Taxonomy and Phylogenetic Appraisal of Dothideomycetous Fungi Associated with Magnolia, Lilium longiflorum and Hedychium coronarium
<p>Phylogram generated from maximum likelihood analysis is based on combined LSU, SSU, and ITS sequence data. Related sequences of <span class="html-italic">Leptosphaeriaceae</span> were obtained from Doilom et al. [<a href="#B33-jof-08-01094" class="html-bibr">33</a>]. ML bootstrap values equal to or greater than 75% and Bayesian posterior probabilities (BYPP) equal to or greater than 0.95 are indicated above the branches. The tree was rooted to <span class="html-italic">Didymella exigua</span> (CBS 183.55). The newly generated sequences are indicated in red. Type and ex-type strains are in bold.</p> "> Figure 2
<p>Phylogram generated from maximum likelihood analysis is based on combined LSU, SSU, ITS, <span class="html-italic">tef1-α</span>, and <span class="html-italic">rpb2</span> sequence data. Related sequences of <span class="html-italic">Leptoparies</span> and closely related genera in <span class="html-italic">Lophiostomataceae</span> were obtained from Andreasen et al. [<a href="#B34-jof-08-01094" class="html-bibr">34</a>]. ML bootstrap values equal to or greater than 75% and Bayesian posterior probabilities (BYPP) equal to or greater than 0.95 are indicated above the branches. The tree was rooted to <span class="html-italic">Teichospora trabicola</span> (C134). The newly generated sequences are indicated in red. Type and ex-type strains are in bold.</p> "> Figure 3
<p>Phylogram generated from maximum likelihood analysis is based on combined LSU, SSU, ITS, and <span class="html-italic">tef1-α</span> sequence data. Related sequences of <span class="html-italic">Sulcatisporaceae</span> were obtained from Phukhamsakda et al. [<a href="#B35-jof-08-01094" class="html-bibr">35</a>,<a href="#B36-jof-08-01094" class="html-bibr">36</a>]. ML bootstrap values equal to or greater than 75% and Bayesian posterior probabilities (BYPP) equal to or greater than 0.95 are indicated above the branches. The tree was rooted to <span class="html-italic">Didymosphaeria rubi-ulmifolii</span> (MFLUCC 14-0024). The newly generated sequences are indicated in red. Type and ex-type strains are in bold.</p> "> Figure 4
<p>Phylogram generated from maximum likelihood analysis is based on combined LSU, ITS, SSU, <span class="html-italic">tef1-α</span>, and <span class="html-italic">rpb2</span> sequence data. Related sequences of <span class="html-italic">Teichosporaceae</span> were obtained from Tennakoon et al. [<a href="#B37-jof-08-01094" class="html-bibr">37</a>]. ML bootstrap values equal to or greater than 75% and Bayesian posterior probabilities (BYPP) equal to or greater than 0.95 are indicated above the branches. The tree was rooted to <span class="html-italic">Hermatomyces tectonae</span> (MFLUCC 14-1140) and <span class="html-italic">H. thailandica</span> (MFLUCC 14-1143). The newly generated sequences are indicated in red. Type and ex-type strains are in bold.</p> "> Figure 5
<p>Phylogram generated from maximum likelihood analysis is based on combined LSU, SSU, and ITS sequence data. Related sequences of <span class="html-italic">Kirschsteiniothelia</span> species were obtained from Sun et al. [<a href="#B38-jof-08-01094" class="html-bibr">38</a>]. ML bootstrap values equal to or greater than 75% and Bayesian posterior probabilities (BYPP) equal to or greater than 0.95 are indicated above the branches. The tree was rooted to <span class="html-italic">Pseudorobillarda eucalypti</span> (MFLUCC 12-0422) and <span class="html-italic">P. phragmitis</span> (CBS 398.61). The newly generated sequences are indicated in red. Type and ex-type strains are in bold.</p> "> Figure 6
