Automatic Assessment of AK Stage Based on Dermatoscopic and HFUS Imaging—A Preliminary Study
<p>Exemplary image pairs (dermatoscopic image and high frequency ultrasound) recorded at the lesion site. The clinico-dermatoscopic classification of each AK was based on a three-point Zalaudek scale: (<b>a</b>) AK 1, (<b>b</b>) AK 1, (<b>c</b>) AK 2. The dermatoscopic images were acquired with DermLite DL5, 10× magnification coupled to a smartphone camera, and sized 3024 × 4032 pixels. The HFUS images of AKs were recorded with DermaScan C, a Cortex Technology device, linear 20 MHz probe, and sized 1024 × 224 pixels. Subepidermal low echogenic band (SLEB) seen beneath the entry echo in HFUS (indicated by the arrows).</p> "> Figure 2
<p>AI framework for multimodal image processing in AK assessment. Individual frames contain image modalities, types of extracted features, ML algorithms (MRMR and SVM for final classification and AK assessment 1–3), and deep neural network models (EfficientNet for dermatoscopic feature extraction—upper path, and CFPNet-M for HFUS image segmentation—lower path) applied at each analysis step. In places where due to insufficient training data it was impossible to use deep models, the handcrafted features are extracted.</p> "> Figure 3
<p>Confusion matrices for classification using different feature combinations: (<b>a</b>) dermatoscopy NN features, (<b>b</b>) dermatoscopy handcrafted features, and NN features, (<b>c</b>) HFUS handcrafted and dermatoscopy NN features, (<b>d</b>) HFUS handcrafted, dermatoscopy handcrafted, and NN features. Numbers refer to samples classified into each class.</p> "> Figure 4
<p>Statistically important features: (<b>a</b>) entry echo thickness 3rd quartile (effect size 0.05), (<b>b</b>) entropy of pixels in entry echo layer (effect size 0.05), (<b>c</b>) ratio of MEP in SLEB and dermis (effect size 0.05), (<b>d</b>) ratio of mean intensity in SLEB and dermis (effect size 0.03), (<b>e</b>) GLCM contrast in SLEB (effect size 0.04), (<b>f</b>) GLCM homogeneity in SLEB (effect size 0.06), (<b>g</b>) GLCM homogeneity for combined skin layers (effect size 0.09), (<b>h</b>) GLCM correlation for combined skin layers (effect size 0.07). Statistically significant differences between groups are marked with stars (*—<span class="html-italic">p</span> < 0.05, **—<span class="html-italic">p</span> < 0.01).</p> "> Figure A1
<p>Processing of dermatoscopic images for features extraction.</p> ">
Abstract
:1. Introduction
Machine Learning Application in Dermatology
2. Materials and Methods
2.1. Clinical Study Design
2.2. Methods
2.2.1. Feature Extraction
2.2.2. Assessment of the Stage of AK
3. Results
3.1. Segmentation
3.2. Classification
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Algorithms Considered at Each Level of Analysis
Appendix B. Algorithms Parameters
Parameter | Value |
---|---|
Loss measuring function | Categorical loss entropy |
Learning rate | 0.0005 |
Maximum no. epochs | 100 |
Early stopping condition | Validation loss unchanged for 10 epochs |
Optimizer | ADAM |
Batch size | 1 |
Parameter | Value |
---|---|
Loss measuring function | Weighted cross-entropy loss |
Learning rate | 0.0001 |
Maximum no. epochs | 40 |
Early stopping condition | Validation loss unchanged for 10 epochs |
Optimizer | ADAM |
Batch size | 15 |
Parameter | Range of Values | Best Results |
---|---|---|
Regularization parameter C | 0.01 to 1000 | 5 |
Kernel coefficient gamma | 0.01 to 1000 | 0.01 |
References
