The Diagnostics and Treatment of Recurrent Pregnancy Loss
Abstract
:1. Introduction
2. Materials and Methods
3. Definition of Recurrent Pregnancy Loss
4. Epidemiology
5. Etiology
5.1. Chromosomal Factors
5.2. Anatomical Factors
5.2.1. Uterine Anomalies
5.2.2. Cervical Insufficiency
5.3. Endocrine Factors
5.3.1. Hyperprolactinemia
5.3.2. Thyroid Disorders
5.3.3. Polycystic Ovary Syndrome
5.3.4. Ovarian Reserve
5.4. Male Factor
5.5. Immunological Factors
5.5.1. Antiphospholipid Syndrome
5.5.2. Inherited Thrombophilia
5.5.3. Other Immunological Factors
5.5.4. HIV
5.6. Metabolic Factors
5.6.1. Acute Intermittent Porphyria (AIP)
5.6.2. Plasma Mannose-Binding Lectin
5.7. Lifestyle
6. Diagnostics
7. Treatment
7.1. Chromosomal Factors
7.2. Anatomical Factors
7.2.1. Uterine Anomalies
7.2.2. Cervical Insufficiency
7.3. Endocrine Factors
7.4. Male Factor and Lifestyle
7.5. Immunological Factors
7.5.1. Antiphospholipid Syndrome
7.5.2. Inherited Thrombophilia
7.5.3. Other Immunological Factors
7.5.4. HIV
7.6. Metabolic Factors
Acute Intermittent Porphyria
8. Unexplained Pregnancy Loss
9. Perspectives in the Diagnosis and Treatment of Recurrent Pregnancy Loss
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Royal College of Obstetricians and Gynaecologists (RCOG). The Investigation and Treatment of Couples with Recurrent First-trimester and Second-Trimester Miscarriage; Green-Top Guideline No. 17; RCOG: London, UK, 2011; Available online: https://www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg17/ (accessed on 1 April 2011).
- Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2012, 98, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- European Society of Human Reproduction and Embryology (ESHRE). Recurrent Pregnancy Loss; ESHRE: Strombeek-Bever, Belgium, 2017; Available online: https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss.aspx (accessed on 1 November 2017).
- The ESHRE Guideline Group on RPL; Atik, R.B.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; Mcheik, S.; Peramo, B.; Quenby, S.; et al. ESHRE guideline: Recurrent pregnancy loss: An update in 2022. Hum. Reprod. Open 2023, 2023, hoad002. [Google Scholar] [CrossRef]
- Wyatt, P.R.; Owolabi, T.; Meier, C.; Huang, T. Age-specific risk of fetal loss observed in a second trimester serum screening population. Am. J. Obstet. Gynecol. 2005, 192, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Stirrat, G. Recurrent miscarriage. Lancet 1990, 336, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Chester, M.R.; Tirlapur, A.; Jayaprakasan, K. Current management of recurrent pregnancy loss. Obstet. Gynaecol. 2022, 24, 260–271. [Google Scholar] [CrossRef]
- Van den Boogaard, E.; Cohn, D.M.; Korevaar, J.C.; Dawood, F.; Vissenberg, R.; Middeldorp, S.; Goddijn, M.; Farquharson, R.G. Number and sequence of preceding miscarriages and maternal age for the prediction of antiphospholipid syndrome in women with recurrent miscarriage. Fertil. Steril. 2013, 99, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Van den Boogaard, E.; Kaandorp, S.P.; Franssen, M.T.; Mol, B.W.; Leschot, N.J.; Wouters, C.H.; van der Veen, F.; Korevaar, J.C.; Goddijn, M. Consecutive or non-consecutive recurrent miscarriage: Is there any difference in carrier status? Hum. Reprod. 2010, 25, 1411–1414. [Google Scholar] [CrossRef] [Green Version]
- Egerup, P.; Kolte, A.M.; Larsen, E.C.; Krog, M.; Nielsen, H.S.; Christiansen, O.B. Recurrent pregnancy loss: What is the impact of consecutive versus non-consecutive losses? Hum. Reprod. 2016, 31, 2428–2434. [Google Scholar] [CrossRef] [Green Version]
