Estimating Prevalence and Characteristics of Statin Intolerance among High and Very High Cardiovascular Risk Patients in Germany (2017 to 2020)
<p>Machine learning algorithm training. ML, machine learning; SI, statin intolerance.</p> "> Figure 2
<p>Patient attrition flowchart.</p> "> Figure 3
<p>Down-titration in both absolute & partial high confidence SI patients (<bold>a</bold>) Absolute intolerance (1468 down-titrations) 1st statin down-titration event; (<bold>b</bold>) Partial intolerance (6540 down-titrations) 1st statin down-titration event. Atorva, atorvastatin; Eze, ezetimibe; Fluva, fluvastatin; Prava, pravastatin; Rosuva, rosuvastatin; Simva, simvastatin.</p> "> Figure 4
<p>Treatment switches in both absolute & partial high confidence SI patients (<bold>a</bold>) Absolute intolerance (1869 switches) 1st statin switch event; (<bold>b</bold>) Partial intolerance (1848 switches) 1st statin switch event. Atorva, atorvastatin; Eze, ezetimibe; Fluva, fluvastatin; Prava, pravastatin; Rosuva, rosuvastatin; Simva, simvastatin.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statin Intolerance
- Absolute SI: Patients with a history of SI events (Table 1) who permanently discontinued statin use.
- Partial SI: Patients with a history of SI events (Table 1) who were either actively on statins during the selection period (March 2019 to March 2020) or did not have a gap of >180 days from the latest statin prescription and the end of the study period (March 2020).
2.3. Supervised Machine Learning Prevalence Estimates
2.3.1. Training Data Definitions
2.3.2. Feature Engineering
2.3.3. Feature Selection
2.3.4. Model Selection
2.3.5. Prevalence Estimation
3. Results
3.1. Key Patient and Treatment Characteristics
3.2. Prevalence Results
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2019, 41, 111–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotseva, K.; De Backer, G.; De Bacquer, D.; Rydén, L.; Hoes, A.; Grobbee, D.; Maggioni, A.; Marques-Vidal, P.; Jennings, C.; Abreu, A.; et al. Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur. J. Prev. Cardiol. 2019, 26, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Molemans, B.; Schoonen, W.M.; Giovas, P.; Bray, S.; Kiru, G.; Murphy, J.; Banach, M.; De Servi, S.; Gaita, D.; et al. EU-Wide Cross-Sectional Observational Study of Lipid-Modifying Therapy Use in Secondary and Primary Care: The DA VINCI study. Eur. J. Prev. Cardiol. 2021, 28, 1279–1289. [Google Scholar] [CrossRef]
- März, W.; Dippel, F.-W.; Theobald, K.; Gorcyca, K.; Iorga, Ş.R.; Ansell, D. Utilization of lipid-modifying therapy and low-density lipoprotein cholesterol goal attainment in patients at high and very-high cardiovascular risk: Real-world evidence from Germany. Atherosclerosis 2018, 268, 99–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bytyçi, I.; Penson, P.E.; Mikhailidis, D.P.; Wong, N.D.; Hernandez, A.V.; Sahebkar, A.; Thompson, P.D.; Mazidi, M.; Rysz, J.; Pella, D.; et al. Prevalence of statin intolerance: A meta-analysis. Eur. Heart J. 2022, 43, 3213–3223. [Google Scholar] [CrossRef]
