Impairment of Left Ventricular Function in Hyperthyroidism Caused by Graves’ Disease: An Echocardiographic Study
<p>The frequency of orbitopathy in the Graves group; *—Statistically significant difference.</p> "> Figure 2
<p>Differences in the left ventricular mass in patients with Graves’ disease and healthy controls; *—Statistically significant difference.</p> "> Figure 3
<p>Differences in average left ventricular global longitudinal strain in patients with Graves’ disease and healthy controls; *—Statistically significant difference.</p> "> Figure 4
<p>Differences in average left ventricular global longitudinal strain in patients with Graves’ disease in relation to the presence of orbitopathy; *—Statistically significant difference.</p> "> Figure 5
<p>Differences in left ventricular myocardial performance index in patients with Graves’ disease in relation to the presence of orbitopathy; *—Statistically significant difference.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Echocardiographic Examination
2.3. Statistical Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDermott, M.T. Hyperthyroidism. Ann. Intern Med. 2020, 172, ITC49–ITC64. [Google Scholar] [CrossRef] [PubMed]
- Mullur, R.; Liu, Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef] [PubMed]
- Stathatos, N. Thyroid physiology. Med. Clin. N. Am. 2012, 96, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Navajas, A.; Cruz, J.D.; Ariza-Ordoñez, N.; Giral, H.; Palmezano, J.; Bolívar-Mejía, A.; Santana, Q.; Fernandez, R.; Durango, L.; Saldarriaga, C.; et al. Cardiac manifestations in hyperthyroidism. Rev. Cardiovasc. Med. 2022, 23, 136. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Uricoechea, H.; Sierra-Torres, C.H. Thyroid hormones and the heart. Horm. Mol. Biol. Clin. Investig. 2014, 18, 15–26. [Google Scholar] [CrossRef]
- Luongo, C.; Dentice, M.; Salvatore, D. Deiodinases and their intricate role in thyroid hormone homeostasis. Nat. Rev. Endocrinol. 2019, 15, 479–488. [Google Scholar] [CrossRef]
- Osuna, P.M.; Udovcic, M.; Sharma, M.D. Hyperthyroidism and the heart. Methodist Debakey Cardiovasc. J. 2017, 13, 60–63. [Google Scholar] [CrossRef]
- Everts, M.E.; Verhoeven, F.A.; Bezstarosti, K.; Moerings, E.P.; Hennemann, G.; Visser, T.J.; Lamers, J.M. Uptake of thyroid hormones in neonatal ratcardiac myocytes. Endocrinology 1996, 137, 4235–4242. [Google Scholar] [CrossRef]
- Brent, G.A. The molecular basis of thyroid hormone action. N. Engl. J. Med. 1994, 331, 847–853. [Google Scholar] [CrossRef]
- Kahaly, G.J.; Dillmann, W.H. Thyroid hormone action in the heart. Endocrine Rev. 2005, 26, 704–728. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Koenig, R.J. Gene regulation by thyroid hormone. Trends Endocrinol. Metab. 2000, 11, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lazar, M.A. Transcriptional repression by nuclear hormone receptors. Trends Endocrinol. Metab. 2000, 11, 6–10. [Google Scholar] [CrossRef]
