Antibodies towards TVLLPVIFF Amino Acid Sequence of TNF Receptor Induced by Helicobacter pylori in Patients with Coronary Heart Disease
<p>The prevalence and the level of antibodies in human sera. (<b>A</b>) IgG antibodies towards <span class="html-italic">H. pylori</span> glycine extract (GE) (<b>i</b>) Healthy donors (HD) seronegative for anti-GE IgG–HD Hp- (n = 22), patients with coronary heart disease (CHD) seropositive for anti-GE IgG–CHD Hp+ (n = 54); (<b>B</b>) anti-P1 IgG (<b>i</b>) and anti-P2 IgG (<b>ii</b>); the level of anti-P1 IgG before and after the adsorption of sera from CHD Hp+ patients with heat-inactivated <span class="html-italic">H. pylori</span> (<b>iii</b>). Shown are mean values ± standard deviation (SD). P1, synthetic peptide with the amino acid sequence (TVLLPLVIFF) present in human tumor necrosis factor receptor (TNFR); P2, control peptide (IAKEGFEKIS). The dot in the figure represents an individual data. Statistical significance: CHD(Hp+) vs. HD (Hp-) (Ai,Bi), CHD(Hp+) sera before vs. sera after adsorption with <span class="html-italic">H. pylori</span>, * <span class="html-italic">p</span> < 0.05.</p> "> Figure 2
<p>The prevalence and the level of antibody production in <span class="html-italic">Caviae porcellus</span> model. In <span class="html-italic">Caviae porcellus</span> infected experimentally with <span class="html-italic">H. pylori,</span> the enzyme-linked immunosorbent assay (ELISA) was used to examine serum samples for anti-GE IgG (<b>Ai</b>) and anti-P1/P2 IgG (<b>Bi</b>,<b>Bii</b>). Anti-P1 antibodies in serum samples of <span class="html-italic">H. pylori</span> infected animals, 7 and 28 days from inoculation, non-adsorbed or adsorbed with these bacteria (<b>Biii</b>). Sera were collected from control animals noninfected with <span class="html-italic">H. pylori</span>, n = 10, and from animals infected with <span class="html-italic">H. pylori</span>, 7 days, n = 10 or 28 days, n = 20, after the last inoculation with <span class="html-italic">H. pylori</span>. Shown are mean values ± standard deviation (SD). P1, synthetic peptide with the amino acid sequence (TVLLPLVIFF) of <span class="html-italic">Caviae porcellus</span> tumor necrosis factor receptor (TNFR); P2, control synthetic peptide (IAKEGFEKIS). GE, glycine acid extract from the reference <span class="html-italic">H. pylori</span> strain. The dot, square or triangle in the figure represent an individual data. Statistical significance: sera from <span class="html-italic">Caviae porcellus</span> infected with <span class="html-italic">H. pylori</span> vs. sera from non-infected animals (<b>Ai</b>,<b>Bi</b>,<b>Biii</b>) sera before and after adsorption * <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>Detection of anti-P1-antibodies, which bind C1q subunit of complement, by the ELISA in serum samples of <span class="html-italic">Caviae porcellus</span> infected with <span class="html-italic">H. pylori.</span> Serum samples were added to microtiter plates coated with P1 peptide, and after binding with anti-P1 antibodies, the plates were incubated with C1q. The P1-anti-P1 IgG-C1q complexes were detected using anti-C1q antibodies labeled with horseradish peroxidase (HRP). The sera were collected from control animals noninfected with <span class="html-italic">H. pylori</span>, n = 10, or infected with these bacteria, 7 days, n = 10 or 28 days, n = 20, after the last inoculation with <span class="html-italic">H. pylori</span>. Shown are mean values ± standard deviation (SD). P1, synthetic peptide containing the amino acid sequence (TVLLPLVIFF) of <span class="html-italic">Caviae porcellus</span> tumor necrosis factor receptor (TNFR). The square in the figure represents an individual data. Statistical significance: * <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. H. pylori Infection in Caviae porcellus