- Delabaere, A.; Huchon, C.; Lavoue, V.; Lejeune, V.; Iraola, E.; Nedellec, S.; Gallot, V.; Capmas, P.; Beucher, G.; Subtil, D.; et al. Standardisation de la terminologie des pertes de grossesse: Consensus d’experts du Collège national des gynécologues et obstétriciens français (CNGOF). [Definition of pregnancy losses: Standardization of terminology from the French National College of Obstetricians and Gynecologists (CNGOF)]. J. Gynecol. Obstet. Biol. Reprod. 2014, 43, 756–763. [Google Scholar] [CrossRef]
- Toth, B.; Würfel, W.; Bohlmann, M.; Zschocke, J.; Rudnik-Schöneborn, S.; Nawroth, F.; Schleußner, E.; Rogenhofer, N.; Wischmann, T.; von Wolff, M.; et al. Recurrent Miscarriage: Diagnostic and Therapeutic Procedures. Guideline of the DGGG, OEGGG and SGGG (S2k-Level, AWMF Registry Number 015/050). Geburtshilfe Frauenheilkd. 2018, 78, 364–381. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.; Hawkes, A.; Quenby, S. Clinical approach to recurrent pregnancy loss. Obstet. Gynaecol. Reprod. Med. 2020, 30, 331–336. [Google Scholar] [CrossRef]
- Colley, E.; Hamilton, S.; Smith, P.; Morgan, N.V.; Coomarasamy, A.; Allen, S. Potential genetic causes of miscarriage in euploid pregnancies: A systematic review. Hum. Reprod. Updat. 2019, 25, 452–472. [Google Scholar] [CrossRef]
- Hyde, K.J.; Schust, D.J. Genetic Considerations in Recurrent Pregnancy Loss. Cold Spring Harb. Perspect. Med. 2015, 5, a023119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Hachem, H.; Crepaux, V.; May-Panloup, P.; Descamps, P.; Legendre, G.; Bouet, P.-E. Recurrent pregnancy loss: Current perspectives. Int. J. Womens Health 2017, 9, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Smits, M.A.; van Maarle, M.; Hamer, G.; Mastenbroek, S.; Goddijn, M.; van Wely, M. Cytogenetic testing of pregnancy loss tissue: A meta-analysis. Reprod. Biomed. Online 2020, 40, 867–879. [Google Scholar] [CrossRef] [Green Version]
- Jaslow, C.R. Uterine Factors. Obstet. Gynecol. Clin. North Am. 2014, 41, 57–86. [Google Scholar] [CrossRef]
- Valle, R.F.; Ekpo, G.E. Hysteroscopic Metroplasty for the Septate Uterus: Review and Meta-Analysis. J. Minim. Invasive Gynecol. 2013, 20, 22–42, Erratum in J. Minim. Invasive. Gynecol. 2013, 20, 917–918. [Google Scholar] [CrossRef]
- Sinclair, D.C.; Mastroyannis, A.; Taylor, H.S. Leiomyoma Simultaneously Impair Endometrial BMP-2-Mediated Decidualization and Anticoagulant Expression through Secretion of TGF-β3. J. Clin. Endocrinol. Metab. 2011, 96, 412–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salim, S.; Won, H.; Nesbitt-Hawes, E.; Campbell, N.; Abbott, J. Diagnosis and Management of Endometrial Polyps: A Critical Review of the Literature. J. Minim. Invasive Gynecol. 2011, 18, 569–581. [Google Scholar] [CrossRef]
- Joubert, M.; Sibiude, J.; Bounan, S.; Mandelbrot, L. Mid-trimester miscarriage and subsequent pregnancy outcomes: The role of cervical insufficiency in a cohort of 175 cases. J. Matern. Fetal. Neonatal Med. 2021, 35, 4698–4703. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.; Lazarus, J.H.; Mandel, S.J.; et al. 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 2017, 27, 315–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon-Smith, R.K.; Boelaert, K.; Jeve, Y.B.; Maheshwari, A.; Coomarasamy, A.; on behalf of Royal College of Obstetricians and Gynaecologists. Subclinical hypothyroidism and antithyroid autoantibodies in women with subfertility or recurrent pregnancy loss. Scientific impact paper no. 78. BJOG 2022, 129, e75–e88. [Google Scholar] [CrossRef] [PubMed]