- Hiroi, Y.; Kim, H.-H.; Ying, H.; Furuya, F.; Huang, Z.; Simoncini, T.; Noma, K.; Ueki, K.; Nguyen, N.-H.; Scanlan, T.S.; et al. Rapid nongenomic actions of thyroid hormone. Proc. Natl. Acad. Sci. USA 2006, 103, 14104–14109. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.J.; Goglia, F.; Leonard, J.L. Nongenomic actions of thyroid hormone. Nat. Rev. Endocrinol. 2016, 12, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Toft, A.D.; Boon, N.A. Thyroid Disease and the Heart. Heart 2000, 84, 445–460. [Google Scholar] [CrossRef]
- von Hafe, M.; Neves, J.S.; Vale, C.; Borges-Canha, M.; Leite-Moreira, A. The impact of thyroid hormone dysfunction on ischemic heart disease. Endocr. Connect. 2019, 8, R76–R90. [Google Scholar] [CrossRef]
- Antonelli, A.; Fallahi, P.; Elia, G.; Ragusa, F.; Paparo, S.R.; Ruffilli, I.; Patrizio, A.; Gonnella, D.; Giusti, C.; Virili, C.; et al. Graves’ disease: Clinical manifestations, immune pathogenesis (cytokines and chemokines) and therapy. Best. Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101388. [Google Scholar] [CrossRef]
- Kulbay, M.; Tanya, S.M.; Tuli, N.; Dahoud, J.; Dahoud, A.; Alsaleh, F.; Arthurs, B.; El-Hadad, C. A Comprehensive Review of Thyroid Eye Disease Pathogenesis: From Immune Dysregulations to Novel Diagnostic and Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 11628. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Muller, I.; Chong, K.K.-L.; Ludgate, M.; Fang, S. Editorial: Mechanisms and Novel Therapies in Graves’ Orbitopathy: Current Update. Front. Endocrinol. 2022, 13, 902591. [Google Scholar] [CrossRef]
- Naser, J.A.; Pislaru, S.; Stan, M.N.; Lin, G. Incidence, risk factors, natural history and outcomes of heart failure in patients with Graves’ disease. Heart 2022, 108, 868–874. [Google Scholar] [CrossRef]
- Fox, T.J.; Anastasopoulou, C. Graves Orbitopathy. [Updated 2023 Aug 28]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549889/ (accessed on 17 November 2024).
- Bartalena, L.; Kahaly, G.J.; Baldeschi, L.; Dayan, C.M.; Eckstein, A.; Marcocci, C.; Marinò, M.; Vaidya, B.; Wiersinga, W.M.; Ayvaz, G.; et al. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 2021, 185, G43–G67. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.N.; Zhang, L.; Lee, R.W.J.; Muller, I.; Ezra, D.G.; Dayan, C.M.; Kahaly, G.J.; Ludgate, M. New insights into the pathogenesis and nonsurgical management of Graves orbitopathy. Nat. Rev. Endocrinol. 2020, 16, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Koshiyama, H.; Sellitti, D.F.; Akamizu, T.; Doi, S.Q.; Takeuchi, Y.; Inoue, D.; Sakaguchi, H.; Takemura, G.; Sato, Y.; Takatsu, Y.; et al. Cardiomyopathy associated with Graves’ disease. Clin. Endocrinol. 1996, 45, 111–116. [Google Scholar] [CrossRef]