<p><span class="html-italic">Sphaerellopsis paraphysata</span> (MFLU 19-2774, new host record). (<b>a</b>,<b>b</b>) Conidiomata on host. (<b>c</b>) Close-up of conidiomata on host. (<b>d</b>) Section through conidioma. (<b>e</b>) Conidiomatal wall. (<b>f</b>) Conidiogenous cells with developing conidia. (<b>g</b>–<b>k</b>) Conidia. (<b>l</b>) A germinating conidium. (<b>m</b>) Colony from above (on PDA). (<b>n</b>) Colony from below (on PDA). Scale bars: (<b>d</b>) = 50 µm, (<b>e</b>,<b>f</b>) = 5 µm, (<b>g</b>–<b>l</b>) = 8 µm.</p> "> Figure 7
<p><span class="html-italic">Leptoparies magnoliae</span> (MFLU 18-1291, holotype). (<b>a</b>) The specimen. (<b>b</b>,<b>c</b>) Appearance of ascomata on the host substrate. (<b>d</b>,<b>e</b>) Vertical sections through ascoma. (<b>f</b>) Peridium. (<b>g</b>,<b>h</b>) Pseudoparaphyses and asci. (<b>i</b>) Ascus. (<b>j</b>–<b>m</b>) Ascospores. Scale bars: (<b>a</b>) = 500 μm, (<b>b</b>,<b>c</b>) = 200 μm, (<b>d</b>,<b>e</b>) = 50 µm, (<b>g</b>–<b>i</b>) = 10 µm, (<b>f</b>,<b>j</b>–<b>m</b>) = 5 µm.</p> "> Figure 8
<p><span class="html-italic">Neobambusicola magnoliae</span> (HKAS 107122, holotype). (<b>a</b>–<b>c</b>) Appearance of conidiomata on substrate. (<b>d</b>,<b>e</b>) Vertical sections through conidiomata. (<b>f</b>) Conidiomatal wall. (<b>g</b>,<b>h</b>) Conidiogenous cells and developing conidia. (<b>i</b>–<b>m</b>) Conidia. Scale bars: (<b>c</b>) = 200 μm, (<b>d</b>,<b>e</b>) = 20 μm, (<b>f</b>–<b>m</b>) = 5 μm.</p> "> Figure 9
<p><span class="html-italic">Asymmetrispora zingiberacearum</span> (MFLU 19-2813, holotype). (<b>a</b>,<b>b</b>) Conidiomata on the host. (<b>c</b>) Section through conidioma. (<b>d</b>) Conidiomatal wall. (<b>e</b>,<b>f</b>) Conidiogenous cells and developing conidia. (<b>g</b>,<b>h</b>) Conidia. (<b>i</b>) A germinated conidium. (<b>j</b>) Colony from below (on PDA). (<b>k</b>) Colony from above (on PDA). Scale bars: (<b>c</b>) = 50 µm, (<b>d</b>) = 10 µm, (<b>e</b>–<b>i</b>) = 5 µm.</p> "> Figure 10
<p><span class="html-italic">Ramusculicola thailandica</span> (HKAS 107136, new host record). (<b>a</b>) The specimen. (<b>b</b>,<b>c</b>) Appearance of ascomata on substrate. (<b>d</b>,<b>e</b>) Vertical sections through ascoma. (<b>f</b>) Peridium. (<b>g</b>) Ascus and pseudoparaphyses. (<b>h</b>,<b>i</b>) Asci. (<b>j</b>–<b>m</b>) Ascospores. Scale bars: (<b>d</b>,<b>e</b>) = 50 μm, (<b>f</b>) = 10 μm, (<b>g</b>–<b>i</b>) = 20 μm, (<b>j</b>–<b>m</b>) = 10 μm.</p> "> Figure 11
<p><span class="html-italic">Kirschsteiniothelia thailandica</span> (HKAS 107110, new host record). (<b>a</b>–<b>c</b>) Colonies on natural substrate. (<b>d</b>) Conidiophore and Conidiogenous cell. (<b>e</b>–<b>g</b>) Conidia. (<b>h</b>) Conidiophores. (<b>i</b>–<b>k</b>) Conidia. Scale bars: (<b>c</b>) = 100 μm, (<b>d</b>–<b>k</b>) = 20 μm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection, Morphological Studies, and Isolation
2.2. DNA Extraction and PCR Amplification
2.3. Molecular Phylogenetic Analyses
3. Results
3.1. Phylogenetic Relationships
3.1.1. Pleosporales
Leptosphaeriaceae LSU, SSU, and ITS Phylogeny
Lophiostomataceae SSU, ITS, LSU, tef1-α, and rpb2 Phylogeny
Sulcatisporaceae LSU, ITS, SSU, and tef1-α Phylogeny
Teichosporaceae LSU, ITS, SSU, tef1-α, and rpb2 Phylogeny
3.1.2. Kirschteiniotheliales
Kirschsteiniothelia LSU, SSU, and ITS Phylogeny
3.2. Taxonomy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmit, J.P.; Mueller, G.M. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 2007, 16, 99–111. [Google Scholar] [CrossRef]
