Morphology of the Calcaneofibular Ligament Reflects Degeneration of the Talonavicular Articular Surface: A Cadaver Study
<p>Measurements of each ankle ligament: (<b>a</b>) Deltoid ligaments measured in this study: 1. TNL, tibionavicular ligament, 2. TSL, tibiospring ligament, 3. TCL, tibiocalcaneal ligament, and 4. PTTL, superficial posterior tibiotalar ligament. (<b>b</b>) Lateral ligaments measured in this study were as follows: 5. ATFL, anterior talofibular ligament, and 6. CFL, calcaneofibular ligament.</p> "> Figure 2
<p>Cases of degeneration of the talocrural articular surface: (<b>a</b>) diagram showing the degeneration of the medial grade 4 articular surface; and (<b>b</b>) diagram of an ankle joint with grade 3 and 2 joint degeneration on the medial and lateral sides, respectively.</p> "> Figure 3
<p>Cases with wide and narrow CFL observed in this study: (<b>a</b>) CFL width with talar articular surface degeneration; and (<b>b</b>) CFL width in the absence of talar surface degeneration. CFL: calcaneofibular ligament.</p> "> Figure 4
<p>ROC curves for determining CFL width cutoff value, sensitivity, and specificity. The sensitivity and specificity were 75% and 83.3%, respectively, and the cutoff value for CFL width calculated from the ROC curve was 8.7 mm. CFL, calcaneofibular ligament; ROC, receiver operating characteristic.</p> "> Figure 5
<p>Method used to measure the width of the CFL using ultrasound imaging equipment: (<b>a</b>) after palpation, the CFL is extracted from the fibula to the talus in the long axial direction; (<b>b</b>) CFL width was measured by placing it in the short-axis direction at the midpoint; and (<b>c</b>) width measured in the short-axis image (6.7 mm). CFL: calcaneofibular ligament.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Dissection Method
2.3. Measurements of Ankle Ligaments
2.4. Articular Surface Degeneration
2.5. Relationship Between the Presence of Cartilage Damage and Ligament Morphology
2.6. Ethics
3. Results
3.1. Articular Surface Degeneration
3.2. Relationship Between the Presence of Cartilage Damage and Ligament Morphology
3.3. Availability of Ultrasound Imaging Device for the Target Ligament
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berndt, A.L.; Harty, M. Transchondral fractures (osteochondritis dissecans) of the talus. J. Bone Jt. Surg. Am. 2004, 86, 1336. [Google Scholar] [CrossRef] [PubMed]
- Flick, A.B.; Gould, N. Osteochondritis dissecans of the talus (transchondral fractures of the talus): Review of the literature and new surgical approach for medial dome lesions. Foot Ankle 1985, 5, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Takao, M.; Uchio, Y.; Naito, K.; Fukazawa, I.; Ochi, M. Arthroscopic assessment for intra-articular disorders in residual ankle disability after sprain. Am. J. Sports Med. 2005, 33, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Pérez, M.; Valderrabano, V.; Godoy-Santos, A.L.; de César Netto, C.; González-Martín, D.; Tejero, S. Ankle osteoahritis: Comprehensive review and treatment algorithm proposal. EFORT Open Rev. 2022, 5, 448–459. [Google Scholar] [CrossRef]
- Arnold, J.; Bowen, C.; Chapman, L.; Gates, L.; Golightly, Y.; Halstead, J.; Hannan, M.; Menz, H.; Munteanu, S.; Paterson, K.; et al. International Foot and Ankle Osteoarthritis Consortium review and research agenda for diagnosis, epidemiology, burden, outcome assessment and treatment. Osteoarthr. Cartil. 2022, 30, 945–955. [Google Scholar] [CrossRef]