- Lanzolla, G.; Ricci, D.; Nicolì, F.; Sabini, E.; Sframeli, A.; Brancatella, A.; Mantuano, M.; Dottore, G.R.; Bucci, I.; Figus, M.; et al. Putative protective role of autoantibodies against the insulin-like growth factor-1 receptor in Graves’ Disease: Results of a pilot study. J. Endocrinol. Investig. 2020, 43, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Macvanin, M.; Gluvic, Z.; Radovanovic, J.; Essack, M.; Gao, X.; Isenovic, E.R. New insights on the cardiovascular effects of IGF-1. Front. Endocrinol. 2023, 14, 1142644. [Google Scholar] [CrossRef]
- Li, B.; Li, Z.; Huang, Y. Investigating changes in cardiac function and structure of left ventricle by speckle-tracking echocardiography in patients with hyperthyroidism and Graves’ disease. Front. Cardiovasc. Med. 2021, 8, 695736. [Google Scholar] [CrossRef]
- Duzen, I.V.; Tabur, S.; Ozturk, S.; Savcilioglu, M.D.; Alıc, E.; Yetisen, M.; Sanli, S.; Goksuluk, H.; Vuruskan, E.; Altunbas, G.; et al. Assessment of subclinical left ventricular dysfunction with speckle-tracking echocardiography in hyperthyroid and euthyroid Graves’ disease and its correlation with serum TIMP-1. Acta Cardiol. 2021, 76, 177–184. [Google Scholar] [CrossRef]
- Metwalley, K.A.; Farghaly, H.S.; Abdelhamid, A. Left ventricular functions in children with newly diagnosed Graves’ disease. A single-center study from Upper Egypt. Eur. J. Pediatr. 2018, 177, 101–106. [Google Scholar] [CrossRef]
- Akçay, M.; Akçay, E.; Yeter, E.; Durmaz, T.; Keleş, T.; Bayram, N.A.; Yüksel, İ.; Kalkan, G.Y.; Simavli, H.; Şimşek, Ş.; et al. Ventricular functions in patients with Graves’ ophthalmopathy. Turkiye Klinikleri J. Cardiovasc. Sci. 2010, 22, 226–232. [Google Scholar]
- Li, H.; Zeng, R.; Liao, Y.; Fu, M.; Zhang, H.; Wang, L.; Li, Y. Prevalence and risk factors of left ventricular diastolic dysfunction in patients with hyperthyroidism. Front. Endocrinol. 2021, 8, 605712. [Google Scholar] [CrossRef] [PubMed]
- Ertek, S.; Cicero, A.F. Hyperthyroidism and cardiovascular complications: A narrative review on the basis of pathophysiology. Arch. Med. Sci. 2013, 9, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Nabbout, L.A.; Robbins, R.J. The cardiovascular effects of hyperthyroidism. Methodist DeBakey Cardiovasc. J. 2010, 6, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Samanta, L. Oxidative stress and heart failure in altered thyroid states. Sci. World J. 2012, 2012, 741861. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Uricoechea, H.; Bonelo-Perdomo, A.; Sierra-Torres, C.H. Effects of thyroid hormones on the heart. Clin. Investig. Arterioscler. 2014, 26, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Klein, I.; Danzi, S. Thyroid disease and the heart. Curr. Probl. Cardiol. 2016, 41, 65–92. [Google Scholar] [CrossRef]
- Dahl, P.; Danzi, S.; Klein, I. Thyrotoxic cardiac disease. Curr. Heart Fail Rep. 2008, 5, 170–176. [Google Scholar] [CrossRef]
- Teasdale, S.L.; Inder, W.J.; Stowasser, M.; Stanton, T. Hyperdynamic right heart function in Graves’ hyperthyroidism measured by echocardiography normalises on restoration of euthyroidism. Heart Lung Circ. 2017, 26, 580–585. [Google Scholar] [CrossRef]