- Tang, A.M.C.; Jeewon, R.; Hyde, K.D. Successional patterns of microfungi in fallen leaves of Castanopsis fissa (Fagaceae) in Hong Kong forest. Can. J. Microbiol. 2005, 51, 967–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyde, K.D.; Norphanphoun, C.; Chen, J.; Dissanayake, A.J.; Doilom, M.; Hongsanan, S.; Jayawardena, R.S.; Jeewon, R.; Perera, R.H.; Thongbai, B.; et al. Thailand’s amazing diversity: Up to 96% of fungi in northern Thailand may be novel. Fungal Divers. 2018, 93, 215–239. [Google Scholar] [CrossRef]
- Mohamed, D.J.; Martiny, J.B. Patterns of fungal diversity and composition along a salinity gradient. ISME J. 2011, 5, 379–388. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Lu¨cking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017, 5, 5.4.10. [Google Scholar] [CrossRef]
- Hyde, K.D.; Jeewon, R.; Chen, Y.J.; Bhunjun, C.S.; Calabon, M.S.; Jiang, H.B.; Lin, C.G.; Norphanphoun, C.; Sysouphanthong, P.; Pem, D.; et al. The numbers of fungi: Is the descriptive curve flattening? Fungal Divers. 2020, 103, 219–271. [Google Scholar] [CrossRef]
- Guzman, G.G.; Heil, M. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytol. 2014, 201, 1106–1120. [Google Scholar] [CrossRef]
- Hyde, K.D.; Cai, L.; Jeewon, R. Tropical fungi. Mycol. Ser. 2005, 23, 93. [Google Scholar]
- Rudolph, S.; Maciá-Vicente, J.G.; Lotz-Winter, H.; Schleuning, M.; Piepenbring, M. Temporal variation of fungal diversity in a mosaic landscape in Germany. Stud. Mycol. 2018, 89, 95–104. [Google Scholar] [CrossRef]
- Costa, L.A.; Gusmão, L.F.P. Characterization saprobic fungi on leaf litter of two species of trees in the Atlantic Forest, Brazil. Braz. J. Microbiol. 2015, 46, 1027–1035. [Google Scholar] [CrossRef]
- Klamer, M.; Roberts, M.S.; Levine, L.H.; Drake, B.G.; Garland, J.L. Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis. Appl. Environ. Microbiol. 2002, 68, 4370–4376. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, H.E.; Parrent, J.L.; Jackson, J.A.; Moncalvo, J.M.; Vilgalys, R. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 2005, 71, 5544–5550. [Google Scholar] [CrossRef] [Green Version]
- Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D. Resource availability controls fungal diversity across a plant diversity gradient. Ecol. Lett. 2006, 9, 1127–1135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Crous, P.W.; Schoch, C.L.; Hyde, K.D. Pleosporales. Fungal Divers. 2012, 53, 1–221. [Google Scholar] [CrossRef] [Green Version]
- Barr, M.E. Prodromus to Class Loculoascomycetes; University of Massachusetts: Amherst, MA, USA, 1987. [Google Scholar]
- Barr, M.E. New taxa and combinations in the Loculoascomycetes. Mycotaxon 1987, 29, 501–505. [Google Scholar]
- Hongsanan, S.; Hyde, K.D.; Phookamsak, R.; Wanasinghe, D.N.; McKenzie, E.H.C.; Sarma, V.V.; Boonmee, S.; Lücking, R.; Bhat, D.J.; Liu, N.G.; et al. Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 2020, 11, 1553–2107. [Google Scholar] [CrossRef]
- Hernandez-Restrepo, M.; Gené, J.; Castañeda-Ruiz, R.F.; Mena-Portales, J.; Crous, P.W.; Guarro, J. Phylogeny of saprobic microfungi from Southern Europe. Stud. Mycol. 2017, 86, 53–97. [Google Scholar] [CrossRef]
- Senanayake, I.C.; Rathnayaka, A.R.; Marasinghe, D.S.; Calabon, M.S.; Gentekaki, E.; Lee, H.B.; Hurdeal, V.G.; Pem, D.; Dissanayake, L.S.; Wijesinghe, S.N.; et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preser-vation. Mycosphere 2020, 11, 2678–2754. [Google Scholar] [CrossRef]
- Jayasiri, S.C.; Hyde, K.D.; Ariyawansa, H.A.; Bhat, J.; Buyck, B.; Cai, L.; Dai, Y.C.; Abd-Elsalam, K.A.; Ertz, D.; Hidayat, I.; et al. The Faces of Fungi database, fungal names linked with morphology; phylogeny and human impacts. Fungal Divers. 2015, 74, 3–18. [Google Scholar] [CrossRef]
- Index Fungorum 2022. Available online: http://www.indexfungorum.org/names/Names.asp (accessed on 30 June 2022).