- De Groot, L.; Abalovich, M.; Alexander, E.K.; Amino, N.; Barbour, L.; Cobin, R.H.; Eastman, C.J.; Lazarus, J.H.; Luton, D.; Mandel, S.J.; et al. Management of Thyroid Dysfunction during Pregnancy and Postpartum: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2012, 97, 2543–2565, Erratum in J. Clin. Endocrinol. Metab. 2021, 106, e2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, L.A.; Cohen, R.N.; Stephenson, M.D. Impact of subclinical hypothyroidism in women with recurrent early pregnancy loss. Fertil. Steril. 2013, 100, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- De Carolis, C.; Greco, E.; Guarino, M.D.; Perricone, C.; Lago, A.D.; Giacomelli, R.; Fontana, L.; Perricone, R. Anti-thyroid Antibodies and Antiphospholipid Syndrome: Evidence of Reduced Fecundity and of Poor Pregnancy Outcome in Recurrent Spontaneous Aborters. Am. J. Reprod. Immunol. 2004, 52, 263–266. [Google Scholar] [CrossRef]
- Bliddal, S.; Feldt-Rasmussen, U.; Rasmussen, K.; Kolte, A.M.; Hilsted, L.M.; Christiansen, O.B.; Nielsen, C.H.; Nielsen, H.S. Thyroid Peroxidase Antibodies and Prospective Live Birth Rate: A Cohort Study of Women with Recurrent Pregnancy Loss. Thyroid 2019, 29, 1465–1474. [Google Scholar] [CrossRef]
- van Dijk, M.M.; Vissenberg, R.; Fliers, E.; Post, J.A.M.V.D.; van der Hoorn, M.-L.P.; de Weerd, S.; Kuchenbecker, W.K.; Hoek, A.; Sikkema, J.M.; Verhoeve, H.R.; et al. Levothyroxine in euthyroid thyroid peroxidase antibody positive women with recurrent pregnancy loss (T4LIFE trial): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2022, 10, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Bunnewell, S.J.; Honess, E.R.; Karia, A.M.; Keay, S.D.; Al Wattar, B.H.; Quenby, S. Diminished ovarian reserve in recurrent pregnancy loss: A systematic review and meta-analysis. Fertil. Steril. 2020, 113, 818–827.e3. [Google Scholar] [CrossRef]
- Busnelli, A.; Somigliana, E.; Cirillo, F.; Levi-Setti, P.E. Is diminished ovarian reserve a risk factor for miscarriage? Results of a systematic review and meta-analysis. Hum. Reprod. Updat. 2021, 27, 973–988. [Google Scholar] [CrossRef]
- Bliddal, S.; Feldt-Rasmussen, U.; Forman, J.L.; Hilsted, L.M.; Larsen, E.C.; Christiansen, O.B.; Nielsen, C.H.; Kolte, A.M.; Nielsen, H.S. Anti-Müllerian hormone and live birth in unexplained recurrent pregnancy loss. Reprod. Biomed. Online 2023, 46, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Ruixue, W.; Hongli, Z.; Zhihong, Z.; Rulin, D.; Dongfeng, G.; Ruizhi, L. The impact of semen quality, occupational exposure to environmental factors and lifestyle on recurrent pregnancy loss. J. Assist. Reprod. Genet. 2013, 30, 1513–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yifu, P.; Lei, Y.; Shaoming, L.; Yujin, G.; Xingwang, Z. Sperm DNAfragmentation index with unexplained recurrent spontaneous abortion: Asystematic review and meta-analysis. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101740. [Google Scholar] [CrossRef] [PubMed]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.W.M.; De Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef]
- Meroni, P.L.; Borghi, M.O.; Raschi, E.; Tedesco, F. Pathogenesis of antiphospholipid syndrome: Understanding the antibodies. Nat. Rev. Rheumatol. 2011, 7, 330–339. [Google Scholar] [CrossRef]
- Di Simone, N.; Castellani, R.; Caliandro, D.; Caruso, A. Monoclonal Anti-Annexin V Antibody Inhibits Trophoblast Gonadotropin Secretion and Induces Syncytiotrophoblast Apoptosis. Biol. Reprod. 2001, 65, 1766–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, K.; Ozawa, N.; Murashima, A. Obstetric anti-phospholipid syndrome: From pathogenesis to treatment. Immunol. Med. 2022, 45, 79–93. [Google Scholar] [CrossRef]
- Stevens, S.M.; Woller, S.C.; Bauer, K.A.; Kasthuri, R.; Cushman, M.; Streiff, M.; Lim, W.; Douketis, J.D. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J. Thromb. Thrombolysis 2016, 41, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Simcox, L.E.; Ormesher, L.; Tower, C.; Greer, I.A. Thrombophilia and Pregnancy Complications. Int. J. Mol. Sci. 2015, 16, 28418–28428. [Google Scholar] [CrossRef] [Green Version]