- Huey, D.J.; Hu, J.C.; Athanasiou, K.A. Unlike bone, cartilage regeneration remains elusive. Science 2012, 338, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Nakasa, T.; Ikuta, Y.; Yoshikawa, M.; Sawa, M.; Tsuyuguchi, Y.; Adachi, N. Added value of preoperative computed tomography for determining cartilage degeneration in patients with osteochondral lesions of the talar dome. Am. J. Sports Med. 2018, 46, 208–216. [Google Scholar] [CrossRef]
- O’Loughlin, P.F.; Heyworth, B.E.; Kennedy, J.G. Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am. J. Sports Med. 2010, 38, 392–404. [Google Scholar] [CrossRef]
- Hu, Y.; Tao, H.; Qiao, Y.; Ma, K.; Hua, Y.; Yan, X.; Chen, S. Evaluation of the talar cartilage in chronic lateral ankle instability with lateral ligament injury using biochemical T2* mapping: Correlation with clinical symptoms. Acad. Radiol. 2018, 25, 1415–1421. [Google Scholar] [CrossRef]
- Golanó, P.; Vega, J.; de Leeuw, P.A.J.; Malagelada, F.; Manzanares, M.C.; Götzens, V.; van Dijk, C.N. Anatomy of the ankle ligaments: A pictorial essay. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 557–569. [Google Scholar] [CrossRef]
- van den Bekerom, M.P.J.; Mutsaerts, E.L.A.R.; van Dijk, C.N. Evaluation of the integrity of the deltoid ligament in supination external rotation ankle fractures: A systematic review of the literature. Arch. Orthop. Trauma. Surg. 2009, 129, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Kovaleski, J.E.; Heitman, R.J.; Gurchiek, L.R.; Hollis, J.M.; Liu, W.; Iv, A.W.P. Joint stability characteristics of the ankle complex after lateral ligamentous injury, part I: A laboratory comparison using arthrometric measurement. J. Athl. Train. 2014, 49, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Hu, Y.; Qiao, Y.; Ma, K.; Yan, X.; Hua, Y.; Chen, S. T2 -mapping evaluation of early cartilage alteration of talus for chronic lateral ankle instability with isolated anterior talofibular ligament tear or combined with calcaneofibular ligament tear. J. Magn. Reson. Imaging 2018, 47, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Nakasa, T.; Sawa, M.; Ikuta, Y.; Yoshikawa, M.; Tsuyuguchi, Y.; Adachi, N. Anatomic feature of deltoid ligament attachment in posteromedial osteochondral lesion of talar dome. J. Orthop. Sci. 2018, 23, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Edama, M.; Kageyama, I.; Kikumoto, T.; Nakamura, M.; Ito, W.; Nakamura, E.; Hirabayashi, R.; Takabayashi, T.; Inai, T.; Onishi, H. Morphological features of the anterior talofibular ligament by the number of fiber bundles. Ann. Anat. 2018, 216, 69–74. [Google Scholar] [CrossRef]
- Kobayashi, T.; Suzuki, D.; Kondo, Y.; Tokita, R.; Katayose, M.; Matsumura, H.; Fujimiya, M. Morphological characteristics of the lateral ankle ligament complex. Surg. Radiol. Anat. 2020, 42, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Panchani, P.N.; Chappell, T.M.; Moore, G.D.; Tubbs, R.S.; Shoja, M.M.; Loukas, M.; Kozlowski, P.B.; Khan, K.H.; DiLandro, A.C.; D’antoni, A.V. Anatomic study of the deltoid ligament of the ankle. Foot Ankle Int. 2014, 35, 916–921. [Google Scholar] [CrossRef]
- Won, H.J.; Koh, I.J.; Won, H.S. Morphological variations of the deltoid ligament of the medial ankle. Clin. Anat. 2016, 29, 1059–1065. [Google Scholar] [CrossRef]
