Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi
<p>Maintenance of cell wall integrity by KexB in <span class="html-italic">Aspergillus oryzae</span>. KexB is predicted to be required for correct proteolytic processing of sensor proteins and cell wall–related enzymes, including α-1,3-glucan synthase. (<b>A</b>) In the wild-type (WT) strain, the cell wall integrity MAP kinase pathway (dashed square) is not activated (resting) under normal growth conditions (no cell wall perturbation). Pre-protein is transported from the endoplasmic reticulum to the Golgi apparatus, and is subsequently modified (e.g., glycosylated). (<b>B</b>) In the Δ<span class="html-italic">kexB</span> strain, the cell wall integrity pathway is constitutively activated, resulting in a substantial decrease in cell wall α-1,3-glucan. This decrease upregulates the transcription of cell wall–related genes and is compensated by an increase in chitin content and an increase in the degree of β-1,3-glucan polymerization. The crosses indicate no-function.</p> "> Figure 2
<p>Speculative model for biosynthesis and degradation of α-1,3-glucan in <span class="html-italic">Aspergillus nidulans</span>. (<b>A</b>) Cell wall α-1,3-glucan is mainly synthesized by AgsB. The putative amino acid sequence of AgsB is similar to that of Ags1p (<span class="html-italic">Schizosaccharomyces pombe</span> α-1,3-glucan synthase). Both proteins contain an extracellular domain, an intracellular domain, and a multitransmembrane domain. The substrate for α-1,3-glucan biosynthesis, UDP-glucose, is synthesized by GalF, which is a homolog of <span class="html-italic">Histoplasma capsulatum</span> UGP1 (UTP-glucose-1-phosphate uridylyltransferase). α-1,4-Glucooligosaccharide is thought to be necessary as a primer for α-1,3-glucan biosynthesis and is predicted to be produced by the intracellular α-amylase AmyG. The α-1,3-glucan chain might be synthesized by the intracellular domain of AgsB and then exported outside of the cell through the multitransmembrane domain. In the extracellular domain, two exported chains of α-1,3-glucan, each connected to the non-reducing end of the α-1,4-oligoglucan primer, are combined by transglycosylation, resulting in mature α-1,3-glucan containing a small amount of α-1,4-glucooligosaccharide. DP, degree of polymerization. (<b>B</b>) Under carbon starvation conditions, cell-wall α-1,3-glucan serves as a carbon source. The GPI-anchored α-amylase AmyD hydrolyzes α-1,4-glucooligosaccharide linked to the end of cell wall α-1,3-glucan, which accelerates α-1,3-glucan degradation by α-1,3-glucanases such as MutA and AgnB. The detailed mechanisms of this degradation remain unclear. Nigerooligosaccharides and glucose derived from α-1,3-glucan degradation are predicted to be imported into the cell and used as carbon sources in fructification. In, intracellular; Ex, extracellular.</p> "> Figure 3
<p>Various functions of α-1,3-glucan in fungi. (<b>A</b>) Swollen conidia of <span class="html-italic">Aspergillus</span> species aggregate in the presence of α-1,3-glucan, resulting in hyphal aggregates under liquid culture conditions. In contrast, germinating conidia of α-1,3-glucan-defcient mutants do not aggregate. The hyphae of these mutants are dispersed (<span class="html-italic">Aspergillus nidulans</span>) or form small pellets (<span class="html-italic">Aspergillus oryzae</span>) in liquid culture. (<b>B</b>) In the early stage of submerged culture of <span class="html-italic">A. oryzae</span>, TAA (Taka-amylase A) diffuses to liquid medium because α-1,3-glucan accumulates on the surface of the mycelial cell wall. In the late stage, cell wall α-1,3-glucan is degraded to be used as a carbon source, and chitin in the cell wall is exposed. Then TAA is adsorbed and retained on the cell surface. (<b>C</b>) In <span class="html-italic">Histoplasma capsulatum</span> chemotype II, α-1,3-glucan is found in the outer layer of the cell wall of the yeast form, where it covers β-1,3-glucan. The production of the cytokine TNFα by host macrophages is suppressed by α-1,3-glucan, resulting in the suppression of immune responses and pathogen’s colonization of host cells. The lack of α-1,3-glucan attenuates the ability of the pathogen to kill macrophages and to colonize lung cells. The crosses indicat no-invasion. (<b>D</b>) <span class="html-italic">Aspergillus fumigatus</span> conidia are rarely recognized by host macrophages because of the presence of α-1,3-glucan and a rodlet layer. Delayed host immune responses allow conidia to germinate. Conidia of the triple α-1,3-glucan synthase disruptant (Δ<span class="html-italic">ags</span>) are