- Torabi, R.; Zarei, S.; Zeraati, H.; Zarnani, A.H.; Akhondi, M.M.; Hadavi, R.; Shiraz, E.S.; Jeddi-Tehrani, M. Combination of Thrombophilic Gene Polymorphisms as a Cause of Increased the Risk of Recurrent Pregnancy Loss. J. Reprod. Infertil. 2012, 13, 89–94. [Google Scholar]
- Deng, Y.-J.; Liu, S.-J.; Zhao, M.; Zhao, F.; Guo, J.; Huang, Y.-X. Research trends and hotspots of recurrent pregnancy loss with thrombophilia: A bibliometric analysis. BMC Pregnancy Childbirth 2022, 22, 944. [Google Scholar] [CrossRef]
- Rey, E.; Kahn, S.R.; David, M.; Shrier, I. Thrombophilic disorders and fetal loss: A meta-analysis. Lancet 2003, 361, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Silver, R.M.; Zhao, Y.; Spong, C.Y.; Sibai, B.; Wendel, G.J.; Wenstrom, K.; Samuels, P.; Caritis, S.N.; Sorokin, Y.; Miodovnik, M.; et al. Prothrombin Gene G20210A Mutation and Obstetric Complications. Obstet. Gynecol. 2010, 115, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lissalde-Lavigne, G.; Fabbro-Peray, P.; Cochery-Nouvellon, E.; Mercier, E.; Ripart-Neveu, S.; Balducchi, J.-P.; Daures, J.-P.; Perneger, T.; Quere, I.; Dauzat, M.; et al. Factor V Leiden and prothrombin G20210A polymorphisms as risk factors for miscarriage during a first intended pregnancy: The matched case-control “NOHA first” study. J. Thromb. Haemost. 2005, 3, 2178–2184. [Google Scholar] [CrossRef] [PubMed]
- Dizon-Townson, D.; Miller, C.; Sibai, B.; Spong, C.Y.; Thom, E.; Wendel, G.; Wenstrom, K.; Samuels, P.; Cotroneo, M.A.; Moawad, A.; et al. The Relationship of the Factor V Leiden Mutation and Pregnancy Outcomes for Mother and Fetus. Obstet. Gynecol. 2005, 106, 517–524. [Google Scholar] [CrossRef]
- De Jong, P.G.; Goddijn, M.; Middwldorp, S. Testing for inherited thrombophilia in recurrent miscarriage. Sem. Reprod. Med. 2011, 29, 540–545. [Google Scholar] [CrossRef]
- Moffett, A.; Regan, L.; Braude, P. Natural killer cells, miscarriage, and infertility. BMJ 2004, 329, 1283–1285. [Google Scholar] [CrossRef] [Green Version]
- Le Bouteiller, P.; Piccinni, M.P. Human NK cells in pregnant uterus: Why there? Am. J. Reprod. Immunol. 2008, 59, 401–406. [Google Scholar] [CrossRef]
- Tuckerman, E.; Laird, S.M.; Prakash, A.; Li, T.C. Prognostic value of the measurement of uterine natural killer cells in theendometrium of women with recurrent miscarriage. Hum. Reprod. 2007, 22, 2208–2213. [Google Scholar] [CrossRef] [Green Version]
- Kuon, R.J.; Müller, F.; Vomstein, K.; Weber, M.; Hudalla, H.; Rösner, S.; Strowitzki, T.; Markert, U.; Daniel, V.; Toth, B. Pre-Pregnancy Levels of Peripheral Natural Killer Cells as Markers for Immunomodulatory Treatment in Patients with Recurrent Miscarriage. Arch. Immunol. Ther. Exp. 2017, 65, 339–346. [Google Scholar] [CrossRef]
- Comins-Boo, A.; Cristóbal, I.; Fernández-Arquero, M.; de Frías, E.R.; Urrutia, M.C.; Suárez, L.P.; Escorial, P.G.; Herráiz, M.; Sánchez-Ramón, S. Functional NK surrogate biomarkers for inflammatory recurrent pregnancy loss and recurrent implantation failure. Am. J. Reprod. Immunol. 2021, 86, e13426. [Google Scholar] [CrossRef]
- Vomstein, K.; Feil, K.; Strobel, L.; Aulitzky, A.; Hofer-Tollinger, S.; Kuon, R.-J.; Toth, B. Immunological Risk Factors in Recurrent Pregnancy Loss: Guidelines Versus Current State of the Art. J. Clin. Med. 2021, 10, 869. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Zhong, Y.-P.; Zhou, C.-Q.; Xu, Y.-W.; Ding, C.-H.; Wang, Q.; Li, J.; Shen, X.-T. A Further Exploration of the Impact of Antinuclear Antibodies on In Vitro Fertilization-Embryo Transfer Outcome. Am. J. Reprod. Immunol. 2013, 70, 221–229. [Google Scholar] [CrossRef] [PubMed]
- D’Ippolito, S.; Ticconi, C.; Tersigni, C.; Garofalo, S.; Martino, C.; Lanzone, A.; Scambia, G.; Di Simone, N. The pathogenic role of autoantibodies in recurrent pregnancy loss. Am. J. Reprod. Immunol. 2020, 83, e13200. [Google Scholar] [CrossRef] [PubMed]