- Alonso, R.; Cuevas, A.; Cafferata, A. Diagnosis and Management of Statin Intolerance. J. Atheroscler. Thromb. 2019, 26, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Rosenson, R.S.; Baker, S.K.; Jacobson, T.A.; Kopecky, S.L.; Parker, B.A.; The National Lipid Association’s Muscle Safety Expert Panel. An assessment by the Statin Muscle Safety Task Force: 2014 update. J. Clin. Lipidol. 2014, 8 (Suppl. S3), S58–S71. [Google Scholar] [CrossRef] [Green Version]
- Toth, P.P.; Patti, A.M.; Giglio, R.V.; Nikolic, D.; Castellino, G.; Rizzo, M.; Banach, M. Management of Statin Intolerance in 2018: Still More Questions Than Answers. Am. J. Cardiovasc. Drugs 2018, 18, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T.A.; Ito, M.K.; Maki, K.C.; Orringer, C.E.; Bays, H.E.; Jones, P.H.; McKenney, J.M.; Grundy, S.M.; Gill, E.A.; Wild, R.A.; et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: Part 1—executive summary. J. Clin. Lipidol. 2014, 8, 473–488. [Google Scholar] [CrossRef] [Green Version]
- Banach, M.; Rizzo, M.; Toth, P.P.; Farnier, M.; Davidson, M.H.; Al-Rasadi, K.; Aronow, W.S.; Athyros, V.; Djuric, D.M.; Ezhov, M.V.; et al. Statin intolerance—An attempt at a unified definition. Position paper from an International Lipid Expert Panel. Expert Opin. Drug Saf. 2015, 14, 935–955. [Google Scholar] [CrossRef]
- Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgözoğlu, L.; Nordestgaard, B.G.; et al. Statin-associated muscle symptoms: Impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur. Heart J. 2015, 36, 1012–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaum, C.; Brunner, F.J.; Goßling, A.; Kröger, F.; Bay, B.; Lorenz, T.; Graef, A.; Zeller, T.; Schnabel, R.; Clemmensen, P.; et al. Target Populations and Treatment Cost for Bempedoic Acid and PCSK9 Inhibitors: A Simulation Study in a Contemporary CAD Cohort. Clin. Ther. 2021, 43, 1583–1600. [Google Scholar] [CrossRef] [PubMed]
- Wiemken, T.L.; Kelley, R.R. Machine Learning in Epidemiology and Health Outcomes Research. Annu. Rev. Public Health 2020, 41, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Olea, C.; Garcia-Zapirain Soto, B.; Zuñiga, C. Evaluation of Prevalence of the Sarcopenia Level Using Machine Learning Techniques: Case Study in Tijuana Baja California, Mexico. Int. J. Environ. Res. Public Health 2020, 17, 1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaconu, C.C.; Iorga, R.A.; Furtunescu, F.; Katsiki, N.; Stoian, A.P.; Rizzo, M. Statin intolerance: New data and further options for treatment. Curr. Opin. Cardiol. 2021, 36, 487–493. [Google Scholar] [CrossRef]
- Jördens, M.S.; Loosen, S.H.; Seraphin, T.; Luedde, T.; Kostev, K.; Roderburg, C. Impact of the COVID-19 Pandemic on Consultations and Diagnoses in Gastroenterology Practices in Germany. Front. Med. 2021, 8, 684032. [Google Scholar] [CrossRef]
- Rathmann, W.; Bongaerts, B.; Carius, H.J.; Kruppert, S.; Kostev, K. Basic characteristics and representativeness of the German Disease Analyzer database. Int. J. Clin. Pharmacol. Ther. 2018, 56, 459–466. [Google Scholar]