- Salasche, S.J. Epidemiology of Actinic Keratoses and Squamous Cell Carcinoma. J. Am. Acad. Dermatol. 2000, 42, S4–S7. [Google Scholar] [CrossRef] [PubMed]
- Marks, R.; Rennie, G.; Selwood, T. Malignant Transformation of Solar Keratoses to Squamous Cell Carcinoma. Lancet 1988, 331, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Weber, P.; Tschandl, P.; Sinz, C.; Kittler, H. Dermatoscopy of Neoplastic Skin Lesions: Recent Advances, Updates, and Revisions. Curr. Treat. Options Oncol. 2018, 19, 56. [Google Scholar] [CrossRef]
- Lallas, A.; Argenziano, G.; Zendri, E.; Moscarella, E.; Longo, C.; Grenzi, L.; Pellacani, G.; Zalaudek, I. Update on Non-Melanoma Skin Cancer and the Value of Dermoscopy in Its Diagnosis and Treatment Monitoring. Expert Rev. Anticancer Ther. 2013, 13, 541–558. [Google Scholar] [CrossRef]
- Westerhoff, K.; Mccarthy, W.H.; Menzies, S.W. Increase in the Sensitivity for Melanoma Diagnosis by Primary Care Physicians Using Skin Surface Microscopy. Br. J. Dermatol. 2000, 143, 1016–1020. [Google Scholar] [CrossRef]
- Vestergaard, M.E.; Macaskill, P.; Holt, P.E.; Menzies, S.W. Dermoscopy Compared with Naked Eye Examination for the Diagnosis of Primary Melanoma: A Meta-Analysis of Studies Performed in a Clinical Setting. Br. J. Dermatol. 2008, 159, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Desai, T.D.; Desai, A.D.; Horowitz, D.C.; Kartono, F.; Wahl, T. The Use of High-Frequency Ultrasound in the Evaluation of Superficial and Nodular Basal Cell Carcinomas. Dermatol. Surg. 2007, 33, 1220–1227. [Google Scholar] [CrossRef]
- Polańska, A.; Dańczak-Pazdrowska, A.; Silny, W.; Woźniak, A.; Maksin, K.; Jenerowicz, D.; Janicka-Jedyńska, M. Comparison between High-Frequency Ultrasonography (Dermascan C, Version 3) and Histopathology in Atopic Dermatitis. Ski. Res. Technol. 2013, 19, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhu, Q.; Xiao, M.; Liu, J. The Value of Dermoscopy and High-Frequency Ultrasound in Staging Morphea. J. Dermatol. 2022, 50, 511–517. [Google Scholar] [CrossRef]
- Korecka, K.; Czuwara, J.; Szymoniak-Lipska, M.; Polańska, A.; Żaba, R. Dańczak-Pazdrowska Late-Onset Focal Dermal Elastosis—Dermatoscopic and Ultrasonographic Assessment of This Rare Entity and Literature Review. Ski. Res. Technol. 2023, 29, e13461. [Google Scholar] [CrossRef]
- Polańska, A.; Osmola-Mańkowska, A.; Olek-Hrab, K.; Molińska-Glura, M.; Adamski, Z.; Żaba, R.; Dańczak-Pazdrowska, A. High-Frequency Ultrasonography in Objective Evaluation of the Efficacy of PUVA and UVA 1 Phototherapy in Mycosis Fungoides. Arch. Dermatol. Res. 2017, 309, 645–651. [Google Scholar] [CrossRef]
- Polańska, A.; Dańczak-Pazdrowska, A.; Jałowska, M.; Żaba, R.; Adamski, Z. Current Applications of High-Frequency Ultrasonography in Dermatology. Adv. Dermatol. Allergol. 2017, 34, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Mlosek, R.K.; Malinowska, S. Ultrasound Image of the Skin, Apparatus and Imaging Basics. J. Ultrason. 2013, 13, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, J.; Bamber, J.; Chuchu, N.; Bayliss, S.E.; Takwoingi, Y.; Davenport, C.; Godfrey, K.; O’Sullivan, C.; Matin, R.N.; Deeks, J.J.; et al. High-Frequency Ultrasound for Diagnosing Skin Cancer in Adults. Cochrane Database Syst. Rev. 2018, 12, CD013188. [Google Scholar] [CrossRef]
- Tambe, S.; Bhatt, K.; Jerajani, H.; Dhurat, R. Utility of High-Frequency Ultrasonography in the Diagnosis of Benign and Malignant Skin Tumors. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 162. [Google Scholar] [CrossRef] [PubMed]