- Dissanayake, A.J.; Bhunjun, C.S.; Maharachchikumbura, S.S.N.; Liu, J.K. Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 2020, 11, 2652–2676. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Rehner, S.A. Primers for Elongation Factor 1-Alpha (EF1-Alpha). 2001. Available online: http://ocid.nacse.org/research/deephyphae/EF1primer.pdf (accessed on 1 January 2021).
- Yamada, K.D.; Tomii, K.; Katoh, K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 2016, 32, 3246–3251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Silvestro, D.; Michalak, I. RaxmlGUI: A graphical front–end for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [Google Scholar] [CrossRef]
- Posada, D.; Crandall, K.A. Modeltest: Testing the model of DNA substitution. Bioinformatics 1998, 14, 817–818. [Google Scholar] [CrossRef] [Green Version]
- Huelsenbeck, J.P.; Ronqvist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A. FigTree Version 1.4.0. Available online: https://tree.bio.ed.ac.uk/software/figtree (accessed on 1 June 2021).
- Doilom, M.; Hyde, K.D.; Dong, W.; Liao, C.F.; Suwannarach, N.; Lumyong, S. The plant family Asteraceae is a cache for novel fungal diversity: Novel species and genera with remarkable ascospores in Leptosphaeriaceae. Front. Microbiol. 2021, 12, 660261. [Google Scholar] [CrossRef]
- Andreasen, M.; Skrede, I.; Jaklitsch, W.M.; Voglmayr, H.; Nordén, B. Multi-locus phylogenetic analysis of lophiostomatoid fungi motivates a broad concept of Lophiostoma and reveals nine new species. Persoonia 2021, 46, 240–271. [Google Scholar] [CrossRef]
- Phukhamsakda, C.; Bhat, D.J.; Hongsanan, S.; Tibpromma, S.; Yang, J.B.; Promputtha, I. Magnicamarosporium diospyricola sp. nov. (Sulcatisporaceae) from Thailand. Mycosphere 2017, 8, 512–520. [Google Scholar] [CrossRef]
- Phukhamsakda, C.; McKenzie, E.H.; Phillips, A.J.; Jones, G.E.B.; Bhat, D.J.; Stadler, M.; Bhunjun, C.S.; Wanasinghe, D.N.; Thongbai, B.; Camporesi, E.; et al. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Divers. 2020, 102, 1–203. [Google Scholar] [CrossRef]
- Tennakoon, D.S.; Jeewon, R.; Thambugala, K.M.; Gentekaki, E.; Wanasinghe, D.N.; Promputtha, I.; Hyde, K.D. Biphasic taxonomic approaches for generic relatedness and phylogenetic relationships of Teichosporaceae. Fungal Divers. 2021, 110, 199–241. [Google Scholar] [CrossRef]
- Sun, Y.R.; Jayawardena, R.S.; Hyde, K.D.; Wang, Y. Kirschsteiniothelia thailandica sp. nov. (Kirschsteiniotheliaceae) from Thailand. Phytotaxa 2021, 490, 172–182. [Google Scholar] [CrossRef]
- Alves, J.L.; Woudenberg, J.H.C.; Duarte, L.L.; Crous, P.W.; Barreto, R.W. Reappraisal of the genus Alternariaster (Dothideomycetes). Persoonia 2013, 31, 77–85. [Google Scholar] [CrossRef] [Green Version]
- de Gruyter, J.; Woudenberg, J.H.C.; Aveskamp, M.M.; Verkley, G.J.M.; Groenewald, J.Z.; Crous, P.W. Redisposition of phoma-like anamorphs in Pleosporales. Stud. Mycol. 2013, 75, 114. [Google Scholar] [CrossRef] [Green Version]
- Ariyawansa, H.A.; Phukhamsakda, C.; Thambugala, K.M.; Bulgakov, T.S.; Wanasinghe, D.N.; Perera, R.H.; Mapook, A.; Camporesi, E.; Kang, J.C.; Jones, E.B.G.; et al. Revision and phylogeny of Leptosphaeriaceae. Fungal Divers. 2015, 74, 19–51. [Google Scholar] [CrossRef]
- Hyde, K.D.; Jones, E.B.; Liu, J.K.; Ariyawansa, H.; Boehm, E.; Boonmee, S.; Braun, U.; Chomnunti, P.; Crous, P.W.; Dai, D.Q.; et al. Families of Dothideomycetes. Fungal Divers. 2013, 63, 1–313. [Google Scholar] [CrossRef]
