Prognostic Value of Plasma Catestatin Concentration in Patients with Heart Failure with Reduced Ejection Fraction in Two-Year Follow-Up
<p>Kaplan–Meier analysis for all-cause mortality of HFrEF patients in relation to plasma catestatin concentration.</p> "> Figure 2
<p>Kaplan–Meier analysis for all-cause readmission of HFrEF patients in relation to plasma catestatin concentration.</p> "> Figure 3
<p>Kaplan–Meier analysis for composite endpoint of HFrEF patients in relation to plasma catestatin concentration.</p> "> Figure 4
<p>Correlation of catestatin and NT-proBNP, R = 0.439, <span class="html-italic">p</span> < 0.001. Individual data points represent Box-Cox transformed values. Solid red line—regression line estimated from the sample population. Red dashed lines—confidence curves = 0.95.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Catestatin Determination
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteriscits
3.2. Plasma Catestatin Concentration as a Factor for Discriminating among HFrEF Patients
3.3. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Blecker, S.; Paul, M.; Taksler, G.; Ogedegbe, G.; Katz, S. Heart failure–associated hospitalizations in the United States. J. Am. Coll. Cardiol. 2013, 61, 1259–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biermann, J.; Neumann, T.; Angermann, C.E.; Erbel, R.; Maisch, B.; Pittrow, D.; Regitz-Zagrosek, V.; Scheffold, T.; Wachter, R.; Gelbrich, G.; et al. Economic burden of patients with various etiologies of chronic systolic heart failure analyzed by resource use and costs. Int. J. Cardiol. 2012, 156, 323–325. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; et al. Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ. Heart Fail 2013, 6, 606–619. [Google Scholar] [CrossRef] [Green Version]
- Wołowiec, Ł.; Rogowicz, D.; Banach, J.; Gilewski, W.; Sinkiewicz, W.; Grześk, G. Catestatin as a New Prognostic Marker in Stable Patients with Heart Failure with Reduced Ejection Fraction in Two-Year Follow-Up. Dis. Markers 2020, 2020, 8847211. [Google Scholar] [CrossRef]
- Wołowiec, Ł.; Rogowicz, D.; Banach, J.; Buszko, K.; Surowiec, A.; Błażejewski, J.; Bujak, R.; Sinkiewicz, W. Prognostic significance of red cell distribution width and other red cell parameters in patients with chronic heart failure during two years of follow-up. Kardiol Pol. 2016, 74, 657–664. [Google Scholar] [CrossRef]
- Banach, J.; Grochowska, M.; Gackowska, L.; Buszko, K.; Bujak, R.; Gilewski, W.; Kubiszewska, I.; Wołowiec, Ł.; Michałkiewicz, J.; Sinkiewicz, W. Melanoma cell adhesion molecule as an emerging biomarker with prognostic significance in systolic heart failure. Biomark. Med. 2016, 10, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Banach, J.; Wołowiec, Ł.; Rogowicz, D.; Gackowska, L.; Kubiszewska, I.; Gilewski, W.; Michałkiewicz, J.; Sinkiewicz, W. Procalcitonin (PCT) Predicts Worse Outcome in Patients with Chronic Heart Failure with Reduced Ejection Fraction (HFrEF). Dis. Markers 2018, 2018, 9542784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grześk, G.; Witczyńska, A.; Węglarz, M.; Wołowiec, Ł.; Nowaczyk, J.; Grześk, E.; Nowaczyk, A. Soluble Guanylyl Cyclase Activators-Promising Therapeutic Option in the Pharmacotherapy of Heart Failure and Pulmonary Hypertension. Molecules 2023, 28, 861. [Google Scholar] [CrossRef]