- Lee, W.S.; Kim, J. Insulin-like growth factor-1 signaling in cardiac aging. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864 Pt B, 1931–1938. [Google Scholar] [CrossRef]
- Yue, W.-S.; Chong, B.-H.; Zhang, X.-H.; Liao, S.-Y.; Jim, M.-H.; Kung, A.W.C.; Tse, H.-F.; Siu, C.-W. Hyperthyroidism-induced left ventricular diastolic dysfunction: Implication in hyperthyroidism-related heart failure. Clin. Endocrinol. 2011, 74, 636–643. [Google Scholar] [CrossRef]
- Perez, A.C.; Jhund, P.S.; Stott, D.J.; Gullestad, L.; Cleland, J.G.; van Veldhuisen, D.J.; Wikstrand, J.; Kjekshus, J.; McMurray, J.J. Thyroid-stimulating hormone and clinical outcomes: The CORONA trial (controlled rosuvastatin multinational study in heart failure). JACC Heart Fail 2014, 2, 35–40. [Google Scholar] [CrossRef]
- Siu, C.W.; Yeung, C.Y.; Lau, C.P.; Kung, A.W.; Tse, H.F. Incidence, clinical characteristics and outcome of congestive heart failure as the initial presentation in patients with primary hyperthyroidism. Heart 2007, 93, 483–487. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Ma, A.; Wang, T. Subclinical thyroid dysfunction is associated with adverse prognosis in heart failure patients with reduced ejection fraction. BMC Cardiovasc. Disord. 2019, 19, 83. [Google Scholar] [CrossRef]
- Martinez, F. Thyroid hormones and heart failure. Heart Fail Rev. 2016, 21, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Uricoechea, H.; Bonelo-Perdomo, A. Thyroid Dysfunction and Heart Failure: Mechanisms and Associations. Curr. Heart Fail Rep. 2017, 14, 48–58. [Google Scholar] [CrossRef]
- Biondi, B. Mechanisms in endocrinology: Heart failure and thyroid dysfunction. Eur. J. Endocrinol. 2012, 167, 609–618. [Google Scholar] [CrossRef]
- Abdelrazk, R.R.; El-Sehrawy, A.A.; Ghoniem, M.G.M.; Amer, M.Z. Speckle tracking echocardiographic assessment of left ventricular longitudinal strain in female patients with subclinical hyperthyroidism. Cardiovasc. Endocrinol. Metab. 2020, 10, 182–185. [Google Scholar] [CrossRef]
- Zhou, M.; Tan, J.; Liu, J.; Yin, L.; Wang, S.; Xie, L.; Guo, Z.; Zhang, W. Changes in left ventricular function and contractile homogeneity in young adults with newly diagnosed hyperthyroidism due to Graves’ disease. J. Clin. Ultrasound 2020, 48, 216–221. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, L.; Liu, X.; Pend, G.; Zhong, X.; Sheng, Y.; Luo, S.; Huang, Y.; Xu, J.; Liu, Y. Evaluation of left ventricular myocardial work in patients with hyperthyroidism with different heart rates with noninvasive pressure-strain loop based on two-dimensional speck tracking imaging. Quant. Imaging Med. Surg. 2023, 13, 2248–2261. [Google Scholar] [CrossRef]