immediately recognized by macrophages and show an increased release of pathogen-associated molecular patterns (PAMPs), resulting in a strong innate immune response, The cross indicates no-infection. (<b>E</b>) In <span class="html-italic">Magnaporthe grisea</span>, α-1,3-glucan accumulates on the appressoria (AP) and germ tube, which makes them tolerant to chitinase digestion because β-1,3-glucan and chitin are masked by α-1,3-glucan. PAMP release is suppressed, and the pathogen infects the plant. In an α-1,3-glucan-deficient mutant, exposed β-1,3-glucan and chitin are digested by plant enzymes, resulting in release of PAMPs. The PAMPs are recognized by plant cells, leading to immune responses and pathogen killing. The cross indicates no-digestion.</p> ">
Abstract
:1. Introduction
2. Brief History of Studies on α-1,3-Glucan in Fungi
2.1. Functional Analysis of α-1,3-Glucan in Aspergillus nidulans before Whole-Genome Sequencing
2.2. Functional Analysis of α-1,3-Glucan in Aspergillus Species after Complete Genome Sequences Became Available
3. Biosynthesis of α-1,3-Glucan
3.1. Regulation of α-1,3-Glucan Biosynthesis in Filamentous Fungi: Cell Wall Integrity Signaling
3.2. Biosynthesis of α-1,3-Glucan in Schizosaccharomyces pombe
3.3. Intracellular Amylase
3.4. Other Enzymes Involved in α-1,3-Glucan Synthesis
4. Biological Functions of α-1,3-Glucan in Fungi
4.1. Function as an Aggregation Factor
4.2. Influence on Adsorption of α-Amylase onto the Cell Surface
4.3. Function as a Virulence Factor
4.3.1. Relationships between α-1,3-Glucan and Virulence in Pathogenic Yeasts
4.3.2. α-1,3-Glucan Is a Virulence Factor in Aspergillus fumigatus
4.3.3. α-1,3-Glucan Is a Virulence Factor in Magnaporthe grisea
5. Industrial Applications of α-1,3-Glucan Mutants
6. Conclusions and Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Latgè, J.P. Tasting the Fungal cell wall. Cell. Microbiol. 2010, 12, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Yoshimi, A.; Miyazawa, K.; Abe, K. Cell wall structure and biogenesis in Aspergillus species. Biosci. Biotechnol. Biochem. 2016, 80, 1700–1711. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Inoue, K.; Kitagawa, H.; Meguro, H.; Shimoi, S.; Park, P. Extracellular matrix (ECM) in phytopathogenic fungi: Its role and potential target for disease protection. In Plant Pathology; Cumagun, C.J., Ed.; InTechOpen Access Publisher: Rijeka, Croatia, 2012; pp. 131–150. ISBN 978-953-51-0489-6. [Google Scholar]
- Sheppard, D.C.; Howell, P.L. Biofilm exopolysaccharides of pathogenic fungi: Lessons from bacteria. J. Biol. Chem. 2016, 291, 12529–12537. [Google Scholar] [CrossRef] [PubMed]
- Bernard, M.; Latgè, J.P. Aspergillus fumigatus cell wall: Composition and biosynthesis. Med. Mycol. 2001, 39, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Johnston, I.R. The composition of the cell wall of Aspergillus niger. Biochem. J. 1965, 96, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Zonneveld, B.J.M. Biochemical analysis of the cell wall of Aspergillus nidulans. Biochim. Biophys. Acta 1971, 249, 506–514. [Google Scholar] [CrossRef]
- Zonneveld, B.J.M. The Significance of α-1,3-glucan of the cell wall and α-1,3-glucanase for cleistothecium development. Biochim. Biophys. Acta 1972, 273, 174–187. [Google Scholar] [CrossRef]
- Rappleye, C.A.; Engle, J.T.; Goldman, W.E. RNA interference in Histoplasma capsulatum demonstrates a role for α-(1,3)-glucan in virulence. Mol. Microbiol. 2004, 53, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Rappleye, C.A.; Eissenberg, L.G.; Goldman, W.E. Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc. Natl. Acad. Sci. USA 2007, 104, 1366–1370. [Google Scholar] [CrossRef] [PubMed]
- Beauvais, A.; Bozza, S.; Kniemeyer, O.; Formosa, C.; Balloy, V.; Henry, C.; Roberson, R.W.; Dague, E.; Chignard, M.; Brakhage, A.A.; et al. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog. 2013, 9, e1003716. [Google Scholar] [CrossRef]
- Fujikawa, T.; Kuga, Y.; Yano, S.; Yoshimi, A.; Tachiki, T.; Abe, K.; Nishimura, M. Dynamics of cell wall components of Magnaporthe grisea during infectious structure development. Mol. Microbiol. 2009, 73, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, T.; Sakaguchi, A.; Nishizawa, Y.; Kouzai, Y.; Minami, E.; Yano, S.; Koga, H.; Meshi, T.; Nishimiura, M. Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog. 2012, 8, e1002882. