Promising Antifungal Molecules against Mucormycosis Agents Identified from Pandemic Response Box®: In Vitro and In Silico Analyses
<p>Screening of the Pandemic Response Box<sup>®</sup> library. A total of 400 compounds were tested against <span class="html-italic">R. oryzae</span> UCP1295. Fungal growth was quantified after incubation for 48 h via optical density and those presenting at least 60% of inhibition (dotted line) were selected.</p> "> Figure 2
<p>Molecular structures of the effective compounds against <span class="html-italic">R. oryzae</span> UCP1295. The compounds present in the Pandemic Response Box<sup>®</sup> library are MMV396785 (Alexidine), MMV1580844, MMV642550 and MMV019724.</p> "> Figure 3
<p>Effect of alexidine, MMV1580844, MMV642550 and MMV019724 on biofilm formation of <span class="html-italic">Rhizopus</span> species. Fungal cells were grown on polystyrene surface in the presence of different concentrations of selected compounds (¼–8× MIC). Fungal biomass (<b>A</b>,<b>D</b>,<b>G</b>), extracellular matrix (<b>B</b>,<b>E</b>,<b>H</b>) and viability (<b>C</b>,<b>F</b>,<b>I</b>) were measured using violet crystal, safranin and XTT reduction assay, respectively. * <span class="html-italic">p</span> < 0.05, compared to zero (absence of drug) for each species.</p> "> Figure 4
<p>Effect of alexidine, MMV1580844, MMV642550 and MMV019724 on preformed biofilms of three <span class="html-italic">Rhizopus</span> species. Fungal biofilm was firstly formed in RPMI 1640 medium on polystyrene surface for 24 h and then it was treated with different concentrations of selected compounds (¼–8× MIC) for another 24 h incubation. Intact fungal biofilms were considered controls (CTL, 100% biofilm) and their degradation due to treatment was compared to the control. Fungal biomass (<b>A</b>,<b>D</b>,<b>G</b>), extracellular matrix (<b>B</b>,<b>E</b>,<b>H</b>) and viability (<b>C</b>,<b>F</b>,<b>I</b>) were measured using violet crystal, safranin and XTT reduction assay, respectively. * <span class="html-italic">p</span> < 0.05, compared to zero (absence of drug) for each species.</p> "> Figure 5
<p>Ultrastructural alterations of <span class="html-italic">R. oryzae</span> UCP1295 after exposure to alexidine, MMV1580844, MMV642550 and MMV019724, evaluated via scanning electron microscopy. Untreated cells (control) exhibit thicker hyphae and the formation of sporangia and spores, typical of Mucorales growth, whereas samples treated with MIC<sub>50</sub> (<a href="#jof-09-00187-t002" class="html-table">Table 2</a>) values of each selected compound for 48 h show alterations in fungal surface.</p> "> Figure 6
<p>The effect of alexidine, MMV1580844, MMV642550 and MMV019724 on <span class="html-italic">R. oryzae</span> cells analyzed using fluorescent staining. Cells were grown in the presence of ½× MIC<sub>50</sub> of each selected compound for 48 h at 37 °C. Chitin content was analyzed using calcofluor white (<b>A</b>). Intracellular DNA quantification was analyzed using Sytox blue staining (<b>B</b>). Oxidative stress; ROS was measured using DCFH-DA (<b>C</b>). The mitochondrial membrane polarization was measured using JC-1 (<b>D</b>). Neutral lipids were quantified using Nile Red stain (<b>E</b>). Ctl (-), a negative control that represents cells in the absence of fluorescent stain. Untreated, a positive control that represents cells stained with fluorescent stain, but without drug treatment. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> <0.001; ns—not significant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Compounds