- Woźniak-Wiśniewska, A.; Błażejewski, J.; Bujak, R.; Wołowiec, Ł.; Rogowicz, D.; Sinkiewicz, W. The value of cancer antigen 125 (Ca 125) and copeptin as markers in patients with advanced heart failure. Folia Cardiol. 2017, 12, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Rogowicz, D.; Wołowiec, Ł.; Banach, J.; Buszko, K.; Mosiądz, P.; Gilewski, W.; Zukow, W.; Sinkiewicz, W. Usefulness of serum high-sensitivity C-reactive protein (hs-CRP) level as prognostic factor in patients with chronic heart failure. J. Educ. Health Sport 2016, 6, 513–524. [Google Scholar] [CrossRef]
- Pieroni, M.; Corti, A.; Tota, B.; Curnis, F.; Angelone, T.; Colombo, B.; Cerra, M.C.; Bellocci, F.; Crea, F.; Maseri, A. Myocardial production of chromogranin A in human heart: A new regulatory peptide of cardiac function. Eur. Heart J. 2007, 28, 1117. [Google Scholar] [CrossRef] [Green Version]
- Biswas, N.; Curello, E.; O’Connor, D.T.; Mahata, S.K. Chromogranin/secretogranin proteins in murine heart: Myocardial production of chromogranin A fragment catestatin (Chga(364-384)). Cell Tissue Res. 2010, 342, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ding, W.; Li, R.; Ye, X.; Zhao, J.; Jiang, J.; Meng, L.; Wang, J.; Chu, S.; Han, X.; et al. Plasma levels and diagnostic value of catestatin in patients with heart failure. Peptides 2013, 46, 20–25. [Google Scholar] [CrossRef]
- Mahata, S.K.; O’Connor, D.T.; Mahata, M.; Yoo, S.H.; Taupenot, L.; Wu, H.; Gill, B.M.; Parmer, R.J. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J. Clin. Invest. 1997, 100, 1623–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahata, S.K.; Mahata, M.; Wen, G.; Wong, W.B.; Mahapatra, N.R.; Hamilton, B.A.; O’Connor, D.T. The catecholamine release-inhibitory “catestatin” fragment of chromogranin a: Naturally occurring human variants with different potencies for multiple chromaffin cell nicotinic cholinergic responses. Mol. Pharmacol. 2004, 66, 1180–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, M.M.; Salem, R.M.; Mehtani, P.; Thomas, B.; Lu, C.F.; Perez, B.; Rao, F.; Stridsberg, M.; Ziegler, M.G.; Mahata, S.K.; et al. Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin. Exp. Hypertens. 2010, 32, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Røsjø, H.; Nygård, S.; Kaukonen, K.M.; Karlsson, S.; Stridsberg, M.; Ruokonen, E.; Pettilä, V.; Omland, T.; FINNSEPSIS Study Group. Prognostic value of chromogranin A in severe sepsis: Data from the FINNSEPSIS study. Intensive Care Med. 2012, 38, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Ma, D.; Ji, L.; Zhang, J.; Su, J.; Xue, W.; Chen, X.; Wang, W. Usefulness of catestatin to predict malignant arrhythmia in patients with acute myocardial infarction. Peptides 2014, 55, 131–135. [Google Scholar] [CrossRef]