- Karaca, Y.; Karasu, M.; Taşolar, H.; Evren, B. Four-dimensional speckle tracking echocardiography and fragmented QRS in detection of early left ventricular systolic dysfunction in patients with subclinical hyperthyroidism. J. Clin. Ultrasound 2023, 51, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Kerkhof, P.L.M.; Handly, N. Early echocardiographic and electrophysiological characteristics of subclinical hyperthyroidism. J. Clin. Ultrasound 2023, 51, 949–951. [Google Scholar] [CrossRef]
- Gaibazzi NBergamaschi, L.; Pizzi, C.; Tuttolomondo, D. Resting global longitudinal strain and stress echocardiography to detect coronary artery disease burden. Eur. Heart J. Cardiovasc. Imaging 2023, 24, e86–e88. [Google Scholar] [CrossRef] [PubMed]
Groups | Graves Group (n = 39) | Control Group (n = 35) | p Value |
---|---|---|---|
Variables | |||
Hypertension, n (%) | 18 (46.2) | 3 (8.6) | 0.00034 |
Atrial fibrillation, n (%) | 3 (7.6) | 1 (2.8) | <0.00001 |
Extrasystolic arrhythmia, n (%) | 21 (53.8) | 1 (2.8) | <0.00001 |
Groups | Graves Group (n = 39) | Control Group (n = 35) | p Value | ||
---|---|---|---|---|---|
Variables | SD | SD | |||
EDDLV (cm) | 5.26 ↑ | 0.51 | 4.96 | 0.39 | 0.0038 |
ESDLV (cm) | 3.49 ↑ | 0.55 | 3.11 | 0.37 | 0.0048 |
PW (cm) | 0.79 | 0.10 | 0.78 | 0.13 | 0.4112 |
IVS (cm) | 0.79 | 0.10 | 0.79 | 0.14 | 0.4990 |
EDVLV (mL) | 135.14 ↑ | 32.85 | 116.93 | 22.05 | 0.0035 |
ESVLV (mL) | 52.73 ↑ | 20.29 | 39.11 | 11.74 | 0.0010 |
SV (mL) | 83.53 | 21.42 | 77.81 | 15.00 | 0.0965 |
SVI (mL/m2) | 44.12 | 9.59 | 41.31 | 7.17 | 0.0908 |
CO (L/min) | 6.05 | 1.85 | 5.57 | 1.21 | 0.0950 |
CI (L/min/m2) | 3.27 | 0.91 | 2.93 | 0.59 | 0.1297 |
LVmass-ASE (g) | 191.93 ↑ | 48.42 | 167.91 | 46.60 | 0.0075 |
LVmass-ASE corr (g) | 153.67 ↑ | 38.68 | 135.00 | 37.42 | 0.0091 |
LVmass-ASE index (g/m2) | 102 ↑ | 21.66 | 87.66 | 20.39 | 0.0012 |
LVmass-ASE corr index (g/m2) | 81.17 ↑ | 18.38 | 69.82 | 16.48 | 0.0010 |
EFLV (%) | 61.94 ↓ | 8.96 | 66.92 | 5.80 | 0.0034 |
FSLV (%) | 33.73 ↓ | 6.04 | 37.2 | 4.76 | 0.0051 |
LA (cm) | 3.59 | 0.75 | 3.35 | 0.38 | 0.2449 |
LAVI (mL/m2) | 40.50 ↑ | 27.44 | 26.73 | 6.3 | 0.0025 |
MAPSE-l (mm) | 13.92 | 3.53 | 14.37 | 2.43 | 0.2697 |
MAPSE-s (mm) | 12.04 ↓ | 2.87 | 14.17 | 1.72 | 0.0003 |
TAPSE-l (mm) | 20.42 | 5.6 | 19.71 | 4.30 | 0.2751 |
RV (cm) | 2.64 | 0.42 | 2.60 | 0.38 | 0.3482 |
Groups | Graves Group (n = 39) | Control Group (n = 35) | p Value | ||
---|---|---|---|---|---|
Variables | SD | SD | |||
E (m/s) | 0.7 | 0.18 | 0.728 | 0.13 | 0.2229 |
A (m/s) | 0.66 | 0.13 | 0.61 | 0.14 | 0.0760 |
E/A | 1.068 ↓ | 0.33 | 1.233 | 0.34 | 0.0196 |
DCT (ms) | 164.46 | 50.19 | 159.84 | 28.81 | 0.3211 |
DFT (ms) | 439.87 | 128.80 | 426.37 | 97.82 | 0.3134 |
RR interval (ms) | 872.12 | 163.97 | 834.78 | 119.48 | 0.1430 |
DFT/RR interval | 0.554 | 0.38 | 0.489 | 0.073 | 0.1744 |
A-wave m-flow (ms) | 120.55 ↑ | 21.31 | 106.09 | 26.16 | 0.0081 |
VTI m-flow (m) | 0.154 | 0.039 | 0.153 | 0.028 | 0.4826 |
VTI A m-flow (m) | 0.057 | 0.021 | 0.051 | 0.013 | 0.0784 |
VTI-A m-flow/VTI m-flow | 0.351 | 0.099 | 0.336 | 0.078 | 0.2379 |
IVRT (ms) | 107.28 | 26.26 | 96.78 | 17.9 | 0.5076 |