2.3. H. pylori Status
2.4. Synthetic Peptides
2.5. Adsorption of Sera
2.6. ELISA
2.7. C1q Binding with P1-Anti-P1 IgG Immune Complexes
2.8. Statistical Analysis
3. Results
3.1. Anti-H. pylori GE IgG as Well as Anti-P1 or Anti-P2 IgG in Human Sera
3.2. Specificity of Antibodies Raised in Response to Experimental H. pylori Infection in Caviae porcellus
3.3. Biological Activity of Anti-P1 Antibodies in Caviae porcellus Sera Assessed by C1q Binding Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chmiela, M.; Kupcinskas, J. Review: Pathogenesis of Helicobacter pylori infection. Helicobacter 2019, 24 (Suppl. 1), e12638. [Google Scholar] [CrossRef] [Green Version]
- Sharndama, H.C.; Mba, I.E. Helicobacter pylori: An up-to-date overview on the virulence and pathogenesis mechanisms. Braz. J. Microbiol. 2022, 53, 33–50. [Google Scholar] [CrossRef]
- Posselt, G.; Backert, S.; Wessler, S. The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun. Signal. 2013, 11, 77. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Murata-Kamiya, N.; Yanagiya, K.; Suda, W.; Hattori, M.; Kanda, H.; Bingo, A.; Fujii, Y.; Maeda, S.; Koike, K.; et al. Mutual reinforcement of inflammation and carcinogenesis by the Helicobacter pylori CagA oncoprotein. Sci. Rep. 2015, 5, 10024. [Google Scholar] [CrossRef] [Green Version]
- Furuto, Y.; Kawamura, M.; Yamashita, J.; Yoshikawa, T.; Namikawa, A.; Isshiki, R.; Takahashi, H.; Shibuya, Y. Relationship Between Helicobacter pylori Infection and Arteriosclerosis. Int. J. Gen. Med. 2021, 14, 1533–1540. [Google Scholar] [CrossRef]
- Chmiela, M.; Gajewski, A.; Rudnicka, K. Helicobacter pylori vs coronary heart disease-searching for connections. World J. Cardiol. 2015, 7, 187–203. [Google Scholar] [CrossRef]
- Matusiak, A.; Chałubiński, M.; Broncel, M.; Rechciński, T.; Rudnicka, K.; Miszczyk, E.; Walencka, M.; Strapagiel, D.; Gajewski, A.; Chmiela, M. Putative consequences of exposure to Helicobacter pylori infection in patients with coronary heart disease in terms of humoral immune response and inflammation. Arch. Med. Sci. 2016, 12, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, F.; Sepulveda, A.R.; Gasbarrini, A.; Pola, P.; Silveri, N.G.; Gasbarrini, G.; Graham, D.Y.; Genta, R.M. Cross-reactivity of anti-CagA antibodies with vascular wall antigens: Possible pathogenic link between Helicobacter pylori infection and atherosclerosis. Circulation 2002, 106, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Konieczna, I.; Zarnowiec, P.; Kwinkowski, M.; Kolesinska, B.; Fraczyk, J.; Kaminski, Z.; Kaca, W. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 2012, 13, 789–806. [Google Scholar] [CrossRef] [Green Version]
- Gonciarz, W.; Matusiak, A.; Rudnicka, K.; Rechciński, T.; Chałubiński, M.; Czkwianianc, E.; Broncel, M.; Gajewski, A.; Chmiela, M. Autoantibodies to a specific peptide epitope of human Hsp60 (ATVLA) with homology to Helicobacter pylori HspB in H. pylori-infected patients. APMIS 2019, 127, 139–149. [Google Scholar] [CrossRef]
- Rojas, M.; Restrepo-Jiménez, P.; Monsalve, D.M.; Pacheco, Y.; Acosta-Ampudia, Y.; Ramírez-Santana, C.; Leung, P.S.C.; Ansari, A.A.; Gershwin, M.E.; Anaya, J.M. Molecular mimicry and autoimmunity. J. Autoimmun. 2018, 95, 100–123. [Google Scholar] [CrossRef]