2.3. Screening of the Pandemic Response Box® Library
2.4. Antifungal Susceptibility Testing
2.5. Biofilm Formation and Preformed Biofilm Assay
2.6. Scanning Electron Microscopy
2.7. Antifungal Drug Synergy Assay
2.8. Analysis of Fungal Cell Alterations
2.9. Cytotoxicity Assay
2.10. In Silico Analysis
2.11. Statistical Analyses
3. Results
3.1. Screening of the Pandemic Response Box®
3.2. Minimum Inhibitory and Fungicidal Concentrations of the Selected Compounds
3.3. Effect of Selected Compounds on Rhizopus spp. Biofilms
3.4. Morphological Alterations Caused by Selected Compounds Evaluated by SEM
3.5. Influence of Selected Drugs in Cellular Parameters
3.6. Interaction of Selected Compounds with Antifungal Drugs
3.7. Cytotoxicity and Selectivity Index of Selected Compounds
3.8. In Silico Analysis of Drug-Likeness
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pilmis, B.; Alanio, A.; Lortholary, O.; Lanternier, F. Recent advances in the understanding and management of mucormycosis. F1000Research 2018, 7, 1429. [Google Scholar] [CrossRef] [PubMed]
- Prakash, H.; Chakrabarti, A. Global Epidemiology of Mucormycosis. J. Fungi 2019, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, B.J. Mucormycosis of the nose and paranasal sinuses. Otolaryngol. Clin. N. Am. 2000, 33, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Fanfair, R.N.; Benedict, K.; Bos, J.; Bennett, S.D.; Lo, Y.-C.; Adebanjo, T.; Etienne, K.; Deak, E.; Derado, G.; Shieh, W.-J.; et al. Necrotizing Cutaneous Mucormycosis after a Tornado in Joplin, Missouri, in 2011. N. Engl. J. Med. 2012, 367, 2214–2225. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.S.; Spellberg, B.; Walsh, T.J.; Kontoyiannis, D.P. Pathogenesis of Mucormycosis. Clin. Infect. Dis. 2012, 54 (Suppl. S1), S16–S22. [Google Scholar] [CrossRef] [Green Version]
- Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-associated fungal infections. Nat. Microbiol. 2022, 7, 1127–1140. [Google Scholar] [CrossRef]
- Cornely, O.A.; Alastruey-Izquierdo, A.; Arenz, D.; Chen, S.C.A.; Dannaoui, E.; Hochhegger, B.; Hoenigl, M.; Jensen, H.E.; Lagrou, K.; Lewis, R.E.; et al. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect. Dis. 2019, 19, e405–e421. [Google Scholar] [CrossRef]
- Borman, A.M.; Fraser, M.; Patterson, Z.; Palmer, M.D.; Johnson, E.M. In Vitro Antifungal Drug Resistance Profiles of Clinically Relevant Members of the Mucorales (Mucoromycota) Especially with the Newer Triazoles. J. Fungi 2021, 7, 271. [Google Scholar] [CrossRef]
- Caramalho, R.; Tyndall, J.D.A.; Monk, B.C.; Larentis, T.; Lass-Flörl, C.; Lackner, M. Intrinsic short-tailed azole resistance in mucormycetes is due to an evolutionary conserved aminoacid substitution of the lanosterol 14α-demethylase. Sci. Rep. 2017, 7, 15898. [Google Scholar] [CrossRef] [Green Version]
- Nagy, G.; Kiss, S.; Varghese, R.; Bauer, K.; Szebenyi, C.; Kocsubé, S.; Homa, M.; Bodai, L.; Zsindely, N.; Nagy, G.; et al. Characterization of Three Pleiotropic Drug Resistance Transporter Genes and Their Participation in the Azole Resistance of Mucor circinelloides. Front. Cell. Infect. Microbiol. 2021, 11, 660347. [Google Scholar] [CrossRef]
