Comparative Evaluation of Sodium Hypochlorite Gel Penetration Using Er,Cr:YSGG Laser and Passive Ultrasonic Activation After Apicoectomy: An In Vitro Study with Confocal Laser Scanning Microscopy
<p>(<b>a</b>) Retro-cavity preparation after apicectomy, (<b>b</b>) NaOCl (2.5%) gel application without activation (red arrow represents the NaOCl gel with rhodamine dye), (<b>c</b>) PUI of 2.5% NaOCl gel, (<b>d</b>) Er,Cr:YSGG LAI of 2.5% NaOCl gel, (<b>e</b>) Er,Cr:YSGG LAI of 0.5% NaOCl gel. (Authored by Dr. Elafifi).</p> "> Figure 2
<p>Representation of the measurement using Q-Path software. (<b>A</b>) various lines measuring the penetration depths all around the root canal to be able to determine the mean penetration depth; (<b>B</b>) a line defining all the penetration peaks and another line tracing the outer surface of the root to determine the penetration index.</p> "> Figure 3
<p>Sample confocal microscopy images of the different groups. The images represent the amount of penetration of the rhodamine dye from the root canal walls outwards towards the external root surface using different NaOCl gel activation protocols. (<b>A</b>–<b>D</b>) control group, (<b>B</b>–<b>E</b>) ultrasonic group, (<b>C</b>–<b>F</b>) laser group.</p> "> Figure 4
<p>Box plot of the statistical difference between groups in terms of the mean penetration depth (the * indicates that the difference in the results between these groups is statistically significant).</p> "> Figure 5
<p>Box plot of the statistical difference between groups in terms of penetration index (the * indicates that the difference in the results between these groups is statistically significant).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Selection
2.2. Chemo-Mechanical Preparation of the Root Canal
2.3. Retro-Cavity Preparation and NaOCl Gel Preparation
2.4. Study Groups
2.5. Confocal Laser Microscopy Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- von Arx, T.; Jensen, S.S.; Janner, S.F.; Hänni, S.; Bornstein, M.M. A 10-year Follow-up Study of 119 Teeth Treated with Apical Surgery and Root-end Filling with Mineral Trioxide Aggregate. J. Endod. 2019, 45, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Gimenez, M.; Sanchez-Torres, A.; Gay-Escoda, C. Prognostic factors on periapical surgery: A systematic review. Med. Oral Patol. Oral Cir. Bucal 2015, 20, e715–e722. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.P.F.A.; Aveiro, E.; Kishen, A. Irrigants and irrigation activation systems in Endodontics. Braz. Dent. J. 2023, 34, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F.; Silva, W.O.; Romeiro, K.; Gominho, L.F.; Alves, F.R.F.; Rôças, I.N. Apical root canal microbiome associated with primary and posttreatment apical periodontitis: A systematic review. Int. Endod. J. 2024, 57, 1043–1058. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Li, X.; Liu, N.; Ye, L.; An, J.; Nie, X.; Liu, L.; Deng, M. A micro-computed tomography study of the root canal morphology of the mandibular first premolar in a population from southwestern China. Clin. Oral Investig. 2013, 17, 999–1007. [Google Scholar] [CrossRef]
- George, S.; Kishen, A.; Song, P. The Role of Environmental Changes on Monospecies Biofilm Formation on Root Canal Wall by Enterococcus faecalis. J. Endod. 2005, 31, 867–872. [Google Scholar] [CrossRef]
- Wong, D.T.; Cheung, G.S. Extension of Bactericidal Effect of Sodium Hypochlorite into Dentinal Tubules. J. Endod. 2014, 40, 825–829. [Google Scholar] [CrossRef]
- Blanken, J.; De Moor, R.J.G.; Meire, M.; Verdaasdonk, R. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: A visualization study. Lasers Surg. Med. 2009, 41, 514–519. [Google Scholar] [CrossRef]