- Veglia, M.; D’Ippolito, S.; Marana, R.; Di Nicuolo, F.; Castellani, R.; Bruno, V.; Fiorelli, A.; Ria, F.; Maulucci, G.; De Spirito, M.; et al. Human IgG Antinuclear Antibodies Induce Pregnancy Loss in Mice by Increasing Immune Complex Deposition in Placental Tissue: In Vivo Study. Am. J. Reprod. Immunol. 2015, 74, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Wen, P.; Duan, J. Association of antinuclear antibody with clinical outcome of patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment: A meta-analysis. Am. J. Reprod. Immunol. 2019, 82, e13158. [Google Scholar] [CrossRef]
- Nørgaard-Pedersen, C.; Steffensen, R.; Kesmodel, U.S.; Christiansen, O.B. A combination of the HLA-DRB1*03 phenotype and low plasma mannose-binding lectin predisposes to autoantibody formation in women with recurrent pregnancy loss. Front. Immunol. 2023, 14, 1069974. [Google Scholar] [CrossRef]
- Jørgensen, M.M.; Bæk, R.; Sloth, J.; Varming, K.; Christiansen, O.B.; Ditlevsen, N.E.; Rajaratnam, N. Treatment with intravenous immunoglobulin increases the level of small EVs in plasma of pregnant women with recurrent pregnancy loss. J. Reprod. Immunol. 2020, 140, 103128. [Google Scholar] [CrossRef]
- Rajaratnam, N.; Ditlevsen, N.E.; Sloth, J.K.; Bæk, R.; Jørgensen, M.M.; Christiansen, O.B. Extracellular Vesicles: An Important Biomarker in Recurrent Pregnancy Loss? J. Clin. Med. 2021, 10, 2549. [Google Scholar] [CrossRef]
- Yang, L.; Cambou, M.C.; Segura, E.R.; De Melo, M.G.; Santos, B.R.; Varella, I.R.D.S.; Nielsen-Saines, K. Patterns of pregnancy loss among women living with and without HIV in Brazil, 2008–2018. AJOG Glob. Rep. 2022, 2, 100121. [Google Scholar] [CrossRef]
- Cates, J.E.; Westreich, D.; Edmonds, A.; Wright, R.L.; Minkoff, H.; Colie, C.; Greenblatt, R.M.; Cejtin, H.E.; Karim, R.; Haddad, L.B.; et al. The Effects of Viral Load Burden on Pregnancy Loss among HIV-Infected Women in the United States. Infect. Dis. Obstet. Gynecol. 2015, 2015, 362357. [Google Scholar] [CrossRef] [Green Version]
- Cerovac, A.; Brigic, A.; Softic, D.; Barakovic, A.; Adzajlic, S. Uncontrolled Acute Intermittent Porphyria as a Cause of Spontaneous Abortion. Med Arch. 2020, 74, 153–155. [Google Scholar] [CrossRef]
- Pandey, U.; Dixit, V.K. Acute intermittent porphyria in pregnancy: A case report and review of literature. J. Indian Med Assoc. 2013, 111, 850–851. [Google Scholar] [PubMed]
- Nørgaard-Pedersen, C.; Rom, L.H.; Steffensen, R.; Kesmodel, U.S.; Christiansen, O.B. Plasma level of mannose-binding lectin is associated with the risk of recurrent pregnancy loss but not pregnancy outcome after the diagnosis. Hum. Reprod. Open 2022, 2022, hoac024. [Google Scholar] [CrossRef] [PubMed]
- Lindbohm, M.-L.; Sallmén, M.; Taskinen, H. Effects of exposure to environmental tobacco smoke on reproductive health. Scand. J. Work. Environ. Health 2002, 28, 84–96. [Google Scholar] [PubMed]
- Boots, C.; Stephenson, M. Does Obesity Increase the Risk of Miscarriage in Spontaneous Conception: A Systematic Review. Semin. Reprod. Med. 2011, 29, 507–513. [Google Scholar] [CrossRef]
- Kesmodel, U.; Wisborg, K.; Olsen, S.F.; Henriksen, T.B.; Secher, N.J. Moderate alcohol intake in pregnancy and the risk of spontaneous abortion. Alcohol Alcohol. 2002, 37, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Robberecht, C.; Schuddinck, V.; Fryns, J.-P.; Vermeesch, J.R. Diagnosis of miscarriages by molecular karyotyping: Benefits and pitfalls. Genet. Med. 2009, 11, 646–654. [Google Scholar] [CrossRef] [Green Version]
- Kudesia, R.; Li, M.; Smith, J.; Patel, A.; Williams, Z. Rescue karyotyping: A case series of array-based comparative genomic hybridization evaluation of archival conceptual tissue. Reprod. Biol. Endocrinol. 2014, 12, 19. [Google Scholar] [CrossRef] [Green Version]