- Mamouei, Z.; Alqarihi, A.; Singh, S.; Xu, S.; Mansour, M.K.; Ibrahim, A.S.; Uppuluri, P. Alexidine Dihydrochloride Has Broad-Spectrum Activities against Diverse Fungal Pathogens. Msphere 2018, 3, e00539-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borba-Santos, L.P.; Vila, T.; Rozental, S. Identification of two potential inhibitors of Sporothrix brasiliensis and Sporothrix schenckii in the Pathogen Box collection. PLoS ONE 2020, 15, e0240658. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, H.C.; Castelli, R.F.; Reis, F.C.G.; Samby, K.; Nosanchuk, J.D.; Alves, L.R.; Rodrigues, M.L. Screening of the Pandemic Response Box Reveals an Association between Antifungal Effects of MMV1593537 and the Cell Wall of Cryptococcus neoformans, Cryptococcus deuterogattii, and Candida auris. Microbiol. Spectr. 2022, 10, e0060122. [Google Scholar] [CrossRef] [PubMed]
- Rollin-Pinheiro, R.; Borba-Santos, L.P.; da Silva Xisto, M.I.D.; de Castro-Almeida, Y.; Rochetti, V.P.; Rozental, S.; Barreto-Bergter, E. Identification of Promising Antifungal Drugs against Scedosporium and Lomentospora Species after Screening of Pathogen Box Library. J. Fungi 2021, 7, 803. [Google Scholar] [CrossRef]
- Taj-Aldeen, S.J.; Salah, H.; Al-Hatmi, A.M.; Hamed, M.; Theelen, B.; van Diepeningen, A.D.; Boekhout, T.; Lass-Flörl, C. In vitro resistance of clinical Fusarium species to amphotericin B and voriconazole using the EUCAST antifungal susceptibility method. Diagn. Microbiol. Infect. Dis. 2016, 85, 438–443. [Google Scholar] [CrossRef]
- Rollin-Pinheiro, R.; Rochetti, V.P.; Xisto, M.; Liporagi-Lopes, L.C.; Bastos, B.; Rella, A.; Singh, A.; Rozental, S.; Del Poeta, M.; Barreto-Bergter, E. Sphingolipid biosynthetic pathway is crucial for growth, biofilm formation and membrane integrity of Scedosporium boydii. Future Med. Chem. 2019, 11, 2905–2917. [Google Scholar] [CrossRef]
- Xisto, M.; Santos, S.S.; Rossato, L.; Yoshikawa, F.S.Y.; Haido, R.M.T.; de Almeida, S.R.; Barreto-Bergter, E. Peptidorhamnomannan from Lomentospora prolificans modulates the inflammatory response in macrophages infected with Candida albicans. BMC Microbiol. 2020, 20, 245. [Google Scholar] [CrossRef]
- Rollin-Pinheiro, R.; de Meirelles, J.V.; Vila, T.V.M.; Fonseca, B.B.; Alves, V.; Frases, S.; Rozental, S.; Barreto-Bergter, E. Biofilm Formation by Pseudallescheria/Scedosporium Species: A Comparative Study. Front. Microbiol. 2017, 8, 1568. [Google Scholar] [CrossRef] [Green Version]
- Almeida, C.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Roseo de Oliveira, M.; Rodrigues, I.A.; Bizzo, H.R.; Gama, P.E.; Alviano, D.S.; Alviano, C.S. Piper Essential Oils Inhibit Rhizopus oryzae Growth, Biofilm Formation, and Rhizopuspepsin Activity. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 5295619. [Google Scholar] [CrossRef] [Green Version]
- Borba-Santos, L.P.; Rollin-Pinheiro, R.; da Silva Fontes, Y.; Dos Santos, G.M.P.; de Sousa Araújo, G.R.; Rodrigues, A.M.; Guimarães, A.J.; de Souza, W.; Frases, S.; Ferreira-Pereira, A.; et al. Screening of Pandemic Response Box Library Reveals the High Activity of Olorofim against Pathogenic Sporothrix Species. J. Fungi 2022, 8, 1004. [Google Scholar] [CrossRef]
- Ntie-Kang, F.; Lifongo, L.L.; Mbah, J.A.; Owono Owono, L.C.; Megnassan, E.; Mbaze, L.M.; Judson, P.N.; Sippl, W.; Efange, S.M. In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin. In Silico Pharmacol. 2013, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Meletiadis, J.; Petraitis, V.; Petraitiene, R.; Lin, P.; Stergiopoulou, T.; Kelaher, A.M.; Sein, T.; Schaufele, R.L.; Bacher, J.; Walsh, T.J. Triazole-Polyene Antagonism in Experimental Invasive Pulmonary Aspergillosis: In Vitro and In Vivo Correlation. J. Infect. Dis. 2006, 194, 1008–1018. [Google Scholar] [CrossRef]
