porporatti, A.L.; Stuginski-Barbosa, J.; Winocur, E.; Flores-Mir, C.; De Luca Canto, G. Bruxism: An umbrella review of systematic reviews. J. Oral Rehabil. 2019, 46, 666–690. [Google Scholar] [CrossRef] [PubMed]
- Ommerborn, M.A.; Giraki, M.; Schneider, C.; Fuck, L.M.; Zimmer, S.; Franz, M.; Raab, W.H.; Schaefer, R. Clinical significance of sleep bruxism on several occlusal and functional parameters. Cranio 2010, 28, 238–248. [Google Scholar] [PubMed]
Variables | ICC (95% CI) | p-Value |
---|---|---|
SCI (°) | ||
Right | 0.931 (0.867–0.958) | <0.001 |
Left | 0.924 (0.891–0.963) | <0.001 |
BA (°) | ||
Right | 0.869 (0.810–0.933) | <0.001 |
Left | 0.852 (0.809–0.921) | <0.001 |
Variables | Study Group (n = 20) | Control Group (n = 20) | p-Value |
---|---|---|---|
SCI (°) | |||
Right | 47.5 (39–52.5) | 49 (45.5–51) | 0.58 ** |
Left | 48.6 ± 5.9 | 50.6 ± 5.06 | 0.26 * |
BA (°) | |||
Right | 9.05 ± 2.9 | 9.2 ± 4 | 0.89 * |
Left | 10.6 ± 3.8 | 9 ± 4.03 | 0.2 * |
Variables of Mastication | Study Group (n = 20) | Control Group (n = 20) | p-Value |
---|---|---|---|
IIP (mm2) | |||
Frontal | 32.75 (27.75–38.07) | 31.21 (22.74–40.78) | 0.88 ** |
Sagittal | 15.23 ± 6.42 | 14.83 ± 5.56 | 0.78 * |
Horizontal | 9.33 ± 2.82 | 8.92 ± 3.49 | 0.77 * |
LC (mm2) | |||
Frontal | 4.21 ± 2.55 | 3.02 ± 1.51 | 0.72 * |
Sagittal | 8.01 (6.79–9.52) | 7.05 (5.31–9.77) | 0.72 ** |
Horizontal | 2.86 ± 1.06 | 2.83 ± 1.33 | 0.93 * |
RC (mm2) | |||
Frontal | 3.98 ± 2.25 | 2.81 ± 1.45 | 0.68 * |
Sagittal | 7.66 (6.86–9.69) | 6.86 (4.94–9.34) | 0.73 ** |
Horizontal | 2.79 (2.14–3.56) | 2.33 (1.75–4.09) | 0.77 ** |
Variables of Eccentric Bruxism | Study Group (n = 20) | Control Group (n = 20) | Median Differences (95% CI) | p-Value | Effect Size |
---|---|---|---|---|---|
IIP (mm2) | |||||
Frontal | 40.49 (24.38–55.44) | 7.46 (3.38–20.95) | 33.02 (16.68–44.89) | <0.0001 * | 0.715 |
Sagittal | 20.86 (13.89–39.22) | 3.86 (1.74–12.38) | 16.99 (9.2–27.97) | <0.0001 * | 0.765 |
Horizontal | 64.64 (19.68–102.55) | 7.64 (3.09–14.96) | 56.99 (16.25–92.29) | <0.0001 * | 0.785 |
LC (mm2) | |||||
Frontal | 8.93 (4.75–12.14) | 2.04 (0.86–4.1) | 6.89 (3.43–9.73) | <0.0001 * | 0.700 |
Sagittal | 31.25 (13.41–42.4) | 4.22 (1.03–8.83) | 27.02 (10.28–35.99) | <0.0001 * | 0.830 |
Horizontal | 7.38 (3.57–11.85) | 1.5 (0.52–2.49) | 5.88 (2.51–8.55) | <0.0001 * | 0.745 |
RC (mm2) | |||||
Frontal | 8.53 (5.33–11.89) | 1.9 (0.95–3.99) | 6.63 (3.87–9.59) | <0.0001 * | 0.670 |
Sagittal | 32.91 (12.78–42.30) | 4.13 (1.77–8.42) | 28.77 (9.88–36.48) | <0.0001 * | 0.815 |
Horizontal | 7.04 (3.64–12.33) | 1.56 (0.48–2.29) | 5.47 (2.65–10.21) | <0.0001 * | 0.725 |