- Krüger-Genge, A.; Blocki, A.; Franke, R.-P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef] [Green Version]
- Krupa, A.; Gonciarz, W.; Rusek-Wala, P.; Rechciński, T.; Gajewski, A.; Samsel, Z.; Dziuba, A.; Śmiech, A.; Chmiela, M. Helicobacter pylori Infection Acts Synergistically with a High-Fat Diet in the Development of a Proinflammatory and Potentially Proatherogenic Endothelial Cell Environment in an Experimental Model. Int. J. Mol. Sci. 2021, 22, 3394. [Google Scholar] [CrossRef]
- Niemela, S.; Karttunen, T.; Korhonen, T.; Laara, E.; Ikaheimo, M.; Kesaniemi, Y.A. Could Helicobacter pylori infection increase the risk of coronary heart disease by modifying serum lipid concentrations? Heart 1996, 75, 573–575. [Google Scholar] [CrossRef] [Green Version]
- Kutuk, O.; Basaga, H. Inflammation meets oxidation: NF-κB as a mediator of initial lesion development in atherosclerosis. Trends Mol. Med. 2003, 9, 549–557. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Hansson, G.K.; Leducq Transatlantic Network On Atherothrombosis. Inflammation in Atherosclerosis: From Pathophysiology to Practice. J. Am. Coll. Cardiol. 2009, 54, 2129–2138. [Google Scholar] [CrossRef] [Green Version]
- Kobiyama, K.; Ley, K. Atherosclerosis. Circ. Res. 2018, 123, 1118–1120. [Google Scholar] [CrossRef]
- Mendall, M.A.; Goggin, P.M.; Molineaux, N.; Levy, J.; Toosy, T.; Strachan, D.; Camm, A.J.; Northfield, T.C. Relation of Helicobacter pylori infection and coronary heart disease. Heart 1994, 71, 437–439. [Google Scholar] [CrossRef]
- Longo-Mbenza, B.; Nkondi; Mokondjimobe, E.; Gombet, T.; Ibara, J.R.; Ellenga-Mbolla, B.; Vangu, D.N. Mbungu Helicobacter pylori infection is identified as a cardiovascular risk factor in Central Africans. Vasc. Health Risk Manag. 2012, 8, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Kaulgud, R.S.; Kamath, R.L. Early prognosis of unstable angina patients with positive H. pylori IgG values. Int. J. Biomed Res. 2013, 4, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-J.; Huang, T.-Y. Relation of Helicobacter pylori Infection and Angiographically Demonstrated Coronary Artery Disease. Am. J. Dig. Dis. 2000, 45, 1227–1232. [Google Scholar] [CrossRef]
- Christodoulou, D.K.; Milionis, H.J.; Pappa, P.; Katsanos, K.H.; Sigounas, D.; Florentin, M.; Elisaf, M.; Tsianos, E.V. Association of Helicobacter pylori infection with cardiovascular disease—Is it just a myth? Eur. J. Intern. Med. 2011, 22, 191–194. [Google Scholar] [CrossRef]
- Kowalski, M.; Pawlik, M.; Konturek, J.W.; Konturek, S.J. Helicobacter pylori infection in coronary artery disease. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2006, 57, 101–111. [Google Scholar]
- Ameriso, S.F.; Fridman, E.A.; Leiguarda, R.C.; Sevlever, G.E. Detection of Helicobacter pylori in Human Carotid Atherosclerotic Plaques. Stroke 2001, 32, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Yujiri, T.; Shinohara, K.; Inoue, Y.; Sato, Y.; Fujii, Y.; Okubo, M.; Zaitsu, Y.; Ariyoshi, K.; Nakamura, Y.; et al. Molecular mimicry by Helicobacter pylori CagA protein may be involved in the pathogenesis of H. pylori -associated chronic idiopathic thrombocytopenic purpura. Br. J. Haematol. 2003, 124, 91–96. [Google Scholar] [CrossRef]
- Rožanković, P.B.; Huzjan, A.L.; Čupić, H.; Benčić, I.J.; Bašić, S.; Demarin, V. Influence of CagA-positive Helicobacter pylori strains on atherosclerotic carotid disease. J. Neurol. 2010, 258, 753–761. [Google Scholar] [CrossRef]
- Fischer, W. Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J. 2011, 278, 1203–1212. [Google Scholar] [CrossRef] [Green Version]