- Zhao, W.; Sachsenmeier, K.; Zhang, L.; Sult, E.; Hollingsworth, R.E.; Yang, H. A New Bliss Independence Model to Analyze Drug Combination Data. J. Biomol. Screen 2014, 19, 817–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rollin-Pinheiro, R.; Almeida, Y.C.; Rochetti, V.P.; Xisto, M.; Borba-Santos, L.P.; Rozental, S.; Barreto-Bergter, E. Miltefosine Against Scedosporium and Lomentospora Species: Antifungal Activity and Its Effects on Fungal Cells. Front. Cell. Infect. Microbiol. 2021, 11, 698662. [Google Scholar] [CrossRef] [PubMed]
- Borenfreund, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev. 2016, 101, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Lim, W.; Nyuykonge, B.; Eadie, K.; Konings, M.; Smeets, J.; Fahal, A.; Bonifaz, A.; Todd, M.; Perry, B.; Samby, K.; et al. Screening the pandemic response box identified benzimidazole carbamates, Olorofim and ravuconazole as promising drug candidates for the treatment of eumycetoma. PLoS Neglected Trop. Dis. 2022, 16, e0010159. [Google Scholar] [CrossRef]
- Skiada, A.; Pagano, L.; Groll, A.; Zimmerli, S.; Dupont, B.; Lagrou, K.; Lass-Florl, C.; Bouza, E.; Klimko, N.; Gaustad, P.; et al. Zygomycosis in Europe: Analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin. Microbiol. Infect. 2011, 17, 1859–1867. [Google Scholar] [CrossRef]
- Thornton, C.R. Detection of the ‘Big Five’ mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. Adv. Appl. Microbiol. 2020, 110, 1–61. [Google Scholar] [CrossRef]
- Diwakar, J.; Samaddar, A.; Konar, S.K.; Bhat, M.D.; Manuel, E.; Hb, V.; Bn, N.; Parveen, A.; Hajira, S.N.; Srinivas, D.; et al. First report of COVID-19-associated rhino-orbito-cerebral mucormycosis in pediatric patients with type 1 diabetes mellitus. J. Mycol. Med. 2021, 31, 101203. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Frey, K.M.; Viswanathan, K.; Wright, D.L.; Anderson, A.C. Prospective screening of novel antibacterial inhibitors of dihydrofolate reductase for mutational resistance. Antimicrob. Agents Chemother. 2012, 56, 3556–3562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulsen, J.L.; Viswanathan, K.; Wright, D.L.; Anderson, A.C. Structural analysis of the active sites of dihydrofolate reductase from two species of Candida uncovers ligand-induced conformational changes shared among species. Bioorg. Med. Chem. Lett. 2013, 23, 1279–1284. [Google Scholar] [CrossRef] [Green Version]
- G-Dayanandan, N.; Paulsen, J.L.; Viswanathan, K.; Keshipeddy, S.; Lombardo, M.N.; Zhou, W.; Lamb, K.M.; Sochia, A.E.; Alverson, J.B.; Priestley, N.D.; et al. Propargyl-Linked Antifolates are Dual Inhibitors of Candida albicans and Candida glabrata. J. Med. Chem. 2014, 57, 2643–2656. [Google Scholar] [CrossRef] [PubMed]
- Lamb, K.M.; G-Dayanandan, N.; Wright, D.L.; Anderson, A.C. Elucidating Features That Drive the Design of Selective Antifolates Using Crystal Structures of Human Dihydrofolate Reductase. Biochemistry 2013, 52, 7318–7326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reader, J.; van der Watt, M.E.; Taylor, D.; Le Manach, C.; Mittal, N.; Ottilie, S.; Theron, A.; Moyo, P.; Erlank, E.; Nardini, L.; et al. Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nat. Commun. 2021, 12, 269. [Google Scholar] [CrossRef]
- Serrao, E.; Debnath, B.; Otake, H.; Kuang, Y.; Christ, F.; Debyser, Z.; Neamati, N. Fragment-based discovery of 8-hydroxyquinoline inhibitors of the HIV-1 integrase-lens epithelium-derived growth factor/p75 (IN-LEDGF/p75) interaction. J. Med. Chem. 2013, 56, 2311–2322. [Google Scholar] [CrossRef]