- Mathur, N.; Triplett, L.; Stephenson, M.D. Miscarriage chromosome testing: Utility of comparative genomic hybridization with reflex microsatellite analysis in preserved miscarriage tissue. Fertil. Steril. 2014, 101, 1349–1352. [Google Scholar] [CrossRef]
- Shamseldin, H.E.; Swaid, A.; Alkuraya, F.S. Lifting the lid on unborn lethal Mendelian phenotypes through exome sequencing. Genet. Med. 2013, 15, 307–309. [Google Scholar] [CrossRef]
- Jaslow, C.R.; Kutteh, W.H. Effect of prior birth and miscarriage frequency on the prevalence of acquired and congenital uterine anomalies in women with recurrent miscarriage: A cross-sectional study. Fertil. Steril. 2013, 99, 1916–1922.e1. [Google Scholar] [CrossRef] [PubMed]
- Grimbizis, G.F.; Sardo, A.D.S.; Saravelos, S.H.; Gordts, S.; Exacoustos, C.; Van Schoubroeck, D.; Bermejo, C.; Amso, N.N.; Nargund, G.; Timmermann, D.; et al. The Thessaloniki ESHRE/ESGE consensus on diagnosis of female genital anomalies. Gynecol. Surg. 2016, 13, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saravelos, S.H.; Cocksedge, K.A.; Li, T.-C. Prevalence and diagnosis of congenital uterine anomalies in women with reproductive failure: A critical appraisal. Hum. Reprod. Updat. 2008, 14, 415–429. [Google Scholar] [CrossRef] [Green Version]
- Ludwin, A.; Ludwin, I.; Banas, T.; Knafel, A.; Miedzyblocki, M.; Basta, A. Diagnostic accuracy of sonohysterography, hysterosalpingography and diagnostic hysteroscopy in diagnosis of arcuate, septate and bicornuate uterus. J. Obstet. Gynaecol. Res. 2011, 37, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, E.; Ozkan, S.; Cakiroglu, Y.; Sarisoy, H.T.; Corakci, A.; Ozeren, S. Diagnostic accuracy of real-time 3D sonography in the diagnosis of congenital Mullerian anomalies in high-risk patients with respect to the phase of the menstrual cycle. J. Clin. Ultrasound 2010, 38, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.; Jayaprakasan, K.; Zamora, J.; Thornton, J.; Raine-Fenning, N.; Coomarasamy, A. The prevalence of congenital uterine anomalies in unselected and high-risk populations: A systematic review. Hum. Reprod. Updat. 2011, 17, 761–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triggianese, P.; Perricone, C.; Perricone, R.; De Carolis, C. Prolactin and Natural Killer Cells: Evaluating the Neuroendocrine-immune Axis in Women with Primary Infertility and Recurrent Spontaneous Abortion. Am. J. Reprod. Immunol. 2015, 73, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ma, N.; Laird, S.M.; Ledger, W.L.; Li, T.C. The relationship between serum prolactin concentration and pregnancy outcome in women with unexplained recurrent miscarriage. J. Obstet. Gynaecol. 2013, 33, 285–288. [Google Scholar] [CrossRef]
- Bates, S.M.; Greer, I.A.; Middeldorp, S.; Veenstra, D.L.; Prabulos, A.-M.; Vandvik, P.O. VTE, Thrombophilia, Antithrombotic Therapy, and Pregnancy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141 (Suppl. S2), e691S–e736S. [Google Scholar] [CrossRef] [Green Version]
- Kristoffersen, A.H.; Petersen, P.H.; Røraas, T.; Sandberg, S. Estimates of Within-Subject Biological Variation of Protein C, Antithrombin, Protein S Free, Protein S Activity, and Activated Protein C Resistance in Pregnant Women. Clin. Chem. 2017, 63, 898–907. [Google Scholar] [CrossRef] [Green Version]
- Huynh, K.; Kahwaji, C.I. HIV Testing; StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Drakeley, A.J.; Roberts, D.; Alfirevic, Z. Cervical stitch (cerclage) for preventing pregnancy loss in women. Cochrane Database Syst. Rev. 2003, 2003, CD003253. [Google Scholar] [CrossRef] [PubMed]