- Meng, L.; Ye, X.J.; Ding, W.H.; Yang, Y.; Di, B.B.; Liu, L.; Huo, Y. Plasma catecholamine release-inhibitory peptide catestatin in patients with essential hypertension. J. Cardiovasc. Med. 2011, 12, 643–647. [Google Scholar] [CrossRef]
- Zalewska, E.; Kmieć, P.; Sworczak, K. Role of Catestatin in the Cardiovascular System and Metabolic Disorders. Front. Cardiovasc. Med. 2022, 9, 909480. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, D. Potential applications of catestatin in cardiovascular diseases. Biomark. Med. 2016, 10, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Sun, N.L.; Yang, S.N.; Guo, J.Q. Catestatin could ameliorate proliferating changes of target organs in spontaneously hypertensive rats. Chin. Med. J. 2013, 126, 2157–2162. [Google Scholar] [PubMed]
- Mazza, R.; Pasqua, T.; Gattuso, A. Cardiac heterometric response: The interplay between Catestatin and nitric oxide deciphered by the frog heart. Nitric Oxide 2012, 27, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, T.; Sakai, S. Endothelin and the heart in health and diseases. Peptides 2019, 111, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Pasqua, T.; Rocca, C.; Spena, A.; Angelone, T.; Cerra, M.C. Modulation of the coronary tone in the expanding scenario of Chromogranin-A and its derived peptides. Future Med. Chem. 2019, 11, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X.; Yang, C.; Su, X.; Yang, W.; Dai, Y.; Han, H.; Jiang, J.; Lu, L.; Wang, H.; et al. Decreased circulating catestatin levels are associated with coronary artery disease: The emerging anti-inflammatory role. Atherosclerosis 2019, 281, 78–88. [Google Scholar] [CrossRef]
- Gallo, M.P.; Femminò, S.; Antoniotti, S.; Querio, G.; Alloatti, G.; Levi, R. Catestatin Induces Glucose Uptake and GLUT4 Trafficking in Adult Rat Cardiomyocytes. Biomed Res. Int. 2018, 2018, 2086109. [Google Scholar] [CrossRef]
- Bandyopadhyay, G.; Tang, K.; Webster, N.J.G.; van den Bogaart, G.; Mahata, S.K. Catestatin induces glycogenesis by stimulating the phosphoinositide 3-kinase-AKT pathway. Acta Physiol. 2022, 235, e13775. [Google Scholar] [CrossRef]
- Chu, S.Y.; Peng, F.; Wang, J.; Liu, L.; Meng, L.; Zhao, J.; Han, X.N.; Ding, W.H. Catestatin in defense of oxidative-stress-induced apoptosis: A novel mechanism by activating the beta2 adrenergic receptor and PKB/Akt pathway in ischemic-reperfused myocardium. Peptides 2020, 123, 170200. [Google Scholar] [CrossRef]
- Ying, W.; Tang, K.; Avolio, E.; Schilling, J.M.; Pasqua, T.; Liu, M.A.; Cheng, H.; Gao, H.; Zhang, J.; Mahata, S.; et al. Immunosuppression of Macrophages Underlies the Cardioprotective Effects of CST (Catestatin). Hypertension 2021, 77, 1670–1682. [Google Scholar] [CrossRef]