- Bellows, B.K.; Sainski-Nguyen, A.M.; Olsen, C.J.; Boklage, S.H.; Charland, S.; Mitchell, M.P.; Brixner, D.I. Identification of Patients with Statin Intolerance in a Managed Care Plan: A Comparison of 2 Claims-Based Algorithms. J. Manag. Care Spec. Pharm. 2017, 23, 926–934. [Google Scholar] [CrossRef]
- Schulman, K.L.; Lamerato, L.E.; Dalal, M.R.; Sung, J.; Jhaveri, M.; Koren, A.; Mallya, U.G.; Foody, J.M. Development and Validation of Algorithms to Identify Statin Intolerance in a US Administrative Database. Value Health 2016, 19, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Valdez, A.R.; Hancock, E.E.; Adebayo, S.; Kiernicki, D.J.; Proskauer, D.; Attewell, J.R.; Bateman, L.; DeMaria, A.; Lapp, C.W.; Rowe, P.C.; et al. Estimating Prevalence, Demographics, and Costs of ME/CFS Using Large Scale Medical Claims Data and Machine Learning. Front. Pediatr. 2019, 6, 412. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process Syst. 2017, 30, 4768–4777. [Google Scholar]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef] [PubMed]
- Ross, B.C. Mutual Information between Discrete and Continuous Data Sets. PLoS ONE 2014, 9, e87357. [Google Scholar] [CrossRef]
- Kozachenko, L.F.; Leonenko, N.N. Sample estimate of the entropy of a random vector. Probl. Peredachi Inf. 1987, 23, 9–16. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A highly efficient gradient boosting decision tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3149–3157. [Google Scholar]
- Penson, P.E.; Mancini, G.B.J.; Toth, P.P.; Martin, S.S.; Watts, G.F.; Sahebkar, A.; Mikhailidis, D.P.; Banach, M. Introducing the ‘Drucebo’ effect in statin therapy: A systematic review of studies comparing reported rates of statin-associated muscle symptoms, under blinded and open-label conditions. J. Cachexia Sarcopenia Muscle 2018, 9, 1023–1033. [Google Scholar] [CrossRef] [Green Version]
- Fitchett, D.H.; Hegele, R.A.; Verma, S. Statin Intolerance. Circulation 2015, 131, e389–e391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IQVIA. Physicians, Qualitative Primary Market Research Was Conducted in Germany on a Sample of Physicians (n = < 10) Selected Based on Expertise in Lipid-Lowering Therapies. Further Information on Research Outcomes May Be Available on Request; IQVIA: Durham, NC, USA, 2022. [Google Scholar]
- Tobert, J.A.; Newman, C.B. The nocebo effect in the context of statin intolerance. J. Clin. Lipidol. 2016, 10, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.P.; Wood, F.A.; Finegold, J.A.; Nowbar, A.N.; Thompson, D.M.; Arnold, A.D.; Rajkumar, C.A.; Connolly, S.; Cegla, J.; Stride, C.; et al. Side Effect Patterns in a Crossover Trial of Statin, Placebo, and No Treatment. J. Am. Coll. Cardiol. 2021, 78, 1210–1222. [Google Scholar] [CrossRef] [PubMed]
- Penson, P.E.; Bruckert, E.; Marais, D.; Reiner, Ž.; Pirro, M.; Sahebkar, A.; Bajraktari, G.; Mirrakhimov, E.; Rizzo, M.; Mikhailidis, D.P.; et al. Step-by-step diagnosis and management of the nocebo/drucebo effect in statin-associated muscle symptoms patients: A position paper from the International Lipid Expert Panel (ILEP). J. Cachexia Sarcopenia Muscle 2022, 13, 1596–1622. [Google Scholar] [CrossRef]