IVCT (ms) | 77.51 | 28.25 | 70.53 | 24.65 | 0.2846 |
ETLV (ms) | 282.39 | 36.38 | 289.06 | 35.52 | 0.2140 |
MPI-LV | 0.647 | 0.21 | 0.58 | 0.13 | 0.0704 |
Groups | Graves Group (n = 39) | Control Group (n = 35) | p Value | ||
---|---|---|---|---|---|
Variables | SD | SD | |||
e’-MA-s (m/s) | 0.110 | 0.054 | 0.114 | 0.128 | 0.5028 |
a’-MA-s (m/s) | 0.120 ↑ | 0.063 | 0.106 | 0.128 | 0.0214 |
e’/a’-MA-s | 0.994 | 0.329 | 1.162 | 0.584 | 0.2187 |
Vs-MA-s (m/s) | 0.136 ↑ | 0.155 | 0.109 | 0.143 | 0.0028 |
E/e’-MA-s | 7.255 | 3.913 | 7.464 | 3.323 | 0.4065 |
PreCT-MA-s (ms) | 96.297 ↑ | 48.249 | 78.656 | 15.342 | 0.0139 |
CT-MA-s (ms) | 252.378 ↓ | 38.712 | 287.406 | 26.366 | 0.0001 |
PostCT-MA-s (ms) | 115.324 ↑ | 47.745 | 76.250 | 16.510 | 0.00001 |
MPI-TDI-MA-s | 0.842 ↑ | 0.291 | 0.539 | 0.088 | 0.00001 |
e’-MA-l (m/s) | 0.145 ↑ | 0.069 | 0.105 | 0.027 | 0.0063 |
a’-MA-l (m/s) | 0.132 ↑ | 0.065 | 0.074 | 0.021 | 0.00001 |
e’/a’-MA-l | 1.195 ↓ | 0.502 | 1.480 | 0.676 | 0.0417 |
Vs-MA-l (m/s) | 0.128 ↑ | 0.066 | 0.108 | 0.144 | 0.00001 |
E/e’-MA-l | 5.396 ↓ | 2.660 | 6.831 | 2.239 | 0.0043 |
PreCT-MA-l (ms) | 93.882 | 33.984 | 83.875 | 19.758 | 0.3030 |
CT-MA-l (ms) | 261.632 ↓ | 30.930 | 282.718 | 30.333 | 0.0033 |
PostCT-MA-l (ms) | 96.789 ↑ | 20.824 | 77.047 | 22.65 | 0.00001 |
MPI-TDI-MA-l | 0.731 ↑ | 0.268 | 0.582 | 0.143 | 0.0022 |
e’-MA-av (m/s) | 0.142 ↑ | 0.082 | 0.121 | 0.126 | 0.0155 |
a’-MA-av (m/s) | 0.127 ↓ | 0.062 | 0.132 | 0.166 | 0.0065 |
e’/a’-MA-av | 1.104 | 0.630 | 1.321 | 0.601 | 0.1285 |
Vs-MA-av (m/s) | 0.110 ↓ | 0.055 | 0.133 | 0.194 | 0.0014 |
E/e’-MA-av | 6.358 | 3.223 | 7.040 | 2.705 | 0.1052 |
PreCT-MA-av (ms) | 96.597 | 39.845 | 81.423 | 12.201 | 0.0969 |
CT-MA-av (ms) | 258.222 ↓ | 31.438 | 284.662 | 23.791 | 0.0002 |
PostCT-MA-av (ms) | 105.889 ↑ | 32.165 | 77.547 | 20.317 | 0.00001 |
MPI-TDI-MA-av | 0.780 ↑ | 0.266 | 0.558 | 0.100 | 0.00001 |
Groups | Graves’ Disease with Orbitopathy (n = 30) | Graves’ Disease without Orbitopathy (n = 9) | p Value | ||
---|---|---|---|---|---|
Variables | SD | SD | |||
EDDLV (cm) | 5.31 | 0.52 | 5.07 | 0.48 | 0.1172 |
ESDLV (cm) | 3.48 | 0.55 | 3.5 | 0.57 | 0.4783 |
PW (cm) | 0.79 | 0.09 | 0.76 | 0.11 | 0.2003 |
IVS (cm) | 0.79 | 0.11 | 0.77 | 0.10 | 0.3160 |
EDVLV (mL) | 137.97 | 34.05 | 125.71 | 28.16 | 0.1162 |
ESVLV (mL) | 52.63 | 20.30 | 53.08 | 21.50 | 0.8965 |
SV (mL) | 86.79 ↑ | 21.92 | 72.63 | 16.27 | 0.0408 |
SVI (mL/m2) | 44.92 | 10.12 | 41.44 | 7.42 | 0.1732 |
CO (L/min) | 6.23 | 1.93 | 5.46 | 1.46 | 0.1373 |
CI (L/min/m2) | 3.32 | 0.97 | 3.11 | 0.71 | 0.2808 |
LVmass-ASE (g) | 196.59 | 48.36 | 176.4 | 48.01 | 0.1391 |
LVmass-ASE corr (g) | 157.25 | 38.67 | 141.74 | 38.43 | 0.1487 |
LVmass-ASE index (g/m2) | 103.48 | 22.34 | 100.44 | 20.27 | 0.3587 |
LVmass-ASE corr index (g/m2) | 81.30 | 19.24 | 80.69 | 16.21 | 0.4660 |
EFLV (%) | 62.93 | 8.08 | 58.76 | 11.38 | 0.1128 |
FSLV (%) | 34.67 ↑ | 5.55 | 30.58 | 6.84 | 0.0372 |