- Hirose, K.; Murakami, G.; Kura, H.; Tokita, F.; Ishii, S. Cartilage degeneration in talocrural and talocalcaneal joints from Japanese cadaveric donors. J. Orthop. Sci. 1999, 4, 273–285. [Google Scholar] [CrossRef]
- Becher, C.; Zühlke, D.; Plaas, C.; Ewig, M.; Calliess, T.; Stukenborg-Colsman, C.; Thermann, H. T2-mapping at 3 T after microfracture in the treatment of osteochondral defects of the talus at an average follow-up of 8 years. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 2406–2412. [Google Scholar] [CrossRef]
- Naran, K.N.; Zoga, A.C. Osteochondral lesions about the ankle. Radiol. Clin. N. Am. 2008, 46, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Toale, J.; Shimozono, Y.; Mulvin, C.; Dahmen, J.; Kerkhoffs, G.M.; Kennedy, J.G. Midterm outcomes of bone marrow stimulation for primary osteochondral lesions of the talus: A systematic review. Orthop. J. Sports Med. 2019, 7, 2325967119879127. [Google Scholar] [CrossRef]
- Zengerink, M.; Struijs, P.A.A.; Tol, J.L.; van Dijk, C.N. Treatment of osteochondral lesions of the talus: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Tanaka, Y.; Kumai, T.; Sugimoto, K.; Takakura, Y. Correlation of compensatory alignment of the subtalar joint to the progression of primary osteoarthritis of the ankle. Foot Ankle Int. 2008, 29, 400–406. [Google Scholar] [CrossRef]
- Takao, M.; Ochi, M.; Uchio, Y.; Naito, K.; Kono, T.; Oae, K. Osteochondral lesions of the talar dome associated with trauma. Arthroscopy 2003, 19, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, C.N.; Bossuyt, P.M.; Marti, R.K. Medial ankle pain after lateral ligament rupture. J. Bone Jt. Surg. Br. 1996, 78, 562–567. [Google Scholar] [CrossRef]
- Kim, H.; Son, S.J.; Seeley, M.K.; Hopkins, J.T. Altered movement strategies during jump landing/cutting in patients with chronic ankle instability. Scand. J. Med. Sci. Sports 2019, 29, 1130–1140. [Google Scholar] [CrossRef]
- Moisan, G.; Descarreaux, M.; Cantin, V. Effects of chronic ankle instability on kinetics, kinematics and muscle activity during walking and running: A systematic review. Gait Posture 2017, 52, 381–399. [Google Scholar] [CrossRef]
- Kobayashi, T.; Suzuki, E.; Yamazaki, N.; Suzukawa, M.; Akaike, A.; Shimizu, K.; Gamada, K. In vivo talocrural joint contact mechanics with functional ankle instability. Foot Ankle Spec. 2015, 8, 445–453. [Google Scholar] [CrossRef]
- Saito, T.; Hara, M.; Kumamaru, H.; Kobayakawa, K.; Yokota, K.; Kijima, K.; Yoshizaki, S.; Harimaya, K.; Matsumoto, Y.; Kawaguchi, K.; et al. Macrophage infiltration is a causative factor for ligamentum flavum hypertrophy through the activation of collagen production in fibroblasts. Am. J. Pathol. 2017, 187, 2831–2840. [Google Scholar] [CrossRef]
- Saito, T.; Yokota, K.; Kobayakawa, K.; Hara, M.; Kubota, K.; Harimaya, K.; Kawaguchi, K.; Hayashida, M.; Matsumoto, Y.; Doi, T.; et al. Experimental mouse model of lumbar ligamentum flavum hypertrophy. PLoS ONE 2017, 12, e0169717. [Google Scholar] [CrossRef] [PubMed]
- Jotoku, T.; Kinoshita, M.; Okuda, R.; Abe, M. Anatomy of ligamentous structures in the tarsal sinus and canal. Foot Ankle Int. 2006, 27, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Takakura, Y.; Okahashi, K.; Samoto, N.; Kawate, K.; Iwai, M. Chondral injuries of the ankle with recurrent lateral instability: An arthroscopic study. J. Bone Jt. Surg. Am. 2009, 91, 99–106. [Google Scholar] [CrossRef]