- Nassiri-Kashani, M.; Sadr, B.; Fanian, F.; Kamyab, K.; Noormohammadpour, P.; Shahshahani, M.M.; Zartab, H.; Naghizadeh, M.M.; Yazdy, M.S.; Firooz, A. Pre-Operative Assessment of Basal Cell Carcinoma Dimensions Using High Frequency Ultrasonography and Its Correlation with Histopathology. Ski. Res. Technol. 2012, 19, e132–e138. [Google Scholar] [CrossRef]
- Arisi, M.; Soglia, S.; Guasco Pisani, E.; Venturuzzo, A.; Gelmetti, A.; Tomasi, C.; Zane, C.; Rossi, M.; Lorenzi, L.; Calzavara-Pinton, P. Cold Atmospheric Plasma (CAP) for the Treatment of Actinic Keratosis and Skin Field Cancerization: Clinical and High-Frequency Ultrasound Evaluation. Dermatol. Ther. 2021, 11, 855–866. [Google Scholar] [CrossRef]
- Arisi, M.; Zane, C.; Polonioli, M.; Tomasi, C.; Moggio, E.; Cozzi, C.; Soglia, S.; Caravello, S.; Calzavara-Pinton, I.; Venturini, M.; et al. Effects of MAL-PDT, Ingenol Mebutate and Diclofenac plus Hyaluronate Gel Monitored by High-Frequency Ultrasound and Digital Dermoscopy in Actinic Keratosis—A Randomized Trial. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1225–1232. [Google Scholar] [CrossRef]
- Korecka, K.; Slian, A.; Czajkowska, J.; Dańczak-Pazdrowska, A.; Polańska, A. The Application of High-Frequency Ultrasonography in Post-Therapeutic Assessment of Actinic Keratosis after Photodynamic Therapy. Cancers 2024, 16, 3778. [Google Scholar] [CrossRef]
- Zhu, A.; Wang, L.; Li, X.; Wang, Q.; Li, M.; Ma, Y.; Xiang, L.; Guo, L.; Xu, H. High-Frequency Ultrasound in the Diagnosis of the Spectrum of Cutaneous Squamous Cell Carcinoma: Noninvasively Distinguishing Actinic Keratosis, Bowen’s Disease, and Invasive Squamous Cell Carcinoma. Ski. Res. Technol. 2021, 27, 831–840. [Google Scholar] [CrossRef]
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine Learning in Medical Applications: A Review of State-of-The-Art Methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Cockerell, C.J.; Patil, A.; Pietkiewicz, P.; Giulini, M.; Grabbe, S.; Goldust, M. Machine Learning and Its Application in Skin Cancer. Int. J. Environ. Res. Public Health 2021, 18, 13409. [Google Scholar] [CrossRef]
- Salinas, M.P.; Sepúlveda, J.; Hidalgo, L.; Peirano, D.; Morel, M.; Uribe, P.; Rotemberg, V.; Briones, J.; Mery, D.; Navarrete-Dechent, C. A Systematic Review and Meta-Analysis of Artificial Intelligence versus Clinicians for Skin Cancer Diagnosis. npj Digit. Med. 2024, 7, 125. [Google Scholar] [CrossRef] [PubMed]
- Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; et al. Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). Available online: https://ieeexplore.ieee.org/abstract/document/8363547 (accessed on 24 April 2024).
- Rehman, M.; Ali, M.; Obayya, M.; Asghar, J.; Hussain, L.; Nour, M.K.; Negm, N.; Mustafa Hilal, A. Machine Learning Based Skin Lesion Segmentation Method with Novel Borders and Hair Removal Techniques. PLoS ONE 2022, 17, e0275781. [Google Scholar] [CrossRef]
- Majumder, S.; Ullah, M.A. Feature Extraction from Dermoscopy Images for Melanoma Diagnosis. SN Appl. Sci. 2019, 1, 753. [Google Scholar] [CrossRef]
- Sharafudeen, M.; Chandra, V.S.S. Detecting Skin Lesions Fusing Handcrafted Features in Image Network Ensembles. Multimed. Tools Appl. 2022, 82, 3155–3175. [Google Scholar] [CrossRef]
- Goceri, E. Comparison of the Impacts of Dermoscopy Image Augmentation Methods on Skin Cancer Classification and a New Augmentation Method with Wavelet Packets. Int. J. Imaging Syst. Technol. 2023, 33, 1727–1744. [Google Scholar] [CrossRef]
- Sankar Raja Sekhar, K.; Ranga Babu, T.; Prathibha, G.; Vijay, K.; Chiau Ming, L. Dermoscopic Image Classification Using CNN with Handcrafted Features. J. King Saud Univ. -Sci. 2021, 33, 101550. [Google Scholar] [CrossRef]