- Rice, C.A.; Troth, E.V.; Russell, A.C.; Kyle, D.E. Discovery of Anti-Amoebic Inhibitors from Screening the MMV Pandemic Response Box on Balamuthia mandrillaris, Naegleria fowleri, and Acanthamoeba castellanii. Pathogens 2020, 9, 476. [Google Scholar] [CrossRef]
- Yousfi, H.; Ranque, S.; Cassagne, C.; Rolain, J.M.; Bittar, F. Identification of repositionable drugs with novel antimycotic activity by screening the Prestwick Chemical Library against emerging invasive moulds. J. Glob. Antimicrob. Resist. 2020, 21, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, K.; Frey, K.M.; Scocchera, E.W.; Martin, B.D.; Swain Iii, P.W.; Alverson, J.B.; Priestley, N.D.; Anderson, A.C.; Wright, D.L. Toward new therapeutics for skin and soft tissue infections: Propargyl-linked antifolates are potent inhibitors of MRSA and Streptococcus pyogenes. PLoS ONE 2012, 7, e29434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nucci, M.; Engelhardt, M.; Hamed, K. Mucormycosis in South America: A review of 143 reported cases. Mycoses 2019, 62, 730–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Shivaprakash, M.R.; Chakrabarti, A. Biofilm formation by zygomycetes: Quantification, structure and matrix composition. Microbiology 2011, 157, 2611–2618. [Google Scholar] [CrossRef] [Green Version]
- Yip, K.W.; Ito, E.; Mao, X.; Au, P.Y.; Hedley, D.W.; Mocanu, J.D.; Bastianutto, C.; Schimmer, A.; Liu, F.F. Potential use of alexidine dihydrochloride as an apoptosis-promoting anticancer agent. Mol. Cancer Ther. 2006, 5, 2234–2240. [Google Scholar] [CrossRef] [Green Version]
- Doughty-Shenton, D.; Joseph, J.D.; Zhang, J.; Pagliarini, D.J.; Kim, Y.; Lu, D.; Dixon, J.E.; Casey, P.J. Pharmacological targeting of the mitochondrial phosphatase PTPMT1. J. Pharmacol. Exp. Ther. 2010, 333, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Gerson, S.L. Chapter 26—Clinical Trials Using LV-P140K-MGMT for Gliomas. In Gene Therapy of Cancer, 3rd ed.; Lattime, E.C., Gerson, S.L., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 379–391. [Google Scholar]
- Wei, M.; Zhang, X.; Pan, X.; Wang, B.; Ji, C.; Qi, Y.; Zhang, J.Z.H. HobPre: Accurate prediction of human oral bioavailability for small molecules. J. Cheminformatics 2022, 14, 1. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef]
- Doak, B.C.; Over, B.; Giordanetto, F.; Kihlberg, J. Oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates. Chem. Biol. 2014, 21, 1115–1142. [Google Scholar] [CrossRef] [Green Version]
- Kenny, P.W. Hydrogen-Bond Donors in Drug Design. J. Med. Chem. 2022, 65, 14261–14275. [Google Scholar] [CrossRef]
- Barlow, N.; Chalmers, D.K.; Williams-Noonan, B.J.; Thompson, P.E.; Norton, R.S. Improving Membrane Permeation in the Beyond Rule-of-Five Space by Using Prodrugs to Mask Hydrogen Bond Donors. ACS Chem. Biol. 2020, 15, 2070–2078. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, J.T.S.; Feghali, R.; Ribeiro, R.P.; Ramos, M.J.; Fernandes, P.A. The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer. RSC Adv. 2020, 11, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Shultz, M.D. Two Decades under the Influence of the Rule of Five and the Changing Properties of Approved Oral Drugs. J. Med. Chem. 2019, 62, 1701–1714. [Google Scholar] [CrossRef] [PubMed]
- Physicochemical and Biopharmaceutical Properties that Affect Drug Absorption of Compounds Absorbed by Passive Diffusion. In Oral Bioavailability Assessment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 139–171.