- Schäfer, D.; Hintermann, B. Arthroscopic assessment of the chronic unstable ankle joint. Knee Surg. Sports Traumatol. Arthrosc. 1996, 4, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Practice, O.P.T.; Kandel, M.; Cattrysse, E.; De Maeseneer, M.; Lenchik, L.; Paantjens, M.; Defence, T.N.M.O.; Leeuw, M. Inter-rater reliability of an ultrasound protocol to evaluate the anterolateral ligament of the knee. J. Ultrason. 2019, 19, 181–186. [Google Scholar]
- Cao, S.; Wang, C.; Ma, X.; Wang, X.; Huang, J.; Zhang, C. Imaging Diagnosis for Chronic Lateral Ankle Ligament Injury: A Systemic Review with Meta-analysis. J. Orthop. Surg. Res. 2018, 22, 122. [Google Scholar] [CrossRef]
Location | Proportion |
---|---|
Overall joint surface degeneration | 40.0% (20/50 feet) |
Medial degeneration | 100% (20/20 feet) |
Both (medial and lateral) degeneration | 40.0% (8/20 feet) |
Only medial degeneration | 60.0% (12/20 feet) |
Only lateral degeneration | 0% (0/20 feet) |
Degeneration (−) (N = 30) | Degeneration (+) (N = 20) | p | ||
---|---|---|---|---|
1: TNL | 19.95 ± 4.88 | 19.16 ± 5.29 | 0.589 | |
Length (mm) | 2: TSL | 18.13 ± 5.83 | 16.52 ± 6.29 | 0.358 |
3: TCL | 16.80 ± 4.02 | 15.29 ± 4.59 | 0.225 | |
4: PTTL | 12.64 ± 3.21 | 12.63 ± 4.01 | 0.719 | |
5: ATFL | 16.92 ± 4.88 | 19.19 ± 4.69 | 0.108 | |
6: CFL | 20.32 ± 5.09 | 20.45 ± 4.28 | 0.927 | |
1: TNL | 10.53 ± 2.89 | 9.24 ± 2.71 | 0.121 | |
Width (mm) | 2: TSL | 9.05 ± 2.41 | 8.10 ± 1.57 | 0.127 |
3: TCL | 10.01 ± 3.36 | 9.15 ± 2.05 | 0.311 | |
4: PTTL | 9.03 ± 2.59 | 9.78 ± 2.95 | 0.347 | |
5: ATFL | 20.70 ± 7.20 | 18.17 ± 7.15 | 0.228 | |
6: CFL | 7.38 ± 1.57 | 9.74 ± 2.48 | 0.000 * | |
1: TNL | 0.82 ± 0.42 | 0.72 ± 0.37 | 0.401 | |
Thickness (mm) | 2: TSL | 1.06 ± 0.46 | 0.83 ± 0.37 | 0.068 |
3: TCL | 1.05 ± 0.31 | 0.98 ± 0.54 | 0.524 | |
4: PTTL | 1.01 ± 0.45 | 0.93 ± 0.37 | 0.512 | |
5: ATFL | 1.45 ± 0.75 | 1.49 ± 0.54 | 0.836 | |
6: CFL | 1.43 ± 0.49 | 1.40 ± 0.48 | 0.832 |
Area Under Curve | SD | Asymptotic Significance Probability | Asymptotic 95% Confidence Interval | |
---|---|---|---|---|
Lower Limit | Upper Limit | |||
78.4% | 0.074 | 0.001 | 63.9 | 93.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, R.; Kiyoshima, D.; Suyama, K.; Qu, N.; Inagawa, M.; Hayashi, S. Morphology of the Calcaneofibular Ligament Reflects Degeneration of the Talonavicular Articular Surface: A Cadaver Study. J. Clin. Med. 2024, 13, 7565. https://doi.org/10.3390/jcm13247565
Tanaka R, Kiyoshima D, Suyama K, Qu N, Inagawa M, Hayashi S. Morphology of the Calcaneofibular Ligament Reflects Degeneration of the Talonavicular Articular Surface: A Cadaver Study. Journal of Clinical Medicine. 2024; 13(24):7565. https://doi.org/10.3390/jcm13247565
Chicago/Turabian StyleTanaka, Ryuta, Daisuke Kiyoshima, Kaori Suyama, Ning Qu, Miyu Inagawa, and Shogo Hayashi. 2024. "Morphology of the Calcaneofibular Ligament Reflects Degeneration of the Talonavicular Articular Surface: A Cadaver Study" Journal of Clinical Medicine 13, no. 24: 7565. https://doi.org/10.3390/jcm13247565
APA StyleTanaka, R., Kiyoshima, D., Suyama, K., Qu, N., Inagawa, M., & Hayashi, S. (2024). Morphology of the Calcaneofibular Ligament Reflects Degeneration of the Talonavicular Articular Surface: A Cadaver Study. Journal of Clinical Medicine, 13(24), 7565. https://doi.org/10.3390/jcm13247565