- Yan, P.; Wang, G.; Chen, J.; Tang, Q.; Xu, H. Skin Lesion Classification Based on the VGG-16 Fusion Residual Structure. Int. J. Imaging Syst. Technol. 2022, 33, 53–68. [Google Scholar] [CrossRef]
- Wang, H.; Qi, Q.; Sun, W.; Li, X.; Dong, B.; Yao, C. Classification of Skin Lesions with Generative Adversarial Networks and Improved MobileNetV2. Int. J. Imaging Syst. Technol. 2023, 33, 1561–1576. [Google Scholar] [CrossRef]
- Czajkowska, J.; Badura, P.; Korzekwa, S.; Płatkowska-Szczerek, A. Automated Segmentation of Epidermis in High-Frequency Ultrasound of Pathological Skin Using a Cascade of DeepLab V3+ Networks and Fuzzy Connectedness. Comput. Med. Imaging Graph. 2022, 95, 102023. [Google Scholar] [CrossRef]
- Szymańska, D.; Czajkowska, J.; Korzekwa, S.; Płatkowska-Szczerek, A. Study on the Impact of Neural Network Architecture and Region of Interest Selection on the Result of Skin Layer Segmentation in High-Frequency Ultrasound Images. Adv. Intell. Syst. Comput. 2022, 1429, 208–221. [Google Scholar] [CrossRef]
- Czajkowska, J.; Badura, P.; Korzekwa, S.; Płatkowska-Szczerek, A. Deep Learning Approach to Skin Layers Segmentation in Inflammatory Dermatoses. Ultrasonics 2021, 114, 106412. [Google Scholar] [CrossRef]
- Sciolla, B.; Le Digabel, J.; Josse, G.; Dambry, T.; Guibert, B. Philippe Delachartre Joint Segmentation and Characterization of the Dermis in 50 MHz Ultrasound 2D and 3D Images of the Skin. Comput. Biol. Med. 2018, 103, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Sciolla, B.; Ceccato, P.; Cowell, L.; Dambry, T.; Guibert, B.; Delachartre, P. Segmentation of Inhomogeneous Skin Tissues in High-Frequency 3D Ultrasound Images, the Advantage of Non-Parametric Log-Likelihood Methods. Phys. Procedia 2015, 70, 1177–1180. [Google Scholar] [CrossRef]
- Marosán-Vilimszky, P.; Szalai, K.; Horváth, A.; Csabai, D.; Füzesi, K.; Csány, G.; Gyöngy, M. Automated Skin Lesion Classification on Ultrasound Images. Diagnostics 2021, 11, 1207. [Google Scholar] [CrossRef]
- Tiwari, K.A.; Raišutis, R.; Liutkus, J.; Valiukevičienė, S. Diagnostics of Melanocytic Skin Tumours by a Combination of Ultrasonic, Dermatoscopic and Spectrophotometric Image Parameters. Diagnostics 2020, 10, 632. [Google Scholar] [CrossRef]
- Varga, N.N.; Boostani, M.; Farkas, K.; Bánvölgyi, A.; Lőrincz, K.; Posta, M.; Lihacova, I.; Lihachev, A.; Medvecz, M.; Holló, P.; et al. Optically Guided High-Frequency Ultrasound Shows Superior Efficacy for Preoperative Estimation of Breslow Thickness in Comparison with Multispectral Imaging: A Single-Center Prospective Validation Study. Cancers 2023, 16, 157. [Google Scholar] [CrossRef]
- Dańczak-Pazdrowska, A.; Polańska, A.; Silny, W.; Sadowska, A.; Osmola-Mańkowska, A.; Czarnecka-Operacz, M.; Żaba, R.; Jenerowicz, D. Seemingly Healthy Skin in Atopic Dermatitis: Observations with the Use of High-Frequency Ultrasonography, Preliminary Study. Ski. Res. Technol. 2011, 18, 162–167. [Google Scholar] [CrossRef]