- Jones, E.B.G.; Suetrong, S.; Sakayaroj, J.; Bahkali, A.H.; Abdel-Wahab, M.A.; Boekhout, T.; Pang, K.L. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015, 73, 1–72. [Google Scholar] [CrossRef]
- Cooke, M.C. New American Fungi. Grevillea 1883, 12, 22–33. [Google Scholar]
- Trakunyingcharoen, T.; Lombard, L.; Groenewald, J.Z.; Cheewangkoon, R.; Toanun, C.; Alfenas, A.C.; Crous, P.W. Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera. IMA Fungus 2014, 5, 391–414. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Hardy, G.S.J.; Crane, C.; Barrett, S.; Cano-Lira, J.F.; Le Roux, J.J.; Thangavel, R.; Guarro, J.; et al. Fungal Planet description sheets: 469–557. Persoonia 2016, 37, 218–403. [Google Scholar] [CrossRef] [PubMed]
- Phookamsak, R.; Hyde, K.D.; Jeewon, R.; Bhat, D.J.; Jones, E.B.; Maharachchikumbura, S.S.; Raspé, O.; Karunarathna, S.C.; Wanasinghe, D.N.; Hongsanan, S.; et al. Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers. 2019, 95, 1–273. [Google Scholar] [CrossRef] [Green Version]
- Species Fungorum. Available online: http://www.speciesfungorum.org/names/Names.asp (accessed on 1 June 2022).
- Nitschke, T.R.J. Grundlage eines systems der Pyrenomyceten. Verh. Nat. Ver. Preuss. Rheinl. Westfal. Regier. Osnabrück 1869, 26, 70–77. [Google Scholar]
- Hirayama, K.; Tanaka, K. Taxonomic revision of Lophiostoma and Lophiotrema based on reevaluation of morphological characters and molecular analyses. Mycoscience 2011, 52, 401–412. [Google Scholar] [CrossRef]
- Thambugala, K.M.; Hyde, K.D.; Tanaka, K.; Tian, Q.; Wanasinghe, D.N.; Ariyawansa, H.A.; Jayasiri, S.C.; Boonmee, S.; Camporesi, E.; Hashimoto, A.; et al. Towards a natural classification and backbone tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov. Fungal Divers. 2015, 74, 199–266. [Google Scholar] [CrossRef]
- Hashimoto, A.; Hirayama, K.; Takahashi, H.; Matsumura, M.; Okada, G.; Chen, C.Y.; Huang, J.W.; Kakishima, M.; Ono, T.; Tanaka, K. Resolving the Lophiostoma bipolare complex: Generic delimitations within Lophiostomataceae. Stud. Mycol. 2018, 90, 161–189. [Google Scholar] [CrossRef]
- Tanaka, K.; Hirayama, K.; Yonezawa, H.; Sato, G.; Toriyabe, A.; Kudo, H.; Hashimoto, A.; Matsumura, M.; Harada, Y.; Kurihara, Y.; et al. Revision of the Massarineae (Pleosporales, Dothideomycetes). Stud. Mycol. 2015, 82, 75–136. [Google Scholar] [CrossRef] [Green Version]
- Wijayawardene, N.N.; Phillips, A.J.L.; Tibpromma, S.; Dai, D.Q.; Selbmann, L.; Monteiro, J.S.; Aptroot, A.; Flakus, A.; Rajeshkumar, K.C.; Coleine, C.; et al. Looking for the undiscovered asexual taxa: Case studies from lesser studied life modes and habitats. Mycosphere 2021, 12, 1186–1229. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Schumacher, R.K.; Summerell, B.A.; Giraldo, A.; Gené, J.; Guarro, J.; Wanasinghe, D.N.; Hyde, K.D.; Camporesi, E.; et al. Fungal Planet description sheets: 281–319. Persoonia 2014, 33, 212–289. [Google Scholar] [CrossRef]
- Barr, M.E. Teichosporaceae, another family in the Pleosporales. Mycotaxon 2002, 82, 373–389. [Google Scholar]
- Jaklitsch, W.M.; Olariaga, I.; Voglmayr, H. Teichospora and the Teichosporaceae. Mycol. Prog. 2016, 15, 31. [Google Scholar] [CrossRef] [Green Version]
- Jayasiri, S.C.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Jeewon, R.; Phillips, A.J.L.; Bhat, D.J.; Wanasinghe, D.N.; Liu, J.K.; Lu, Y.Z.; et al. Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 2019, 10, 1–186. [Google Scholar] [CrossRef]