LA (cm) | 3.59 | 0.69 | 3.6 | 0.99 | 0.4972 |
LAVI (mL/m2) | 39.12 | 27.42 | 46.19 | 28.97 | 0.4472 |
MAPSE-l (mm) | 14.17 | 2.85 | 13.01 | 5.58 | 0.9840 |
MAPSE-s (mm) | 12.45 ↑ | 2.71 | 10.4 | 3.10 | 0.0427 |
TAPSE-l (mm) | 20.43 | 5.60 | 20.38 | 5.97 | 0.4926 |
RV (cm) | 2.63 | 0.38 | 2.7 | 0.58 | 0.3460 |
Groups | Graves’ Disease with Orbitopathy (n = 30) | Graves’ Disease without Orbitopathy (n = 9) | p Value | ||
---|---|---|---|---|---|
Variables | SD | SD | |||
E (m/s) | 0.69 | 0.16 | 0.71 | 0.23 | 0.8571 |
A (m/s) | 0.62 | 0.14 | 0.55 | 0.08 | 0.2087 |
E/A | 1.04 | 0.29 | 1.03 | 0.47 | 0.7039 |
DCT (ms) | 159.83 | 33.94 | 179.88 | 83.26 | 0.5028 |
DFT (ms) | 452.40 | 122.75 | 398.11 | 148.56 | 0.2113 |
RR interval (ms) | 883.00 | 150.46 | 835.88 | 209.11 | 0.2285 |
DFT/RR interval | 0.58 | 0.43 | 0.46 | 0.11 | 0.1215 |
A-wave m-flow (ms) | 116.14 | 22.53 | 105.87 | 27.31 | 0.4760 |
VTI m-flow (m) | 0.16 ↑ | 0.03 | 0.13 | 0.05 | 0.0103 |
VTI A m-flow (m) | 0.05 | 0.02 | 0.05 | 0.02 | 0.4122 |
VTI-A m-flow/VTI m-flow | 0.34 | 0.09 | 0.31 | 0.13 | 0.7039 |
IVRT (ms) | 106.83 | 23.95 | 108.77 | 34.54 | 0.4242 |
IVCT (ms) | 72.43 ↓ | 19.90 | 101.61 | 44.01 | 0.0293 |
ETLV (ms) | 285.68 | 37.93 | 271.77 | 31.98 | 0.1635 |
MPI-LV | 0.61 ↓ | 0.25 | 0.76 | 0.28 | 0.0255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrovic Djordjevic, I.; Petrovic, J.; Radomirovic, M.; Petrovic, S.; Biorac, B.; Jemuovic, Z.; Tesic, M.; Trifunovic Zamaklar, D.; Nedeljkovic, I.; Nedeljkovic Beleslin, B.; et al. Impairment of Left Ventricular Function in Hyperthyroidism Caused by Graves’ Disease: An Echocardiographic Study. J. Clin. Med. 2024, 13, 7348. https://doi.org/10.3390/jcm13237348
Petrovic Djordjevic I, Petrovic J, Radomirovic M, Petrovic S, Biorac B, Jemuovic Z, Tesic M, Trifunovic Zamaklar D, Nedeljkovic I, Nedeljkovic Beleslin B, et al. Impairment of Left Ventricular Function in Hyperthyroidism Caused by Graves’ Disease: An Echocardiographic Study. Journal of Clinical Medicine. 2024; 13(23):7348. https://doi.org/10.3390/jcm13237348
Chicago/Turabian StylePetrovic Djordjevic, Ivana, Jelena Petrovic, Marija Radomirovic, Sonja Petrovic, Bojana Biorac, Zvezdana Jemuovic, Milorad Tesic, Danijela Trifunovic Zamaklar, Ivana Nedeljkovic, Biljana Nedeljkovic Beleslin, and et al. 2024. "Impairment of Left Ventricular Function in Hyperthyroidism Caused by Graves’ Disease: An Echocardiographic Study" Journal of Clinical Medicine 13, no. 23: 7348. https://doi.org/10.3390/jcm13237348
APA StylePetrovic Djordjevic, I., Petrovic, J., Radomirovic, M., Petrovic, S., Biorac, B., Jemuovic, Z., Tesic, M., Trifunovic Zamaklar, D., Nedeljkovic, I., Nedeljkovic Beleslin, B., Simic, D., Zarkovic, M., & Vujisic-Tesic, B. (2024). Impairment of Left Ventricular Function in Hyperthyroidism Caused by Graves’ Disease: An Echocardiographic Study. Journal of Clinical Medicine, 13(23), 7348. https://doi.org/10.3390/jcm13237348