- Hirahara, F.; Andoh, N.; Sawai, K.; Hirabuki, T.; Uemura, T.; Minaguchi, H. Hyperprolactinemic recurrent miscarriage and results of randomized bromocriptine treatment trials. Fertil. Steril. 1998, 70, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C. Major Malformation Risk, Pregnancy Outcomes, and Neurodevelopmental Outcomes Associated With Metformin Use During Pregnancy. J. Clin. Psychiatry 2016, 77, e411–e414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Showell, M.G.; Mackenzie-Proctor, R.; Brown, J.; Yazdani, A.; Stankiewicz, M.T.; Hart, R.J. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2014, 12, Cd007411. [Google Scholar] [CrossRef]
- Empson, M.B.; Lassere, M.; Craig, J.C.; Scott, J.R. Prevention of recurrent miscarriage for women with antiphospholipid antibody or lupus anticoagulant. Cochrane Database Syst. Rev. 2005, 2012, CD002859. [Google Scholar] [CrossRef]
- Scarpellini, F.; Klinger, F.G.; Rossi, G.; Sbracia, M. Immunohistochemical Study on the Expression of G-CSF, G-CSFR, VEGF, VEGFR-1, Foxp3 in First Trimester Trophoblast of Recurrent Pregnancy Loss in Pregnancies Treated with G-CSF and Controls. Int. J. Mol. Sci. 2019, 21, 285. [Google Scholar] [CrossRef] [Green Version]
- Porter, T.F.; LaCoursiere, Y.; Scott, J.R. Immunotherapy for recurrent miscarriage. Cochrane Database Syst. Rev. 2006, 2, CD000112. [Google Scholar]
- Christiansen, O.B.; Kolte, A.M.; Krog, M.C.; Nielsen, H.S.; Egerup, P. Treatment with intravenous immunoglobulin in patients with recurrent pregnancy loss: An update. J. Reprod. Immunol. 2019, 133, 37–42. [Google Scholar] [CrossRef]
- Yamada, H.; Deguchi, M.; Saito, S.; Takeshita, T.; Mitsui, M.; Saito, T.; Nagamatsu, T.; Takakuwa, K.; Nakatsuka, M.; Yoneda, S.; et al. Intravenous immunoglobulin treatment in women with four or more recurrent pregnancy losses: A double-blind, randomised, placebo-controlled trial. Eclinicalmedicine 2022, 50, 101527. [Google Scholar] [CrossRef]
- Stephenson, M.D.; Kutteh, W.H.; Purkiss, S.; Librach, C.; Schultz, P.; Houlihan, E.; Liao, C. Intravenous immunoglobulin and idiopathic secondary recurrent miscarriage: A multicentered randomized placebo-controlled trial. Hum. Reprod. 2010, 25, 2203–2209. [Google Scholar] [CrossRef] [Green Version]
- Bailey, H.; Zash, R.; Rasi, V.; Thorne, C. HIV treatment in pregnancy. Lancet HIV 2018, 5, e457–e467. [Google Scholar] [CrossRef]
- WHO. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Watts, T.; Stockman, L.; Martin, J.; Guilfoyle, S.M.; Vergeront, J.M.; Zahner, S. Estimates of Prenatal HIV, Hepatitis B Virus, and Hepatitis C Virus Testing Among Pregnant People Enrolled in Wisconsin Medicaid, 2011–2015. Matern. Child Health J. 2020, 24, 177–185. [Google Scholar] [CrossRef]
- De Jong, P.G.; Quenby, S.; Bloemenkamp, K.W.; Braams-Lisman, B.A.; de Bruin, J.P.; Coomarasamy, A.; David, M.; DeSancho, M.T.; van der Heijden, O.W.; Hoek, A.; et al. ALIFE2 study: Low-molecular-weight heparin for women with recurrent miscarriage and inherited thrombophilia—Study protocol for a randomized controlled trial. Trials 2015, 16, 208. [Google Scholar] [CrossRef] [Green Version]
- Hisano, M.; Nakagawa, K.; Kwak-Kim, J.; Sugiyama, R.; Sago, H.; Yamaguchi, K. Changes in the T-helper 1 and 2 cell populations during pregnancy in tacrolimus-treated women with repeated implantation failure and recurrent pregnancy loss. Hum. Fertil. 2022, 25, 975–982. [Google Scholar] [CrossRef]
- Nakagawa, K.; Kuroda, K.; Sugiyama, R.; Yamaguchi, K. After 12 consecutive miscarriages, a patient received immunosuppressive treatment and delivered an intact baby. Reprod. Med. Biol. 2017, 16, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Casella, G.; Orfanotti, G.; Giacomantonio, L.; Di Bella, C.; Crisafulli, V.; Villanacci, V.; Baldini, V.; Bassotti, G. Celiac disease and obstetrical-gynecological contribution. Gastroenterol. Hepatol. Bed Bench 2016, 9, 241–249. [Google Scholar]