- Butalia, S.; Lee-Krueger, R.C.W.; McBrien, K.A.; Leung, A.A.C.; Anderson, T.J.; Quan, H.; Naugler, C.; Chen, G.; Campbell, D.J.T. Barriers and Facilitators to Using Statins: A Qualitative Study With Patients and Family Physicians. CJC Open 2020, 2, 530–538. [Google Scholar] [CrossRef]
- Campbell, D.J.T.; Lee-Krueger, R.C.W.; McBrien, K.; Anderson, T.; Quan, H.; Leung, A.A.; Chen, G.; Lu, M.; Naugler, C.; Butalia, S. Strategies for enhancing the initiation of cholesterol lowering medication among patients at high cardiovascular disease risk: A qualitative descriptive exploration of patient and general practitioners’ perspectives on a facilitated relay intervention in Alberta, Canada. BMJ Open 2020, 10, e038469. [Google Scholar] [PubMed]
- Banach, M.; Cannon, C.P.; Paneni, F.; Penson, P.E. Individualized therapy in statin intolerance: The key to success. Eur. Heart J. 2022, 00, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.M.; Tai, M.-H.; Kostev, K.; Hatz, M.; Qian, Y.; Laufs, U. Treatment patterns and low-density lipoprotein cholesterol (LDL-C) goal attainment among patients receiving high- or moderate-intensity statins. Clin. Res. Cardiol. 2018, 107, 380–388. [Google Scholar] [CrossRef] [PubMed]
Confidence Level | Absolute SI: If Patients Had History of SI Events and Permanently Discontinued Statin Use | Partial SI: If Patients Had History of SI Events and Are Actively on Statins during the Selection Period and Have Not Discontinued for >180 Days |
---|---|---|
High | ASCVD and high CV risk patients ONLY ON non-statins | Patients WITHOUT discontinuation of latest statins AND WITH signs of down-titration, multi-statin use, low-dose statin use, SAMS, intermittent dosing, prior discontinuation, or documented SI in notes |
Long-term discontinuation (>180 days) of statin AND signs of down-titration, low-dose statin use, multi-statin use, SAMS, intermittent dosing, documented SI in notes, or prior discontinuation | ||
Low | Long-term discontinuation AND WITHOUT ANY signs of down-titration, switch, low-dose statin use, SAMS, intermittent dosing, or SI in notes | ASCVD/high CV risk patients on low-intensity statins AND WITHOUT ANY sign of prior discontinuation, down-titration, switch, SAMS, intermittent dosing, or documented SI in notes |
Patients WITHOUT ANY (intermittent dosing OR discontinuation of latest statins), AND WITH signs of down-titration or switch |
Features | Statin Tolerant | Statin Tolerant | Absolute Statin Intolerant * | Partial Statin Intolerant | Total | ||
---|---|---|---|---|---|---|---|
High Confidence | Low Confidence | High Confidence | Low Confidence | ||||
n = 221,442 | n = 71,161 | n = 18,652 | n = 27,530 | n = 8318 | n = 16,661 | n = 292,603 | |
Age n (%) | |||||||
18–30 | 351 (0.2%) | 200 (0.3%) | 42 (0.2%) | 124 (0.5%) | 11 (0.1%) | 23 (0.1%) | 551 (0.2%) |
30–50 | 7501 (3.4%) | 3353 (4.7%) | 730 (3.9%) | 1729 (6.3%) | 344 (4.1%) | 550 (3.3%) | 10,854 (3.7%) |
50–70 | 84,855 (38.3%) | 28,573 (40.2%) | 7137 (38.3%) | 10,907 (39.6%) | 3695 (44.4%) | 6834 (41.0%) | 113,428 (38.8%) |