- Sabău, M.; Boca, A.; Ilies, R.; Tătaru, A. Potential of High-Frequency Ultrasonography in the Management of Atopic Dermatitis. Exp. Ther. Med. 2018, 17, 1073–1077. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, Y.; Mei, Y.; Zhao, Y.; Zhang, Z. High-Frequency Ultrasound in the Evaluation of Psoriatic Arthritis: A Clinical Study. Am. J. Med. Sci. 2015, 350, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Acquacalda, E.; Albert, C.; Montaudie, H.; Fontas, E.; Danre, A.; Roux, C.H.; Breuil, V.; Lacour, J.P.; Passeron, T.; Euller Ziegler, L. Ultrasound Study of Entheses in Psoriasis Patients with or without Musculoskeletal Symptoms: A Prospective Study. Jt. Bone Spine 2015, 82, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Hesselstrand, R.; Scheja, A.; Wildt, M.; Akesson, A. High-Frequency Ultrasound of Skin Involvement in Systemic Sclerosis Reflects Oedema, Extension and Severity in Early Disease. Rheumatology 2008, 47, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Czajkowska, J.; Badura, P.; Korzekwa, S.; Płatkowska-Szczerek, A.; Słowińska, M. Deep Learning-Based High-Frequency Ultrasound Skin Image Classification with Multicriteria Model Evaluation. Sensors 2021, 21, 5846. [Google Scholar] [CrossRef]
- Czajkowska, J.; Borak, M. Computer-Aided Diagnosis Methods for High-Frequency Ultrasound Data Analysis: A Review. Sensors 2022, 22, 8326. [Google Scholar] [CrossRef]
- Levy, J.; Barrett, D.L.; Harris, N.; Jeong, J.J.; Yang, X.; Chen, S.C. High-Frequency Ultrasound in Clinical Dermatology: A Review. Ultrasound J. 2021, 13, 24. [Google Scholar] [CrossRef]
- Sorokina, E.D.; Mikailova, D.A.; Krakhaleva, J.; Krinitsyna, J.; Yakubovich, A.I.; Sergeeva, I. Ultrasonography Patterns of Atopic Dermatitis in Children. Ski. Res. Technol. 2020, 26, 482–488. [Google Scholar] [CrossRef]
- Crisan, D.; Roman, I.; Crisan, M.; Scharffetter-Kochanek, K.; Badea, R. The Role of Vitamin c in Pushing Back the Boundaries of Skin Aging: An Ultrasonographic Approach. Clin. Cosmet. Investig. Dermatol. 2015, 8, 463–470. [Google Scholar] [CrossRef]
- Gniadecka, M.; Gniadecki, R.; Serup, J.; Søndergaard, J. Ultrasound Structure and Digital Image Analysis of the Subepidermal Low Echogenic Band in Aged Human Skin: Diurnal Changes and Interindividual Variability. J. Investig. Dermatol. 1994, 102, 362–365. [Google Scholar] [CrossRef]
- Vergilio, M.M.; Arandas, S.; Jales, R.M.; Leonardi, G.R. High-Frequency Ultrasound as a Scientific Tool for Skin Imaging Analysis. Exp. Dermatol. 2021, 30, 897–910. [Google Scholar] [CrossRef]
- Wang, L.; Chen, A.; Zhang, Y.; Wang, X.; Zhang, Y.; Shen, Q.; Xue, Y. AK-DL: A Shallow Neural Network Model for Diagnosing Actinic Keratosis with Better Performance than Deep Neural Networks. Diagnostics 2020, 10, 217. [Google Scholar] [CrossRef]
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 Dataset, a Large Collection of Multi-Source Dermatoscopic Images of Common Pigmented Skin Lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef] [PubMed]
- Derekas, P.; Spyridonos, P.; Likas, A.; Zampeta, A.; Gaitanis, G.; Bassukas, I. The Promise of Semantic Segmentation in Detecting Actinic Keratosis Using Clinical Photography in the Wild. Cancers 2023, 15, 4861. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, C.; Liu, Q.; Pei, Y.; Wang, L.; Shen, Z. An Actinic Keratosis Auxiliary Diagnosis Method Based on an Enhanced MobileNet Model. Bioengineering 2023, 10, 732. [Google Scholar] [CrossRef] [PubMed]
- Zalaudek, I.; Argenziano, G. Dermoscopy of Actinic Keratosis, Intraepidermal Carcinoma and Squamous Cell Carcinoma. Actinic Keratosis 2014, 46, 70–76. [Google Scholar] [CrossRef]
- Lou, A.; Guan, S.; Loew, M.H. CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation. Comput. Biol. Med. 2023, 154, 106579. [Google Scholar] [CrossRef]
- Lou, A.; Guan, S.; Loew, M.H. DC-UNet: Rethinking the U-Net Architecture with Dual Channel Efficient CNN for Medical Image Segmentation. Med. Imaging 2021, 11596, 758–768. [Google Scholar] [CrossRef]