- Sharshiner, R.; Romero, S.T.; Bardsley, T.R.; Branch, D.W.; Silver, R.M. Celiac disease serum markers and recurrent pregnancy loss. J. Reprod. Immunol. 2013, 100, 104–108. [Google Scholar] [CrossRef]
- Kutteh, M.A.; Abiad, M.; Norman, G.L.; Kutteh, W.H. Comparison of celiac disease markers in women with early recurrent pregnancy loss and normal controls. Am. J. Reprod. Immunol. 2019, 82, e13127. [Google Scholar] [CrossRef]
- Masucci, L.; D’ippolito, S.; De Maio, F.; Quaranta, G.; Mazzarella, R.; Bianco, D.M.; Castellani, R.; Inversetti, A.; Sanguinetti, M.; Gasbarrini, A.; et al. Celiac Disease Predisposition and Genital Tract Microbiota in Women Affected by Recurrent Pregnancy Loss. Nutrients 2023, 15, 221. [Google Scholar] [CrossRef]
- ClinicalTrials.gov Identifier: NCT03305263. Available online: https://clinicaltrials.gov/ct2/show/NCT03305263?cond=Recurrent+Pregnancy+Loss&draw=4&rank=28 (accessed on 25 January 2018).
- ClinicalTrials.gov Identifier: NCT05510622. Available online: https://clinicaltrials.gov/ct2/show/NCT05510622?cond=Recurrent+Pregnancy+Loss&draw=3&rank=20 (accessed on 20 August 2022).
RCOG (2011) | ASRM (2012) | ESHRE (2023) |
---|---|---|
Three or more failed pregnancies Do not have to be consecutive | Two or more failed clinical pregnancies | Two or more failed pregnancies Do not have to be consecutive |
Clinical pregnancy, also includes biochemical pregnancy | Ultrasound and histological confirmation of pregnancy | Confirmation by serum or urinary chronic gonadothropin Do not include ectopic and molar pregnancies |
International Consensus Classification Criteria for the APS At Least One Clinical and One Laboratory Criterion Must be Present for Defining APS | |
Clinical criteria | |
1. Vascular thrombosis | One or more clinical episodes of an arterial, venous or small vessel thrombosis, in any tissue or organ.
|
2. Obstetric morbidity | One or more unexplained demise of a morphologically normal fetus at or beyond 10 weeks of gestation, with a normal fetal morphology documented by ultrasound or by direct examination, or One or more premature births of a morphologically normal neonate before the 34th week of gestation, because of (a) eclampsia or severe preeclampsia or (b) placental insufficiency, or Three or more unexplained consecutive miscarriages of <10 weeks of gestation. Known factors associated with recurrent miscarriage, including parental genetic, anatomic and endocrinologic factors, should be ruled out. |
Laboratory criteria | |
1. Anticardiolipin antibodies (IgG and/or IgM) in the blood, present in medium or high titers (>40 GPL or MPL or >99th percentile), on two or more occasions at least 12 weeks apart, measured by a standardized ELISA. | |
2. Anti-β2GP1 antibody of IgG and/or IgM isotypes in the blood (>99th percentile) on two or more occasions at least 12 weeks apart, measured by a standardized ELISA. | |
3. Lupus anticoagulant present in plasma, on two or more occasions at least 12 weeks apart, detected according to the guidelines of the International Society on Thrombosis and Hemostasis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomkiewicz, J.; Darmochwał-Kolarz, D. The Diagnostics and Treatment of Recurrent Pregnancy Loss. J. Clin. Med. 2023, 12, 4768. https://doi.org/10.3390/jcm12144768
Tomkiewicz J, Darmochwał-Kolarz D. The Diagnostics and Treatment of Recurrent Pregnancy Loss. Journal of Clinical Medicine. 2023; 12(14):4768. https://doi.org/10.3390/jcm12144768
Chicago/Turabian StyleTomkiewicz, Julia, and Dorota Darmochwał-Kolarz. 2023. "The Diagnostics and Treatment of Recurrent Pregnancy Loss" Journal of Clinical Medicine 12, no. 14: 4768. https://doi.org/10.3390/jcm12144768
APA StyleTomkiewicz, J., & Darmochwał-Kolarz, D. (2023). The Diagnostics and Treatment of Recurrent Pregnancy Loss. Journal of Clinical Medicine, 12(14), 4768. https://doi.org/10.3390/jcm12144768