70+ | 128,735 (58.1%) | 39,035 (54.9%) | 10,743 (57.6%) | 14,770 (53.7%) | 4268 (51.3%) | 9254 (55.5%) | 167,770 (57.3%) |
Gender n (%) | |||||||
Female | 95,743 (43.2%) | 33,591 (47.2%) | 8963 (48.1%) | 13,876 (50.4%) | 3574 (43.0%) | 7178 (43.1%) | 129,334 (44.2%) |
Male | 125,302 (56.6%) | 37,399 (52.6%) | 9653 (51.8%) | 13,587 (49.4%) | 4724 (56.8%) | 9435 (56.6%) | 162,701 (55.6%) |
Unspecified | 397 (0.2%) | 171 (0.2%) | 36 (0.2%) | 67 (0.2%) | 20 (0.2%) | 48 (0.3%) | 568 (0.2%) |
Patient subgroups n (%) | |||||||
ASCVD | 124,937 (56.4%) | 40,023 (56.2%) | 10,089 (54.1%) | 13,405 (48.7%) | 5688 (68.4%) | 10,841 (65.1%) | 164,960 (56.4%) |
High CV risk | 43,918 (19.8%) | 17,224 (24.2%) | 5367 (28.8%) | 7076 (25.7%) | 1541 (18.5%) | 3240 (19.4%) | 61,142 (20.9%) |
Hypercholesterolemia | 52,587 (23.7%) | 13,914 (19.6%) | 3196 (17.1%) | 7049 (25.6%) | 1089 (13.1%) | 2580 (15.5%) | 66,501 (22.7%) |
Risk factors n (%) | |||||||
Obesity | 20,877 (9.4%) | 6820 (9.6%) | 1701 (9.1%) | 2583 (9.4%) | 813 (9.8%) | 1723 (10.3%) | 27,697 (9.5%) |
Frailty and senility | 8802 (4.0%) | 2673 (3.8%) | 751 (4.0%) | 1019 (3.7%) | 236 (2.8%) | 667 (4.0%) | 11,475 (3.9%) |
Vitamin D deficiency | 38,092 (17.2%) | 14,575 (20.5%) | 3935 (21.1%) | 5233 (19.0%) | 1766 (21.2%) | 3641 (21.9%) | 52,667 (18.0%) |
Alcohol-abuse-related conditions | 3330 (1.5%) | 1094 (1.5%) | 275 (1.5%) | 491 (1.8%) | 88 (1.1%) | 240 (1.4%) | 4424 (1.5%) |
Hypothyroidism | 19,512 (8.8%) | 6571 (9.2%) | 1697 (9.1%) | 2486 (9.0%) | 792 (9.5%) | 1596 (9.6%) | 26,083 (8.9%) |
Liver disease ^ | 2336 (1.1%) | 871 (1.2%) | 264 (1.4%) | 326 (1.2%) | 88 (1.1%) | 193 (1.2%) | 3207 (1.1%) |
CKD ^^ | 10,102 (4.6%) | 3593 (5.0%) | 993 (5.3%) | 1394 (5.1%) | 376 (4.5%) | 830 (5.0%) | 13,695 (4.7%) |
Treatment usage | |||||||
Statins n (%) | |||||||
Simvastatin | 109,835 (49.6%) | 28,390 (39.9%) | 7535 (40.4%) | 12,719 (46.2%) | 2287 (27.5%) | 5848 (35.1%) | 138,225 (47.2%) |
Atorvastatin | 81,712 (36.9%) | 26,011 (36.6%) | 5521 (29.6%) | 12,141 (44.1%) | 4068 (48.9%) | 4282 (25.7%) | 107,723 (36.8%) |
Rosuvastatin | 5757 (2.6%) | 1284 (1.8%) | 37 (0.2%) | 606 (2.2%) | 208 (2.5%) | 433 (2.6%) | 7041 (2.4%) |
Non-statins n (%) | |||||||
Ezetimibe (Mono or in combination with statins) | 21,291 (9.6%) | 14,743 (20.7%) | 4031 (21.6%) | 1402 (5.1%) | 4490 (54.0%) | 4820 (28.9%) | 36,034 (12.3%) |
Fenofibrate monotherapy | 1329 (0.6%) | 933 (1.4%) | 933 (5.0%) | 0 (0%) | 0 (0%) | 1200 (7.2%) | 2262 (0.8%) |
Bezafibrate monotherapy | 1107 (0.5%) | 801 (1.2%) | 746 (4.0%) | 55 (0.2%) | 0 (0%) | 0 (0%) | 1908 (0.7%) |
SAMS n (%) | |||||||
Myalgia | 4240 (1.9%) | 1882 (2.6%) | 800 (4.3%) | 356 (1.3%) | 330 (4.0%) | 396 (2.4%) | 6122 (2.1%) |
Myositis | 76 (0%) | 60 (0.1%) | 31 (0.2%) | 8 (0%) | 9 (0.1%) | 12 (0.1%) | 136 (0%) |
Myopathy, unspecified | 165 (0.1%) | 130 (0.2%) | 62 (0.3%) | 18 (0.1%) | 22 (0.3%) | 28 (0.2%) | 295 (0.1%) |
Cramps/spasms of the muscles | 4808 (2.2%) | 1864 (2.6%) | 769 (4.1%) | 330 (1.2%) | 326 (3.9%) | 439 (2.6%) | 6672 (2.3%) |
Other adverse events n (%) | |||||||
Constipation | 12,121 (5.5%) | 4408 (6.2%) | 1224 (6.6%) | 1869 (6.8%) | 427 (5.1%) | 888 (5.3%) | 16,529 (5.6%) |