- Bandyopadhyay, G.K.; Vu, C.U.; Gentile, S.; Lee, H.; Biswas, N.; Chi, N.W.; O’Connor, D.T.; Mahata, S.K. Catestatin (chromogranin A(352–372)) and novel effects on mobilization of fat from adipose tissue through regulation of adrenergic and leptin signaling. J. Biol. Chem. 2012, 287, 23141–23151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Madamanchi, C.; Alhosaini, H.; Sumida, A.; Runge, M.S. Obesity and natriuretic peptides, BNP and nt-probnp: Mechanisms and diagnostic implications for heart failure. Int. J. Cardiol. 2014, 176, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Wang, F.; Yu, H.; Mi, L.; Gao, W. Catestatin is useful in detecting patients with stage B heart failure. Biomarkers. 2011, 16, 691–697. [Google Scholar] [CrossRef]
- Peng, F.; Chu, S.; Ding, W.; Liu, L.; Zhao, J.; Cui, X.; Li, R.; Wang, J. The predictive value of plasma catestatin for all-cause and cardiac deaths in chronic heart failure patients. Peptides 2016, 86, 112–117. [Google Scholar] [CrossRef]
- Borovac, J.A.; Glavas, D.; Susilovic Grabovac, Z.; Supe Domic, D.; D’Amario, D.; Bozic, J. Catestatin in Acutely Decompensated Heart Failure Patients: Insights from the CATSTAT-HF Study. J. Clin. Med. 2019, 8, 1132. [Google Scholar] [CrossRef] [Green Version]
- Grześk, G.; Wołowiec, Ł.; Rogowicz, D.; Gilewski, W.; Kowalkowska, M.; Banach, J.; Hertmanowski, W.; Dobosiewicz, M. The Importance of Pharmacokinetics, Pharmacodynamic and Repetitive Use of Levosimendan. Biomed. Pharmacother. 2022, 153, 113391. [Google Scholar] [CrossRef]
- Grześk, G.; Dorota, B.; Wołowiec, Ł.; Wołowiec, A.; Osiak, J.; Kozakiewicz, M.; Banach, J. Safety of PCSK9 Inhibitors. Biomed. Pharmacother. 2022, 156, 113957. [Google Scholar] [CrossRef] [PubMed]
Parameter (Unit) | Death (n = 44) | Survived (n = 76) | p |
---|---|---|---|
Male sex | 34 (77.27) | 59 (77.63) | 0.964 |
Age (years) | 69.91± 13.74 | 55.53± 12.80 | <0.001 |
NYHA (II. III. IV) | 2 (4.55) 17 (38.64) 25 (56.82) | 37 (48.68) 26 (34.21) 13 (17.11) | <0.001 |
Readmission (%) | 27 (61.36) | 26 (34.21) | 0.004 |
TAPSE (mm) | 16.89 ± 3.90 | 19.64 ± 4.80 | <0.001 |
EF (%) | 24.82 ± 8.63 | 27.88 ± 8.28 | 0.057 |
Etiology (DCM/ICM) | 20 (45.45) 24 (54.55) | 50 (65.79) 26 (34.21) | 0.030 |
BMI (kg/m2) | 28.39 ± 5.93 | 29.87 ± 5.99 | 0.194 |
DM | 19 (43.18) | 30 (39.47) | 0.693 |
HT | 26 (59.09) | 37 (48.68) | 0.275 |
AF | 27 (61.36) | 32 (42.11) | 0.390 |
ICD/CRT-d | 26 (58.09) | 62 (61.58) | 0.005 |
NT-proBNP (pg/mL) | 9620.80 ± 8883.64 | 3703.30 ± 6165.45 | <0.001 |
Catestatin (ng/mL) | 38.94 ± 33.30 | 24.53 ± 15.66 | 0.002 |
TNT (μg/L) | 0.06 ± 0.07 | 0.03 ± 0.05 | 0.003 |
Creatinine (mg/dL) | 1.40 ± 0.46 | 1.09 ± 0.32 | <0.001 |
hsCRP (mg/L) | 16.91 ± 27.43 | 11.55 ± 30.01 | 0.333 |
HB (g/dL) | 12.45 ± 2.40 | 14.07 ± 1.66 | <0.001 |
HCT (%) | 37.94 ± 7.18 | 41.63 ± 4.26 | <0.001 |
PLT (1000/mm3) | 182.39 ± 72.27 | 211.20 ± 68.02 | 0.031 |
RDW (%) | 16.65 ± 2.86 | 14.38 ± 1.87 | <0.001 |