- George, R.; Meyers, I.A.; Walsh, L.J. Laser Activation of Endodontic Irrigants with Improved Conical Laser Fiber Tips for Removing Smear Layer in the Apical Third of the Root Canal. J. Endod. 2008, 34, 1524–1527. [Google Scholar] [CrossRef]
- Betancourt, P.; Merlos, A.; Sierra, J.M.; Arnabat-Dominguez, J.; Viñas, M. Er,Cr:YSGG Laser-Activated Irrigation and Passive Ultrasonic Irrigation: Comparison of Two Strategies for Root Canal Disinfection. Photobiomodulation Photomed. Laser Surg. 2020, 38, 91–97. [Google Scholar] [CrossRef]
- De Groot, S.D.; Verhaagen, B.; Versluis, M.; Wu, M.; Wesselink, P.R.; Van Der Sluis, L.W.M. Laser-activated irrigation within root canals: Cleaning efficacy and flow visualization. Int. Endod. J. 2009, 42, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Galler, K.M.; Grubmüller, V.; Schlichting, R.; Widbiller, M.; Eidt, A.; Schuller, C.; Wölflick, M.; Hiller, K.; Buchalla, W. Penetration depth of irrigants into root dentine after sonic, ultrasonic and photoacoustic activation. Int. Endod. J. 2019, 52, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z. Sodium hypochlorite in endodontics: An update review. Int. Dent. J. 2008, 58, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Guivarc’H, M.; Ordioni, U.; Ahmed, H.M.A.; Cohen, S.; Catherine, J.-H.; Bukiet, F. Sodium Hypochlorite Accident: A Systematic Review. J. Endod. 2017, 43, 16–24. [Google Scholar] [CrossRef]
- Iandolo, A.; Abdellatif, D.; Barbosa, A.F.A.; Scelza, G.; Gasparro, R.; Sammartino, P.; Silva, E.J.N.L. Confocal laser scanning microscopy evaluation of roots subjected to activation protocol in endodontic microsurgery. Aust. Endod. J. 2022, 48, 77–81. [Google Scholar] [CrossRef]
- Susila, A.; Minu, J. Activated Irrigation vs. Conventional non-activated Irrigation in Endodontics—A Systematic Review. Eur. Endod. J. 2019, 4, 96–110. [Google Scholar] [CrossRef]
- Alegre, A.C.; Verdú, S.A.; López, J.I.Z.; Alcina, E.P.; Climent, J.R.; Sabater, A.P. Intratubular penetration capacity of HiFlow bioceramic sealer used with warm obturation techniques and single cone: A confocal laser scanning microscopic study. Heliyon 2022, 8, e10388. [Google Scholar] [CrossRef]
- Degerness, R.; Bowles, W. Anatomic Determination of the Mesiobuccal Root Resection Level in Maxillary Molars. J. Endod. 2008, 34, 1182–1186. [Google Scholar] [CrossRef]
- Sohrabi, K.; Sooratgar, A.; Zolfagharnasab, K.; Fard, M.J.K.; Afkhami, F. Antibacterial Activity of Diode Laser and Sodium Hypochlorite in Enterococcus Faecalis-Contaminated Root Canals. Iran. Endod. J. 2015, 11, 8–12. [Google Scholar] [CrossRef]
- Vieira, G.C.; Antunes, H.S.; Pérez, A.R.; Gonçalves, L.S.; Antunes, F.E.; Siqueira, J.F.; Rôças, I.N. Molecular Analysis of the Antibacterial Effects of Photodynamic Therapy in Endodontic Surgery: A Case Series. J. Endod. 2018, 44, 1593–1597. [Google Scholar] [CrossRef]
- Berbert, F.L.C.V.; de Faria-Júnior, N.B.; Tanomaru-Filho, M.; Guerreiro-Tanomaru, J.M.; Bonetti-Filho, I.; Leonardo, R.d.T.; Marcantonio, R.A.C. An in vitro evaluation of apicoectomies and retropreparations using different methods. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 110, e57–e63. [Google Scholar] [CrossRef] [PubMed]
- Montero-Miralles, P.; Torres-Lagares, D.; Segura-Egea, J.; Serrera-Figallo, M.; Gutierrez-Perez, J.; Castillo-Dali, G. Comparative study of debris and smear layer removal with EDTA and Er,Cr:YSGG laser. J. Clin. Exp. Dent. 2018, 10, e598–e602. [Google Scholar] [CrossRef] [PubMed]