- Phuc, B.H.; Tuan, V.P.; Dung, H.D.Q.; Binh, T.T.; Tung, P.H.; Tri, T.D.; Thuan, N.P.M.; Van Khien, V.; Trang, T.T.H.; Akada, J.; et al. Helicobacter pylori type 4 secretion systems as gastroduodenal disease markers. Sci. Rep. 2021, 11, 4584. [Google Scholar] [CrossRef]
- Zhang, H.; Park, Y.; Wu, J.; Chen, X.P.; Lee, S.; Yang, J.; Dellsperger, K.C.; Zhang, C. Role of TNF-α in vascular dysfunction. Clin. Sci. 2009, 116, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Kleinbongard, P.; Schulz, R.; Heusch, G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail. Rev. 2010, 16, 49–69. [Google Scholar] [CrossRef]
- Sjunnesson, H.; Sturegård, E.; Grubb, A.; Willén, R.; Wadström, T. Comparative study of Helicobacter pylori infection in guin-ea pigs and mice elevation of acute-phase protein C3 in infected guinea pigs. FEMS Immunol. Med Microbiol. 2001, 30, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walencka, M.; Gonciarz, W.; Mnich, E.; Gajewski, A.; Stawerski, P.; Knapik-Dabrowicz, A.; Chmiela, M. The microbiological, histological, immunological and molecular determinants of Helicobacter pylori infection in guinea pigs as a convenient animal model to study pathogenicity of these bacteria and the infection dependent immune response of the host. Acta Biochim. Pol. 2015, 62, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Bielański, W.; Konturek, S.J. New approach to 13C-urea breath test: Capsule-based modification with low-dose of 13C-urea in the diagnosis of Helicobacter pylori infection. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 1996, 47, 454–553. [Google Scholar]
- Gonciarz, W.; Krupa, A.; Hinc, K.; Obuchowski, M.; Moran, A.P.; Gajewski, A.; Chmiela, M. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS ONE 2019, 14, e0220636. [Google Scholar] [CrossRef] [Green Version]
- Gonciarz, W.; Krupa, A.; Chmiela, M. Proregenerative Activity of IL-33 in Gastric Tissue Cells Undergoing Helicobacter Pylori-Induced Apoptosis. Int. J. Mol. Sci. 2020, 21, 1801. [Google Scholar] [CrossRef] [Green Version]
- Rechciński, T.; Chmiela, M.; Matecka-Panas, E.; Płaneta-Małsecka, I.; Rudnicka, W. Serological Indicators of Helicobacter pylori Infection in Adult Dyspeptic Patients and Healthy Blood Donors. Microbiol. Immunol. 1997, 41, 387–393. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef]
- Aceti, A.; Are, R.; Sabino, G.; Fenu, L.; Pasquazzi, C.; Quaranta, G.; Zechini, B.; Terrosu, P. Helicobacter pylori active infection in patients with acute coronary heart disease. J. Infect. 2004, 49, 8–12. [Google Scholar] [CrossRef]
- Calabrò, P.; Golia, E.; Yeh, E.T.H. CRP and the risk of atherosclerotic events. Semin. Immunopathol. 2009, 31, 79–94. [Google Scholar] [CrossRef]
- Evrengul, H.; Tanriverdi, H.; Kuru, O.; Enli, Y.; Yuksel, D.; Kilic, A.; Kaftan, A.; Kirac, S.; Kilic, M. Elevated Homocysteine Levels in Patients with Slow Coronary Flow: Relationship with Helicobacter pylori Infection. Helicobacter 2007, 12, 298–305. [Google Scholar] [CrossRef]
- Akbas, H.S.; Basyigit, S.; Suleymanlar, I.; Kemaloglu, D.; Koc, S.; Davran, F.; Demir, I.; Suleymanlar, G. The assessment of carotid intima media thickness and serum Paraoxonase-1 activity in Helicobacter pylori positive subjects. Lipids Health Dis. 2010, 9, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleemann, R.; Zadelaar, S.; Kooistra, T. Cytokines and atherosclerosis: A comprehensive review of studies in mice. Cardiovasc. Res. 2008, 79, 360–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkov, S.; Paro, M.M.K.; Vidjak, V.; Flegar-Mestric, Z. The Evaluation of New Biomarkers of Inflammation and Angiogenesis in Peripheral Arterial Disease. Current Trends in Atherogenesis; IntechOpen: London, UK, 2013; pp. 97–120. [Google Scholar]