- Baheti, B.; Innani, S.; Gajre, S.; Talbar, S. Eff-UNet: A Novel Architecture for Semantic Segmentation in Unstructured Environment. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1473–1481. [Google Scholar] [CrossRef]
- Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation. Neural Netw. 2020, 121, 74–87. [Google Scholar] [CrossRef]
- Czajkowska, J.; Badura, P.; Płatkowska-Szczerek, A.; Korzekwa, S. Data For: Deep Learning Approach to Skin Layers Segmentation in Inflammatory Dermatoses; Mendeley Data, Version 1; Politechnika Slaska: Gliwice, Poland, 2021. [Google Scholar] [CrossRef]
- Lee, T.; Ng, V.; Gallagher, R.; Coldman, A.; McLean, D. Dullrazor®: A Software Approach to Hair Removal from Images. Comput. Biol. Med. 1997, 27, 533–543. [Google Scholar] [CrossRef]
- Ohyu, S.; Tozaki, M.; Sasaki, M.; Chiba, H.; Xiao, Q.; Fujisawa, Y.; Sagara, Y. Combined Use of Texture Features and Morphological Classification Based on Dynamic Contrast-Enhanced MR Imaging: Differentiating Benign and Malignant Breast Masses with High Negative Predictive Value. Magn. Reson. Med. Sci. 2022, 21, 485–498. [Google Scholar] [CrossRef]
- Chirikhina, E.; Chirikhin, A.; Dewsbury-Ennis, S.; Bianconi, F.; Xiao, P. Skin Characterizations by Using Contact Capacitive Imaging and High-Resolution Ultrasound Imaging with Machine Learning Algorithms. Appl. Sci. 2021, 11, 8714. [Google Scholar] [CrossRef]
- Schwartz, W.R.; Pedrini, H. Texture Classification Based on Spatial Dependence Features Using Co-Occurrence Matrices and Markov Random Fields. In Proceedings of the 2004 International Conference on Image Processing, Singapore, 24–27 October 2004; Volume 1, pp. 239–242. [Google Scholar] [CrossRef]
- Czajkowska, J.; Juszczyk, J.; Bugdol, M.N.; Glenc-Ambroży, M.; Polak, A.; Piejko, L.; Pietka, E. High-Frequency Ultrasound in Anti-Aging Skin Therapy Monitoring. Sci. Rep. 2023, 13, 17799. [Google Scholar] [CrossRef] [PubMed]
- Rotemberg, V.; Kurtansky, N.; Betz-Stablein, B.; Caffery, L.; Chousakos, E.; Codella, N.; Combalia, M.; Dusza, S.; Guitera, P.; Gutman, D.; et al. A Patient-Centric Dataset of Images and Metadata for Identifying Melanomas Using Clinical Context. Sci. Data 2021, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- International Skin Imaging Collaboration. SIIM-ISIC 2020 Challenge Dataset. 2020. Available online: https://challenge2020.isic-archive.com/ (accessed on 6 December 2024).
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Kappal, S. Data Normalization Using Median Median Absolute Deviation MMAD Based Z-Score for Robust Predictions vs. Min–Max Normalization. Lond. J. Res. Sci. Nat. Form. 2019, 19, 39–44. [Google Scholar]
- Ding, C.; Peng, H. Minimum Redundancy Feature Selection from Microarray Gene Expression Data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Wu, Y.; Vapnik, V.N. Statistical Learning Theory. Technometrics 1999, 41, 377. [Google Scholar] [CrossRef]
- Shamir, R.R.; Duchin, Y.; Kim, J.; Sapiro, G.; Harel, N. Continuous Dice Coefficient: A Method for Evaluating Probabilistic Segmentations. arXiv 2019, arXiv:1906.11031. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Cipolletta, E.; Fiorentino, M.C.; Moccia, S.; Guidotti, I.; Grassi, W.; Filippucci, E.; Frontoni, E. Artificial Intelligence for Ultrasound Informative Image Selection of Metacarpal Head Cartilage. A Pilot Study. Front. Med. 2021, 8, 589197. [Google Scholar] [CrossRef] [PubMed]
- Cardillo, G. Cohen’s Kappa: Compute the Cohen’s Kappa Ratio on a Square Matrix. 2007. Available online: http://www.mathworks.com/matlabcentral/fileexchange/15365 (accessed on 17 May 2024).