Abdominal pain | 11,906 (5.4%) | 4750 (6.7%) | 1288 (6.9%) | 1773 (6.4%) | 567 (6.8%) | 1122 (6.7%) | 16,656 (5.7%) |
Flatulence | 4181 (1.9%) | 1727 (2.4%) | 511 (2.7%) | 613 (2.2%) | 197 (2.4%) | 406 (2.4%) | 5908 (2.0%) |
Nausea and vomiting | 8261 (3.7%) | 3450 (4.8%) | 944 (5.1%) | 1422 (5.2%) | 376 (4.5%) | 708 (4.2%) | 11,711 (4.0%) |
Gastritis & duodenitis | 30,214 (13.6%) | 10,731 (15.1%) | 2863 (15.3%) | 3976 (14.4%) | 1328 (16.0%) | 2564 (15.4%) | 40,945 (14.0%) |
Anaphylaxis | 5840 (2.6%) | 2344 (3.3%) | 608 (3.3%) | 896 (3.3%) | 299 (3.6%) | 541 (3.2%) | 8184 (2.8%) |
Rash and flushing | 9108 (4.1%) | 3397 (4.8%) | 922 (4.9%) | 1293 (4.7%) | 399 (4.8%) | 783 (4.7%) | 12,505 (4.3%) |
Cognitive impairment | 4001 (1.8%) | 1323 (1.9%) | 357 (1.9%) | 509 (1.8%) | 129 (1.6%) | 328 (2.0%) | 5324 (1.8%) |
Drug–Drug n (%) | |||||||
Antibiotics ** | 9833 (4.4%) | 3615 (5.1%) | 1027 (5.5%) | 1425 (5.2%) | 392 (4.7%) | 771 (4.6%) | 13,448 (4.6%) |
Verapamil, diltiazem | 3649 (1.6%) | 1353 (1.9%) | 381 (2.0%) | 484 (1.8%) | 156 (1.9%) | 332 (2.0%) | 5002 (1.7%) |
Amiodarone | 4557 (2.1%) | 1596 (2.2%) | 382 (2.0%) | 550 (2.0%) | 215 (2.6%) | 449 (2.7%) | 6153 (2.1%) |
Prevalence Estimates | Total Universe | Statin Tolerant | Statin Intolerant | |||
---|---|---|---|---|---|---|
By Confidence Level | ||||||
Total | Absolute Statin Intolerant | Partial Statin Intolerant | ||||
High Confidence | Low Confidence | High Confidence | Low Confidence | |||
SI rules (EMR) | 292,603 (100%) | 224,112 (76.6%) | 18,652 (6.4%) | 27,530 (9.4%) | 8318 (2.8%) | 16,661 (5.7%) |
SI rules + supervised ML (EMR) | 23,718 (8.1%) | 22,464 (7.7%) | 12,836 (4.4%) | 12,143 (4.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parhofer, K.G.; Anastassopoulou, A.; Calver, H.; Becker, C.; Rathore, A.S.; Dave, R.; Zamfir, C. Estimating Prevalence and Characteristics of Statin Intolerance among High and Very High Cardiovascular Risk Patients in Germany (2017 to 2020). J. Clin. Med. 2023, 12, 705. https://doi.org/10.3390/jcm12020705
Parhofer KG, Anastassopoulou A, Calver H, Becker C, Rathore AS, Dave R, Zamfir C. Estimating Prevalence and Characteristics of Statin Intolerance among High and Very High Cardiovascular Risk Patients in Germany (2017 to 2020). Journal of Clinical Medicine. 2023; 12(2):705. https://doi.org/10.3390/jcm12020705
Chicago/Turabian StyleParhofer, Klaus G., Anastassia Anastassopoulou, Henry Calver, Christian Becker, Anirudh S. Rathore, Raj Dave, and Cosmin Zamfir. 2023. "Estimating Prevalence and Characteristics of Statin Intolerance among High and Very High Cardiovascular Risk Patients in Germany (2017 to 2020)" Journal of Clinical Medicine 12, no. 2: 705. https://doi.org/10.3390/jcm12020705
APA StyleParhofer, K. G., Anastassopoulou, A., Calver, H., Becker, C., Rathore, A. S., Dave, R., & Zamfir, C. (2023). Estimating Prevalence and Characteristics of Statin Intolerance among High and Very High Cardiovascular Risk Patients in Germany (2017 to 2020). Journal of Clinical Medicine, 12(2), 705. https://doi.org/10.3390/jcm12020705