- Boonmee, S.; Ko, T.W.K.; Chukeatirote, E.; Hyde, K.D.; Chen, H.; Cai, L.; McKenzie, E.H.; Jones, E.G.; Kodsueb, R.; Hassan, B.A. Two new Kirschsteiniotheli a species with dendryphiopsis anamorphs cluster in Kirschsteiniotheliaceae fam. nov. Mycologia 2012, 104, 698–714. [Google Scholar] [CrossRef]
- Hawksworth, D.L. Kirschsteiniothelia, a new genus for the Microthelia incrustans group (Dothideales). Bot. J. Linn. Soc. 1985, 91, 181–202. [Google Scholar] [CrossRef]
- Tanaka, N.; Kume, T.; Yoshifuji, N.; Tanaka, K.; Takizawa, H.; Shiraki, K.; Tantasirin, C.; Tangtham, N.; Suzuki, M. A review of evapotranspiration estimates from tropical forests in Thailand and adjacent regions. Agric. For. Meteorol. 2008, 148, 807–819. [Google Scholar] [CrossRef]
- Trisurat, Y.; Shirakawa, H.; Johnston, J.M. Land-use/land-cover change from socio-economic drivers and their impact on biodiversity in Nan Province, Thailand. Sustainability 2019, 11, 649. [Google Scholar] [CrossRef]
- Doilom, M.; Dissanayake, A.J.; Wanasinghe, D.N.; Boonmee, S.; Liu, J.K.; Bhat, D.J.; Taylor, J.E.; Bahkali, A.; McKenzie, E.H.; Hyde, K.D. Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Divers. 2017, 82, 107–182. [Google Scholar] [CrossRef]
- Tibpromma, S.; Hyde, K.D.; Bhat, J.D.; Mortimer, P.E.; Xu, J.; Promputtha, I.; Doilom, M.; Yang, J.B.; Tang, A.M.C.; Karunarathna, S.C. Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 2018, 33, 25–67. [Google Scholar] [CrossRef] [Green Version]
- Mapook, A.; Hyde, K.D.; McKenzie, E.H.; Jones, E.B.; Bhat, D.J.; Jeewon, R.; Stadler, M.; Samarakoon, M.C.; Malaithong, M.; Tanunchai, B.; et al. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Divers. 2020, 101, 1–175. [Google Scholar] [CrossRef]
- Tennakoon, D.S.; Kuo, C.H.; Maharachchikumbura, S.S.; Thambugala, K.M.; Gentekaki, E.; Phillips, A.J.; Bhat, D.J.; Wanasinghe, D.N.; de Silva, N.I.; Promputtha, I.; et al. Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Divers. 2021, 108, 1–215. [Google Scholar] [CrossRef]
- Mugambi, G.K.; Huhndorf, S.M. Molecular phylogenetics of Pleosporales: Melanommataceae and Lophiostomataceae recircumscribed (Plesporomycetidae, Dothideomycetes, Ascomycota). Stud. Mycol. 2009, 64, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, M.; Ii, K.; Okubo, H.; Huang, K.L.; Huang, C.W. Biogeography and origin of Lilium longiflorum and L. formosanum (Liliaceae) endemic to the Ryukyu Archipelago and Taiwan as determined by allozyme diversity. Am. J. Bot. 2001, 88, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- De Silva, N.I.; Maharachchikumbura, S.S.N.; Thambugala, K.M.; Bhat, D.J.; Karunarathna, S.C.; Tennakoon, D.S.; Phookamsak, R.; Jayawardena, R.S.; Lumyong, S.; Hyde, K.D. Morpho-molecular taxonomic studies reveal a high number of endophytic fungi from Magnolia candolli and M. garrettii in China and Thailand. Mycosphere 2021, 12, 163–237. [Google Scholar] [CrossRef]
- Nooteboom, H.P.; Chalermglin, P. The Magnoliaceae of Thailand. Thai For. Bull. 2009, 37, 111–138. [Google Scholar]
- Wanasinghe, D.N.; Wijayawardene, N.N.; Xu, J.; Cheewangkoon, R.; Mortimer, P.E. Taxonomic novelties in Magnolia-associated Pleosporalean fungi in the Kunming Botanical Gardens (Yunnan, China). PLoS ONE 2020, 15, e0235855. [Google Scholar] [CrossRef] [PubMed]
- Farr, D.F.; Rossman, A.Y. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Available online: https://nt.ars-grin.gov/fungaldatabases/ (accessed on 1 June 2022).