- Doak, B.C.; Zheng, J.; Dobritzsch, D.; Kihlberg, J. How Beyond Rule of 5 Drugs and Clinical Candidates Bind to Their Targets. J. Med. Chem. 2016, 59, 2312–2327. [Google Scholar] [CrossRef] [PubMed]
- DeGoey, D.A.; Chen, H.J.; Cox, P.B.; Wendt, M.D. Beyond the Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound Collection. J. Med. Chem. 2018, 61, 2636–2651. [Google Scholar] [CrossRef]
- Protti, Í.F.; Rodrigues, D.R.; Fonseca, S.K.; Alves, R.J.; de Oliveira, R.B.; Maltarollo, V.G. Do Drug-likeness Rules Apply to Oral Prodrugs? ChemMedChem 2021, 16, 1446–1456. [Google Scholar] [CrossRef] [PubMed]
- Lipp, H.P. Clinical pharmacodynamics and pharmacokinetics of the antifungal extended-spectrum triazole posaconazole: An overview. Br. J. Clin. Pharmacol. 2010, 70, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Chen, M.; Yang, Z. Design of amphotericin B oral formulation for antifungal therapy. Drug Deliv. 2017, 24, 1–9. [Google Scholar] [CrossRef]
Compound Code | Growth Inhibition | Viability Inhibition (XTT) | Name or ID ChEMBL | Disease Area |
---|---|---|---|---|
MMV396785 | 70% | 89% | Alexidine | Biguanide antimicrobial |
MMV1580844 | 71% | 88% | CHEMBL2335419 | Antibacterials |
MMV642550 | 60% | 59% | CHEMBL1426340 | Antiviral |
MMV019724 | 70% | 77% | CHEMBL548113 | Antiviral |
-- | 56% | 73% | Posaconazole | Azole Antifungals |
Compound or Code | R. oryzae | R. microsporus | R. stolonifer | |||
---|---|---|---|---|---|---|
MIC50 | MFC | MIC50 | MFC | MIC50 | MFC | |
Alexidine | 1.25 µM | 10 µM | 1.25 µM | 1.25 µM | 0.63 µM | 10 µM |
MMV1580844 | 0.08 µM | >20 µM | 0.08 µM | >20 µM | 0.08 µM | >20 µM |
MMV642550 | 2.5 µM | >20 µM | 5 µM | >20 µM | 2.5 µM | >20 µM |
MMV019724 | 0.63 µM | >20 µM | 1.25 µM | >20 µM | 1.25 µM | >20 µM |
Posaconazole | 1.25 µM | >20 µM | 2.5 µM | >20 µM | 0.63 µM | >20 µM |
Amphotericin B | >20 µM | >20 µM | >20 µM | >20 µM | >20 µM | >20 µM |
MIC50 Alone (µM) | MIC50 Combined (µM) | FICI | ||
---|---|---|---|---|
Alexidine | 1.25 | Alexidine/Posa | 1.25/5.0 | 2.0 (no effect) |
MMV1580844 | 0.08 | MMV1580844/Posa | 0.08/1.25 | 2.0 (no effect) |
MMV642550 | 2.5 | MMV642550/Posa | 2.5/5.0 | 2.0 (no effect) |
MMV019724 | 0.63 | MMV019724/Posa | 0.63/1.25 | 2.0 (no effect) |
Posa | 1.25 | Alexidine /AmphoB | 1.25/40 | 2.0 (no effect) |
AmphoB | 40 | MMV1580844/AmphoB | 0.08/40 | 2.0 (no effect) |
-- | -- | MMV642550/AmphoB | 2.5/40 | 2.0 (no effect) |
-- | -- | MMV019724/AmphoB | 0.63/40 | 2.0 (no effect) |
Efficacy of Combined Drugs | ||||||||
---|---|---|---|---|---|---|---|---|
Efficacy of Drugs Alone (% of Inhibition) | Amphotericin B | Posaconazole | ||||||
MIC50 | ½ MIC50 | Eobs | Eexp | ΔE, % (Interaction) | Eobs | Eexp | ΔE, % (Interaction) | |
Alexidine | 67.6 | 21.5 | 85.9 | 84.2 | 1.7 (S) | 91.9 | 96.6 | −4.7 (A) |
MMV1580844 | 63.5 | 12.6 | 60.5 | 58.2 | 2.3 (S) | 60.2 | 77.6 | −17.4 (A) |
MMV642550 | 62.9 | 42.3 | 78.1 | 54.6 | 23.5 (S) | 60.0 | 86.5 | −26.5 (A) |