Variables of Eccentric Bruxism | Correlation Coefficient for Study Group (n = 20) | Correlation Coefficient for Control Group (n = 20) |
---|---|---|
IIP (mm2) | ||
Frontal | −0.108 * | 0.021 * |
Sagittal | 0.033 * | 0.016 * |
Horizontal | −0.047 * | 0.079 * |
LC (mm2) | ||
Frontal | 0.219 * | 0.030 * |
Sagittal | −0.105 * | −0.045 * |
Horizontal | 0.224 * | −0.091 * |
RC (mm2) | ||
Frontal | 0.173 * | 0.033 * |
Sagittal | −0.095 * | −0.058 * |
Horizontal | 0.196 * | −0.008 * |
Variables of Eccentric Bruxism | AUC | Cutt-Off Value | Sensitivity | 95% CI for Sensitivity | Specificity | 95% CI for Specificity |
---|---|---|---|---|---|---|
IIP (mm2) | ||||||
Frontal | 0.858 | 18.05 | 0.9 | 0.73–0.98 | 0.75 | 0.58–0.83 |
Sagittal | 0.883 | 13.43 | 0.85 | 0.68–0.94 | 0.85 | 0.68–0.94 |
Horizontal | 0.893 | 16.28 | 0.85 | 0.67–0.95 | 0.8 | 0.62–0.91 |
LC (mm2) | ||||||
Frontal | 0.850 | 3.74 | 0.85 | 0.67–0.95 | 0.75 | 0.57–0.85 |
Sagittal | 0.915 | 10.84 | 0.85 | 0.68–0.92 | 0.9 | 0.73–0.97 |
Horizontal | 0.873 | 3.35 | 0.8 | 0.62–0.9 | 0.85 | 0.67–0.95 |
RC (mm2) | ||||||
Frontal | 0.853 | 4.21 | 0.8 | 0.62–0.9 | 0.85 | 0.67–0.95 |
Sagittal | 0.908 | 10.63 | 0.85 | 0.68–0.92 | 0.9 | 0.73–0.97 |
Horizontal | 0.863 | 2.90 | 0.8 | 0.63–0.88 | 0.85 | 0.71–0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tăut, M.; Chanteux, S.; Kui, A.; Buduru, R.; Negucioiu, M.; Manziuc, M.; Gheorghiu, I.; Hedeșiu, M.; Buduru, S.; Ilea, A. Condylar Parameters and Mandibular Movement Patterns in Bruxers Using an Optical Jaw Tracking System. J. Clin. Med. 2024, 13, 7761. https://doi.org/10.3390/jcm13247761
Tăut M, Chanteux S, Kui A, Buduru R, Negucioiu M, Manziuc M, Gheorghiu I, Hedeșiu M, Buduru S, Ilea A. Condylar Parameters and Mandibular Movement Patterns in Bruxers Using an Optical Jaw Tracking System. Journal of Clinical Medicine. 2024; 13(24):7761. https://doi.org/10.3390/jcm13247761
Chicago/Turabian StyleTăut, Manuela, Solene Chanteux, Andreea Kui, Rareș Buduru, Marius Negucioiu, Manuela Manziuc, Ioana Gheorghiu, Mihaela Hedeșiu, Smaranda Buduru, and Aranka Ilea. 2024. "Condylar Parameters and Mandibular Movement Patterns in Bruxers Using an Optical Jaw Tracking System" Journal of Clinical Medicine 13, no. 24: 7761. https://doi.org/10.3390/jcm13247761
APA StyleTăut, M., Chanteux, S., Kui, A., Buduru, R., Negucioiu, M., Manziuc, M., Gheorghiu, I., Hedeșiu, M., Buduru, S., & Ilea, A. (2024). Condylar Parameters and Mandibular Movement Patterns in Bruxers Using an Optical Jaw Tracking System. Journal of Clinical Medicine, 13(24), 7761. https://doi.org/10.3390/jcm13247761