WBC (1000/mm3) | 8.71 ± 2.91 | 7.74 ± 2.25 | 0.043 |
NEUT (1000/mm3) | 7.21 ± 5.22 | 4.84 ± 1.81 | <0.001 |
Parameter (Unit) | Death (n = 44) | Survived (n = 76) | p |
---|---|---|---|
ACEI | 22 (50.00) | 51 (67.11) | 0.065 |
ARB | 8 (18.18) | 17 (22.37) | 0.590 |
ASA | 5 (11.36) | 28 (36.84) | 0.002 |
BB | 39 (88.64) | 70 (92.11) | 0.530 |
Digoxin | 5 (11.36) | 8 (10.53) | 0.888 |
Statin | 35 (79.55) | 58 (76.32) | 0.686 |
Ivabradine | 4 (9.09) | 7 (9.21) | 0.983 |
VKA | 9 (20.45) | 19 (25.00) | 0.574 |
Amiodarone | 8 (18.18) | 6 (7.89) | 0.092 |
NOAC | 23 (52.27) | 16 (21.05) | <0.001 |
Spironolactone | 14 (31.82) | 31 (40.79) | 0.332 |
Eplerenone | 13 (29.55) | 35 (46.07) | 0.076 |
Furosemide | 8 (18.18) | 22 (28.95) | 0.192 |
Torasemide | 29 (65.91) | 28 (36.84) | 0.002 |
HCTZ | 2 (4.55) | 8 (10.53) | 0.257 |
Parameter (Unit) | Catestatin ≥ 27.94 (n = 47) | Catestatin < 27.94 (n = 73) | p |
---|---|---|---|
Male sex | 34 (72.34%) | 59 (80.82) | 0.342 |
Age (years) | 69.71 ± 14.42 | 55.08 ± 11.94 | <0.001 |
NYHA (II. III. IV) | 1 (2.13%) 22 (46.81%) 24 (51.06%) | 38 (52.05) 21 (28.77) 14 (19.18) | <0.001 |
Readmission (%) | 26 (55.32%) | 27 (36.99) | 0.048 |
All-causes death | 26 (55.32%) | 16 (21.92) | <0.001 |
Composite endpoint | 39 (82.98%) | 31 (42.47) | <0.001 |
Survival time (days) | 587.53 ± 371.82 | 710.37 ± 202.32 | 0.02 |
TAPSE (mm) | 16.51 ± 3.57 | 20.04 ± 4.01 | <0.001 |
EF (%) | 27.10 ± 9.25 | 26.82 ± 8.10 | 0.860 |
Etiology (DCM/ICM) | 23 (48.94%) 24 (51.10%) | 47 (64.38) 26 (35.62) | 0.057 |
BMI (kg/m2) | 29.51 ± 5.36 | 29.22 ± 6.33 | 0.789 |
DM | 24 (51.06%) | 25 (34.25) | 0.066 |
HT | 30 (68.83%) | 33 (45.21) | 0.029 |
AF | 28 (59.57%) | 30 (41.10) | 0.003 |
ICD/CRTD | 20 (42.55%) | 66 (90.41) | <0.001 |
NT-proBNP (pg/mL) | 9423.00 ± 7950.45 | 3405.51 ± 6609.79 | <0.001 |
TNT (μg/L) | 0.07 ± 0.08 | 0.02 ± 0.03 | <0.001 |
Creatine (mg/dL) | 1.41 ± 0.46 | 1.06 ± 0.30 | <0.001 |
Glucose (mg/dL) | 141.29 ± 46.15 | 120.01 ± 41.00 | <0.01 |
hsCRP (mg/L) | 17.40 ± 26.13 | 10.82 ± 30.44 | 0.219 |
HB (g/dL) | 12.31 ± 2.17 | 14.19 ± 1.75 | <0.001 |
HCT (%) | 37.45 ± 5.85 | 42.03 ± 5.03 | <0.001 |
PLT (1000/mm3) | 197.73 ± 77.99 | 203.59 ± 65.44 | 0.655 |
RDW (%) | 16.23 ± 2.59 | 14.57 ± 2.24 | <0.001 |
WBC (1000/mm3) | 8.56 ± 2.51 | 7.78 ± 2.54 | 0.096 |
NEUT (%) | 70.90 ± 10.93 | 62.47 ± 11.81 | <0.001 |
NEUT (1000/mm3) | 6.03 ± 2.53 | 5.45 ± 4.19 | 0.389 |
ACEI | 19 (40.43%) | 54 (73.97) | <0.001 |
ARB | 10 (21.27%) | 15 (20.55) | 0.804 |
ASA | 10 (21.27%) | 23 (31.51) | 0.179 |
BB | 38 (80.85%) | 71 (97.26) | <0.01 |
Digoxin | 4 (8.51%) | 9 (12.33) | 0.469 |
Statin | 35 (74.47%) | 58 (79.54) | 0.611 |
Ivabradine | 3 (6.38%) | 8 (10.96) | 0.365 |
VKA | 7 (14.89%) | 21 (14.29) | 0.063 |
NOAC | 24 (51.06%) | 15 (53.06) | <0.001 |
Amiodarone | 8 (17.02%) | 6 (8.22) | 0.171 |
Spironolactone | 18 (38.30%) | 27 (36.99) | 0.843 |
Eplerenone | 6 (12.77%) | 42 (57.53) | <0.001 |