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Soare, C.; Cozma, E.C.; Celarel, A.M.; Rosca, A.M.; Lupu, M.; Voiculescu, V.M. Digitally Enhanced Methods for the Diagnosis and Monitoring of Treatment Responses in Actinic Keratoses: A New Avenue in Personalized Skin Care. Cancers 2024, 16, 484. [Google Scholar] [CrossRef] [PubMed]
- Olsen, E.A.; Abernethy, M.L.; Kulp-Shorten, C.; Callen, J.P.; Glazer, S.D.; Huntley, A.; McCray, M.; Monroe, A.B.; Tschen, E.; Wolf, J.E. A Double-Blind, Vehicle-Controlled Study Evaluating Masoprocol Cream in the Treatment of Actinic Keratoses on the Head and Neck. J. Am. Acad. Dermatol. 1991, 24, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Jeffes, E.W.; Tang, E.H. Actinic Keratosis. Am. J. Clin. Dermatol. 2000, 1, 167–179. [Google Scholar] [CrossRef]
- Gniadecka, M.; Jemec, G. Quantitative Evaluation of Chronological Ageing and Photoageing in Vivo: Studies on Skin Echogenicity and Thickness. Br. J. Dermatol. 1998, 139, 815–821. [Google Scholar] [CrossRef]
- Sandby-moller, J.; Wulf, H.C. Ultrasonographic Subepidermal Low-Echogenic Band, Dependence of Age and Body Site. Ski. Res. Technol. 2004, 10, 57–63. [Google Scholar] [CrossRef]
- Jasaitiene, D.; Valiukeviciene, S.; Linkeviciute, G.; Raisutis, R.; Jasiuniene, E.; Kazys, R. Principles of High-Frequency Ultrasonography for Investigation of Skin Pathology. J. Eur. Acad. Dermatol. Venereol. 2010, 25, 375–382. [Google Scholar] [CrossRef]
- Polańska, A.; Gaura, T.; Bowszyc-Dmochowska, M.; Osmola-Mańkowska, A.; Olek-Hrab, K.; Adamski, Z.; Żaba, R.; Dańczak-Pazdrowska, A. Calcipotriol/Betamethasone Ointment Compared to Narrow-Band UVB in Plaque Psoriasis: First Clinical and Ultrasonographic Study. Int. J. Dermatol. 2018, 58, 108–113. [Google Scholar] [CrossRef]
- Polańska, A.; Dańczak-Pazdrowska, A.; Olek-Hrab, K.; Osmola-Mańkowska, A.; Bowszyc-Dmochowska, M.; Żaba, R.; Adamski, Z. High-Frequency Ultrasonography—New Non-Invasive Method in Assessment of Skin Lymphomas. Ski. Res. Technol. 2018, 24, 517–521. [Google Scholar] [CrossRef]
- Liu, Z.; Niu, Z.; Zhang, D.; Liu, J.; Zhu, Q. Improve the Dupilumab Therapy Evaluation with Dermoscopy and High-Frequency Ultrasound in Moderate-To-Severe Atopic Dermatitis. Ski. Res. Technol. 2022, 29, 517–521. [Google Scholar] [CrossRef]
- Nicolescu, A.C.; Ionescu, S.; Ancuta, I.; Popa, V.-T.; Lupu, M.; Soare, C.; Cozma, E.-C.; Voiculescu, V.-M. Subepidermal Low-Echogenic Band—Its Utility in Clinical Practice: A Systematic Review. Diagnostics 2023, 13, 970. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Figueras, M.T.; Carrato, C.; Sáenz, X.; Puig, L.; Musulen, E.; Ferrándiz, C.; Ariza, A. Actinic Keratosis with Atypical Basal Cells (AK I) Is the Most Common Lesion Associated with Invasive Squamous Cell Carcinoma of the Skin. J. Eur. Acad. Dermatol. Venereol. 2014, 29, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Massone, C.; Cerroni, L. The Many Clinico-Pathologic Faces of Actinic Keratosis: An Atlas. Curr. Probl. Dermatol. 2014, 46, 64–69. [Google Scholar] [CrossRef]
- Berhane, T.; Halliday, G.M.; Cooke, B.; Barnetson, R.S.C. Inflammation Is Associated with Progression of Actinic Keratoses to Squamous Cell Carcinomas in Humans. Br. J. Dermatol. 2002, 146, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Heerfordt, I.M.; Poulsen, T.; Wulf, H.C. Actinic Keratoses Contiguous with Squamous Cell Carcinomas Are Mostly Non-Hyperkeratotic and with Severe Dysplasia. J. Clin. Pathol. 2021, 75, 560–563. [Google Scholar] [CrossRef]