- Bao, D.F.; Luo, Z.L.; Liu, J.K.; Bhat, D.J.; Sarunya, N.; Li, W.L.; Su, H.Y.; Hyde, K.D. Lignicolous freshwater fungi in China III: Three new species and a new record of Kirschsteiniothelia from northwestern Yunnan Province. Mycosphere 2018, 9, 755–768. [Google Scholar] [CrossRef]
- Jaklitsch, W.M.; Checa, J.; Blanco, M.N.; Olariaga, I.; Tello, S.; Voglmayr, H. A preliminary account of the Cucurbitariaceae. Stud. Mycol. 2018, 90, 71–118. [Google Scholar] [CrossRef]
- Tennakoon, D.S.; Phookamsak, R.; Wanasinghe, D.N.; Yang, J.B.; Lumyong, S.; Hyde, K.D. Morphological and phylogenetic insights resolve Plenodomus sinensis (Leptosphaeriaceae) as a new species. Phytotaxa 2017, 324, 73–82. [Google Scholar] [CrossRef]
- Wanasinghe, D.N.; Camporesi, E.; Hu, D.M. Neoleptosphaeria jonesii sp. nov., a novel saprobic sexual species, in Leptosphaeriaceae. Mycosphere 2016, 7, 1368–1377. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, N.I.d.; Thambugala, K.M.; Tennakoon, D.S.; Karunarathna, S.C.; Kumla, J.; Suwannarach, N.; Lumyong, S. Taxonomy and Phylogenetic Appraisal of Dothideomycetous Fungi Associated with Magnolia, Lilium longiflorum and Hedychium coronarium. J. Fungi 2022, 8, 1094. https://doi.org/10.3390/jof8101094
Silva NId, Thambugala KM, Tennakoon DS, Karunarathna SC, Kumla J, Suwannarach N, Lumyong S. Taxonomy and Phylogenetic Appraisal of Dothideomycetous Fungi Associated with Magnolia, Lilium longiflorum and Hedychium coronarium. Journal of Fungi. 2022; 8(10):1094. https://doi.org/10.3390/jof8101094
Chicago/Turabian StyleSilva, Nimali I. de, Kasun M. Thambugala, Danushka S. Tennakoon, Samantha C. Karunarathna, Jaturong Kumla, Nakarin Suwannarach, and Saisamorn Lumyong. 2022. "Taxonomy and Phylogenetic Appraisal of Dothideomycetous Fungi Associated with Magnolia, Lilium longiflorum and Hedychium coronarium" Journal of Fungi 8, no. 10: 1094. https://doi.org/10.3390/jof8101094
APA StyleSilva, N. I. d., Thambugala, K. M., Tennakoon, D. S., Karunarathna, S. C., Kumla, J., Suwannarach, N., & Lumyong, S. (2022). Taxonomy and Phylogenetic Appraisal of Dothideomycetous Fungi Associated with Magnolia, Lilium longiflorum and Hedychium coronarium. Journal of Fungi, 8(10), 1094. https://doi.org/10.3390/jof8101094