- Sanjadi, M.; Sichanie, Z.R.; Totonchi, H.; Karami, J.; Rezaei, R.; Aslani, S. Atherosclerosis and autoimmunity: A growing relationship. Int. J. Rheum. Dis. 2018, 21, 908–921. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Kobiyama, K.; Winkels, H.; Tse, K.; Miller, J.; Vassallo, M.; Wolf, D.; Ryden, C.; Orecchioni, M.; Dileepan, T.; et al. Regulatory CD4(+) T cells recognize MHC II restricted peptide epitopes of apolipoprotein B. Circulation 2018, 138, 1130–1143. [Google Scholar] [CrossRef] [PubMed]
- Grebowska, A.; Rechciński, T.; Bak-Romaniszyn, L.; Czkwianianc, E.; Moran, A.; Druszczyńska, M.; Kowalewicz-Kulbat, M.; Owczarek, A.; Dziuba, M.; Krzemińska-Pakuła, M.; et al. Potential role of LPS in the outcome of Helicobacter pylori related diseases. Pol. J. Microbiol. 2006, 55, 192–198. [Google Scholar]
- Ninomiya, R.; Kubo, S.; Baba, T.; Kajiwara, T.; Tokunaga, A.; Nabeka, H.; Doihara, T.; Shimokawa, T.; Matsuda, S.; Murakami, K.; et al. Inhibition of low-density lipoprotein uptake by Helicobacter pylori virulence factor CagA. Biochem. Biophys. Res. Commun. 2021, 556, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Gunn, M.; Stephens, J.C.; Thompson, J.R.; Rathbone, B.J.; Samani, N.J. Significant association of cagA positive Helicobacter pylori strains with risk of premature myocardial infarction. Heart 2000, 84, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Cendron, L.; Couturier, M.; Angelini, A.; Barison, N.; Stein, M.; Zanotti, G. The Helicobacter pylori CagD (HP0545, Cag24) Protein Is Essential for CagA Translocation and Maximal Induction of Interleukin-8 Secretion. J. Mol. Biol. 2009, 386, 204–217. [Google Scholar] [CrossRef]
- Ghebrehiwet, B.; Habicht, G.S.; Beck, G. Interaction of C1q with its receptor on cultured cell lines induces an anti-proliferative response. Clin. Immunol. Immunopathol. 1990, 54, 148–160. [Google Scholar] [CrossRef]
- Bordin, S.; Whitfield, D. Cutting Edge: Proliferating Fibroblasts Respond to Collagenous C1q with Phosphorylation of p38 Mitogen-Activated Protein Kinase and Apoptotic Features. J. Immunol. 2003, 170, 667–671. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonciarz, W.; Tomaszewska, A.; Krupa, A.; Rechciński, T.; Chałubiński, M.; Broncel, M.; Chmiela, M. Antibodies towards TVLLPVIFF Amino Acid Sequence of TNF Receptor Induced by Helicobacter pylori in Patients with Coronary Heart Disease. J. Clin. Med. 2022, 11, 2545. https://doi.org/10.3390/jcm11092545
Gonciarz W, Tomaszewska A, Krupa A, Rechciński T, Chałubiński M, Broncel M, Chmiela M. Antibodies towards TVLLPVIFF Amino Acid Sequence of TNF Receptor Induced by Helicobacter pylori in Patients with Coronary Heart Disease. Journal of Clinical Medicine. 2022; 11(9):2545. https://doi.org/10.3390/jcm11092545
Chicago/Turabian StyleGonciarz, Weronika, Agata Tomaszewska, Agnieszka Krupa, Tomasz Rechciński, Maciej Chałubiński, Marlena Broncel, and Magdalena Chmiela. 2022. "Antibodies towards TVLLPVIFF Amino Acid Sequence of TNF Receptor Induced by Helicobacter pylori in Patients with Coronary Heart Disease" Journal of Clinical Medicine 11, no. 9: 2545. https://doi.org/10.3390/jcm11092545
APA StyleGonciarz, W., Tomaszewska, A., Krupa, A., Rechciński, T., Chałubiński, M., Broncel, M., & Chmiela, M. (2022). Antibodies towards TVLLPVIFF Amino Acid Sequence of TNF Receptor Induced by Helicobacter pylori in Patients with Coronary Heart Disease. Journal of Clinical Medicine, 11(9), 2545. https://doi.org/10.3390/jcm11092545