- Schmitz, L.W.; Kahl, P.; Majores, M.; Bierhoff, E.; Stockfleth, E.; Dirschka, T. Actinic Keratosis: Correlation between Clinical and Histological Classification Systems. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1303–1307. [Google Scholar] [CrossRef]
- Heerfordt, I.M.; Nissen, C.V.; Poulsen, T.; Philipsen, P.A.; Wulf, H.C. Thickness of Actinic Keratosis Does Not Predict Dysplasia Severity or P53 Expression. Sci. Rep. 2016, 6, 33952. [Google Scholar] [CrossRef]
- Korecka, K.; Kwiatkowska, D.; Mazur, E.; Dańczak-Pazdrowska, A.; Reich, A.; Żaba, R.; Polańska, A. An Update on Non-Invasive Skin Imaging Techniques in Actinic Keratosis—A Narrative Review. Medicina 2024, 60, 1043. [Google Scholar] [CrossRef]
- Willenbrink, T.J.; Ruiz, E.S.; Cornejo, C.M.; Schmults, C.D.; Arron, S.T.; Jambusaria-Pahlajani, A. Field Cancerization: Definition, Epidemiology, Risk Factors, and Outcomes. J. Am. Acad. Dermatol. 2020, 83, 709–717. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Guryanov, A. Histogram-Based Algorithm for Building Gradient Boosting Ensembles of Piecewise Linear Decision Trees; Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 39–50. [Google Scholar] [CrossRef]
- Ho, T.K. Random Decision Forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar] [CrossRef]
- Aouat, S.; Ait-hammi, I.; Hamouchene, I. A New Approach for Texture Segmentation Based on the Gray Level Co-Occurrence Matrix. Multimed. Tools Appl. 2021, 80, 24027–24052. [Google Scholar] [CrossRef]
- Pietikäinen, M. Image Analysis with Local Binary Patterns. Image Anal. 2005, 3540, 115–118. [Google Scholar] [CrossRef]
Features | Accuracy | Number of Features | Cohen’s Kappa |
---|---|---|---|
HFUS and dermatoscopy, handcrafted features | 0.4833 | 11 | 0.1830 |
Dermatoscopy, NN 1 features | 0.8130 | 42 | 0.7378 |
Dermatoscopy, handcrafted, and NN 1 features | 0.7645 | 42 | 0.6847 |
HFUS, handcrafted, and dermatoscopy, NN 1 features | 0.7901 | 45 | 0.7064 |
HFUS, dermatoscopy, handcrafted, and NN 1 features | 0.7618 | 52 | 0.6860 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korecka, K.; Slian, A.; Polańska, A.; Dańczak-Pazdrowska, A.; Żaba, R.; Czajkowska, J. Automatic Assessment of AK Stage Based on Dermatoscopic and HFUS Imaging—A Preliminary Study. J. Clin. Med. 2024, 13, 7499. https://doi.org/10.3390/jcm13247499
Korecka K, Slian A, Polańska A, Dańczak-Pazdrowska A, Żaba R, Czajkowska J. Automatic Assessment of AK Stage Based on Dermatoscopic and HFUS Imaging—A Preliminary Study. Journal of Clinical Medicine. 2024; 13(24):7499. https://doi.org/10.3390/jcm13247499
Chicago/Turabian StyleKorecka, Katarzyna, Anna Slian, Adriana Polańska, Aleksandra Dańczak-Pazdrowska, Ryszard Żaba, and Joanna Czajkowska. 2024. "Automatic Assessment of AK Stage Based on Dermatoscopic and HFUS Imaging—A Preliminary Study" Journal of Clinical Medicine 13, no. 24: 7499. https://doi.org/10.3390/jcm13247499
APA StyleKorecka, K., Slian, A., Polańska, A., Dańczak-Pazdrowska, A., Żaba, R., & Czajkowska, J. (2024). Automatic Assessment of AK Stage Based on Dermatoscopic and HFUS Imaging—A Preliminary Study. Journal of Clinical Medicine, 13(24), 7499. https://doi.org/10.3390/jcm13247499