- Peeters, H.H.; Gutknecht, N. Efficacy of laser-driven irrigation versus ultrasonic in removing an airlock from the apical third of a narrow root canal. Aust. Endod. J. 2014, 40, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, P.; Sierra, J.M.; Camps-Font, O.; Arnabat-Domínguez, J.; Viñas, M. Er,Cr:YSGG Laser-Activation Enhances Antimicrobial and Antibiofilm Action of Low Concentrations of Sodium Hypochlorite in Root Canals. Antibiotics 2019, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Badami, V.; Akarapu, S.; Kethineni, H.; Mittapalli, S.P.; Bala, K.R.; Fatima, S.F.; Akarapu, D. Efficacy of Laser-Activated Irrigation Versus Ultrasonic-Activated Irrigation: A Systematic Review. Cureus 2023, 15, e36352. [Google Scholar] [CrossRef]
- Cheng, X.; Guan, S.; Lu, H.; Zhao, C.; Chen, X.; Li, N.; Bai, Q.; Tian, Y.; Yu, Q. Evaluation of the bactericidal effect of Nd:YAG, Er:YAG, Er,Cr:YSGG laser radiation, and antimicrobial photodynamic therapy (aPDT) in experimentally infected root canals. Lasers Surg. Med. 2012, 44, 824–831. [Google Scholar] [CrossRef]
- van As, G. Erbium lasers in dentistry. Dent. Clin. N. Am. 2004, 48, 1017. [Google Scholar] [CrossRef]
Irrigation Technique | Irrigation Technique (Comparison Groups) | p-Value |
---|---|---|
EDTA + NaOCl 2.5% without activation (0.10 ± 0.01 µm2) | EDTA +NaOCl 2.5% ultrasonic activation | 0.001 * |
EDTA + NaOCl 0.50% laser activation | <0.001 * | |
EDTA + NaOCl 2.5% laser activation | <0.001 * | |
EDTA + NaOCl 2.5% ultrasonic activation (0.18 ± 0.03 µm2) | EDTA + NaOCl 0.50% laser activation | <0.001 * |
EDTA + NaOCl 2.5% laser activation | <0.001 * | |
EDTA + NaOCl 0.50% laser activation (0.30 ± 0.03 µm2) | EDTA + NaOCl 2.5% laser activation (0.37 ± 0.08 µm2) | 0.074 |
Irrigation Technique | Irrigation Technique (Comparison Groups) | p-Value |
---|---|---|
EDTA + NaOCl 2.5% without activation (81.11 ± 8.61 µm) | EDTA +NaOCl 2.5% ultrasonic activation | 0.098 |
EDTA + NaOCl 0.50% laser activation | <0.001 * | |
EDTA + NaOCl 2.5% laser activation | <0.001 * | |
EDTA +NaOCl 2.5% ultrasonic activation (157.85 ± 54.81 µm) | EDTA + NaOCl 0.50% laser activation | 0.001 * |
EDTA + NaOCl 2.5% laser activation | 0.001 * | |
EDTA + NaOCl 0.50% laser activation (327.44 ± 102.80 µm) | EDTA + NaOCl 2.5% laser activation (327.15 ± 93.61 µm) | 0.683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Franco, J.; Elafifi Ebeid, H.; Betancourt, P.; Pallarés-Sabater, A.; Casino Alegre, A. Comparative Evaluation of Sodium Hypochlorite Gel Penetration Using Er,Cr:YSGG Laser and Passive Ultrasonic Activation After Apicoectomy: An In Vitro Study with Confocal Laser Scanning Microscopy. J. Clin. Med. 2024, 13, 7050. https://doi.org/10.3390/jcm13237050
Di Franco J, Elafifi Ebeid H, Betancourt P, Pallarés-Sabater A, Casino Alegre A. Comparative Evaluation of Sodium Hypochlorite Gel Penetration Using Er,Cr:YSGG Laser and Passive Ultrasonic Activation After Apicoectomy: An In Vitro Study with Confocal Laser Scanning Microscopy. Journal of Clinical Medicine. 2024; 13(23):7050. https://doi.org/10.3390/jcm13237050
Chicago/Turabian StyleDi Franco, Joseph, Haitham Elafifi Ebeid, Pablo Betancourt, Antonio Pallarés-Sabater, and Alberto Casino Alegre. 2024. "Comparative Evaluation of Sodium Hypochlorite Gel Penetration Using Er,Cr:YSGG Laser and Passive Ultrasonic Activation After Apicoectomy: An In Vitro Study with Confocal Laser Scanning Microscopy" Journal of Clinical Medicine 13, no. 23: 7050. https://doi.org/10.3390/jcm13237050
APA StyleDi Franco, J., Elafifi Ebeid, H., Betancourt, P., Pallarés-Sabater, A., & Casino Alegre, A. (2024). Comparative Evaluation of Sodium Hypochlorite Gel Penetration Using Er,Cr:YSGG Laser and Passive Ultrasonic Activation After Apicoectomy: An In Vitro Study with Confocal Laser Scanning Microscopy. Journal of Clinical Medicine, 13(23), 7050. https://doi.org/10.3390/jcm13237050