MMV019724 | 62.0 | 32.5 | 74.8 | 82.1 | −7.3 (A) | 58.0 | 63.6 | −5.6 (A) |
AmphoB | 79.6 | 21.4 | NP | NP | NP | NP | NP | NP |
Posa | 63.4 | 6.5 | NP | NP | NP | NP | NP | NP |
Selectivity Index (SI) | |||||||
---|---|---|---|---|---|---|---|
Compound (µM) | CC50 a | R. oryzae | R. microsporus | R. stolonifer | |||
Planktonic Cell b | Preformed Biofilm c | Planktonic Cell b | Preformed Biofilm c | Planktonic Cell b | Preformed Biofilm c | ||
Alexidina MMV396785 | >50 | >40 | >20 | >40 | >20 | >79.4 | >20 |
MMV1580844 | >50 | >625 | ND | >625 | >156.3 | >625 | >312.5 |
MMV642550 | >50 | >20 | ND | >10 | >5 | >20 | >10 |
MMV019724 | >50 | >79.4 | >10 | >40 | >40 | >40 | >40 |
Compound | Lipinski’s RoF | Veber’s Rule | |||||
---|---|---|---|---|---|---|---|
MW | cLogP | HBA | HBD | nViol | TPSA (Å2) | nRotB | |
Alexidine | 581.71 | 4.88 | 4 | 6 | 2 | 177.6 | 23 |
MMV1580844 | 373.45 | 3.76 | 4 | 2 | 0 | 99.94 | 4 |
MMV642550 | 349.41 | 3.69 | 4 | 3 | 0 | 106.5 | 4 |
MMV019724 | 449.47 | 5.38 | 6 | 2 | 1 | 95.51 | 6 |
Posaconazole | 700.78 | 4.23 | 12 | 1 | 2 | 111.7 | 12 |
Amphotericin B | 924.08 | 0.32 | 18 | 12 | 3 | 319.6 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xisto, M.I.D.d.S.; Rollin-Pinheiro, R.; de Castro-Almeida, Y.; dos Santos-Freitas, G.M.P.; Rochetti, V.P.; Borba-Santos, L.P.; da Silva Fontes, Y.; Ferreira-Pereira, A.; Rozental, S.; Barreto-Bergter, E. Promising Antifungal Molecules against Mucormycosis Agents Identified from Pandemic Response Box®: In Vitro and In Silico Analyses. J. Fungi 2023, 9, 187. https://doi.org/10.3390/jof9020187
Xisto MIDdS, Rollin-Pinheiro R, de Castro-Almeida Y, dos Santos-Freitas GMP, Rochetti VP, Borba-Santos LP, da Silva Fontes Y, Ferreira-Pereira A, Rozental S, Barreto-Bergter E. Promising Antifungal Molecules against Mucormycosis Agents Identified from Pandemic Response Box®: In Vitro and In Silico Analyses. Journal of Fungi. 2023; 9(2):187. https://doi.org/10.3390/jof9020187
Chicago/Turabian StyleXisto, Mariana Ingrid Dutra da Silva, Rodrigo Rollin-Pinheiro, Yuri de Castro-Almeida, Giulia Maria Pires dos Santos-Freitas, Victor Pereira Rochetti, Luana Pereira Borba-Santos, Yasmin da Silva Fontes, Antonio Ferreira-Pereira, Sonia Rozental, and Eliana Barreto-Bergter. 2023. "Promising Antifungal Molecules against Mucormycosis Agents Identified from Pandemic Response Box®: In Vitro and In Silico Analyses" Journal of Fungi 9, no. 2: 187. https://doi.org/10.3390/jof9020187
APA StyleXisto, M. I. D. d. S., Rollin-Pinheiro, R., de Castro-Almeida, Y., dos Santos-Freitas, G. M. P., Rochetti, V. P., Borba-Santos, L. P., da Silva Fontes, Y., Ferreira-Pereira, A., Rozental, S., & Barreto-Bergter, E. (2023). Promising Antifungal Molecules against Mucormycosis Agents Identified from Pandemic Response Box®: In Vitro and In Silico Analyses. Journal of Fungi, 9(2), 187. https://doi.org/10.3390/jof9020187