Furosemide | 10 (21.27%) | 20 (27.40) | 0.542 |
Torsemide | 28 (59.57%) | 29 (39.73) | 0.034 |
HCTZ | 1 (2.13%) | 9 (12.33) | 0.043 |
Parameter (Unit) | Correlations between Catestatin and Selected Parameters | |
---|---|---|
r | p | |
Age (years) | 0.3711 | <0.001 |
EF (%) | −0.0663 | 0.472 |
BMI (kg/m2) | −0.0004 | 0.997 |
TAPSE (mm) | −0.2793 | 0.002 |
NT-proBNP (pg/mL) | 0.4390 | <0.001 |
TNT (μg/L) | 0.2195 | 0.016 |
Creatinine (mg/dL) | 0.2937 | 0.001 |
hsCRP (mg/L) | 0.1120 | 0.223 |
Glucose (mg/dL) | 0.1970 | 0.031 |
HB (g/dL) | −0.2483 | 0.006 |
Parameter (Unit) | HR | p |
---|---|---|
NT-proBNP (pg/mL) | 1.00; 1.00–1.00 | 0.437 |
Catestatin (ng/mL) | 1.004; 0.994–1.014 | 0.414 |
Creatinine (mg/dL) | 1.791; 0.942–3.406 | 0.076 |
Age (years) | 1.054; 1.025–1.085 | <0.001 |
BMI (kg/m2) | 0.924; 0.864–0.988 | 0.021 |
LVEF (%) | 0.950; 0.912–0.990 | 0.014 |
Parameter (Unit) | HR. 95%CI | p |
---|---|---|
NT-proBNP (pg/mL) | 1.00; 1.00–1.00 | 0.047 |
Catestatin (ng/mL) | 1.003; 0.99–1.02 | 0.664 |
Creatinine (mg/dL) | 1.58; 0.85–2.94 | 0.153 |
Age (years) | 1.03; 1.01–1.05 | 0.018 |
BMI (kg/m2) | 0.97; 0.92–1.03 | 0.315 |
LVEF (%) | 0.96; 0.93–0.99 | 0.047 |
Parameter (Unit) | HR. 95%CI | p |
---|---|---|
NT-proBNP (pg/mL) | 1.00; 0.99–1.00 | 0.151 |
Catestatin (ng/mL) | 1.01; 0.99–1.01 | 0.316 |
Creatinine (mg/dL) | 1.48; 0.85–2.56 | 0.163 |
Age (years) | 1.04; 1.02–1.06 | <0.001 |
BMI (kg/m2) | 0.95; 0.91–1.00 | 0.063 |
LVEF (%) | 0.95; 0.92–0.98 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wołowiec, Ł.; Banach, J.; Budzyński, J.; Wołowiec, A.; Kozakiewicz, M.; Bieliński, M.; Jaśniak, A.; Olejarczyk, A.; Grześk, G. Prognostic Value of Plasma Catestatin Concentration in Patients with Heart Failure with Reduced Ejection Fraction in Two-Year Follow-Up. J. Clin. Med. 2023, 12, 4208. https://doi.org/10.3390/jcm12134208
Wołowiec Ł, Banach J, Budzyński J, Wołowiec A, Kozakiewicz M, Bieliński M, Jaśniak A, Olejarczyk A, Grześk G. Prognostic Value of Plasma Catestatin Concentration in Patients with Heart Failure with Reduced Ejection Fraction in Two-Year Follow-Up. Journal of Clinical Medicine. 2023; 12(13):4208. https://doi.org/10.3390/jcm12134208
Chicago/Turabian StyleWołowiec, Łukasz, Joanna Banach, Jacek Budzyński, Anna Wołowiec, Mariusz Kozakiewicz, Maciej Bieliński, Albert Jaśniak, Agata Olejarczyk, and Grzegorz Grześk. 2023. "Prognostic Value of Plasma Catestatin Concentration in Patients with Heart Failure with Reduced Ejection Fraction in Two-Year Follow-Up" Journal of Clinical Medicine 12, no. 13: 4208. https://doi.org/10.3390/jcm12134208
APA StyleWołowiec, Ł., Banach, J., Budzyński, J., Wołowiec, A., Kozakiewicz, M., Bieliński, M., Jaśniak, A., Olejarczyk, A., & Grześk, G. (2023). Prognostic Value of Plasma Catestatin Concentration in Patients with Heart Failure with Reduced Ejection Fraction in Two-Year Follow-Up. Journal of Clinical Medicine, 12(13), 4208. https://doi.org/10.3390/jcm12134208