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, T.; Beauvais, A.; Loussert, C.; Thevenard, B.; Fulgsang, C.C.; Ohno, N.; Clavaud, C.; Prevost, M.C.; Latgé, J.P. Cell wall α1-3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal Genet. Biol. 2010, 47, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.; Latgé, J.P.; Beauvais, A. α1,3 Glucans are dispensable in Aspergillus fumigatus. Eukaryot. Cell 2012, 11, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Yoshimi, A.; Sano, M.; Inaba, A.; Kokubun, Y.; Fujioka, T.; Mizutani, O.; Hagiwara, D.; Fujikawa, T.; Nishimura, M.; Yano, S.; et al. Functional Analysis of the α-1,3-glucan synthase genes agsA and agsB in Aspergillus nidulans: AgsB is the major α-1,3-glucan synthase in this fungus. PLoS ONE 2013, 8, e54893. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Yoshimi, A.; Zhang, S.; Sano, M.; Nakayama, M.; Gomi, K.; Abe, K. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase. Biosci. Biotechnol. Biochem. 2016, 80, 1853–1863. [Google Scholar] [CrossRef] [PubMed]
- Puanglek, S.; Kimura, S.; Enomoto-Rogers, Y.; Kabe, T.; Yoshida, M.; Wada, M.; Iwata, T. In vitro synthesis of linear α-1,3-glucan and chemical modification to ester derivatives exhibiting outstanding thermal properties. Sci. Rep. 2016, 6, 30479. [Google Scholar] [CrossRef] [PubMed]
- Zonneveld, B.J.M. New type of enzyme, an exo-splitting α-1,3-glucanase from non-induced cultures of Aspergillus nidulans. Biochim. Biophys. Acta 1972, 258, 541. [Google Scholar] [CrossRef]
- Zonneveld, B.J.M. Inhibitory Effect of 2-deozyglucose on cell-wall α-1,3-glucan synthesis and cleistothecium development in Aspergillus nidulans. Dev. Biol. 1973, 34, 1–8. [Google Scholar] [CrossRef]
- Zonneveld, B.J.M. α-1,3-Glucan synthesis correlated with α-1,3-glucanase synthesis, conidiation and fructification in morphogenetic mutants of Aspergillus nidulans. J. Gen. Microbiol. 1974, 81, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Zonneveld, B.J.M. Sexual differentiation in Aspergillus nidulans—Requirement for manganese and its effect on α-1,3-glucan synthesis and degradation. Arch. Microbiol. 1975, 105, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Polacheck, I.; Rosenberger, R.F. Aspergillus nidulans mutant lacking α-(1,3)-glucan, melanin, and cleistothecia. J. Bacteriol. 1977, 132, 650–656. [Google Scholar] [PubMed]
- Wei, H.; Scherner, M.; Singh, A.; Liese, R.; Fischer, R. Aspergillus nidulans α-1,3 glucanase (mutanase), mutA, is expressed during sexual development and mobilizes mutan. Fungal Genet. Biol. 2001, 34, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Galagan, J.E.; Calvo, S.E.; Cuomo, C.; Ma, L.J.; Wortman, J.R.; Batzoglou, S.; Lee, S.I.; Baştürkmen, M.; Spevak, C.C.; Kapitonov, V.; et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 2005, 438, 1105–1115. [Google Scholar]
- Machida, M.; Asai, K.; Sano, M.; Tanaka, T.; Kumagai, T.; Terai, G.; Kusumoto, K.; Arima, T.; Akita, O.; Kashiwagi, Y.; et al. Genome sequencing and analysis of Aspergillus oryzae. Nature 2005, 438, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Nierman, W.C.; Pain, A.; Anderson, M.J.; Wortman, J.R.; Kim, H.S.; Arroyo, J.; Berriman, M.; Abe, K.; Archer, D.B.; Bermejo, C.; et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005, 438, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Pel, H.J.; de Winde, J.H.; Archer, D.B.; Dyer, P.S.; Hofmann, G.; Schaap, P.J.; Turner, G.; de Vries, R.P.; Albang, R.; Albermann, K.; et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 2007, 25, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Beauvais, A.; Maubon, D.; Park, S.; Morelle, W.; Tanguy, M.; Huerre, M.; Perlin, D.S.; Latgé, J.P. Two α(1-3)glucan synthases with different functions in Aspergillus fumigatus. Appl. Environ. Microbiol. 2005, 71, 1531–1538. [Google Scholar] [CrossRef] [PubMed]
- Maubon, D.; Park, S.; Tanguy, M.; Huerre, M.; Schmitt, C.; Prévost, M.C.; Perlin, D.S.; Latgé, J.P.; Beauvais, A. AGS3, an α(1-3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet. Biol. 2006, 43, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Damveld, R.A.; van Kuyk, P.A.; Arentshorst, M.; Klis, F.M.; van den Hondel, C.A.; Ram, A.F.J. Expression of agsA, one of five 1,3-α-D-glucan synthase-encoding genes in Aspergillus niger, is induced in response to cell wall stress. Fungal Genet. Biol. 2005, 42, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, T.; Mizutani, O.; Furukawa, K.; Sato, N.; Yoshimi, A.; Yamagata, Y.; Nakajima, T.; Abe, K. MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. Eukaryot. Cell 2007, 6, 1497–1510. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, S.; Kaminskyj, S.G.W. Characterization of Aspergillus nidulans α-glucan synthesis: Roles for two synthases and two amylases. Mol. Microbiol. 2014, 91, 579–595. [Google Scholar] [CrossRef] [PubMed]
- Van der Kaaij, R.M.; Yuan, X.L.; Franken, A.; Ram, A.F.J.; Punt, P.J.; van der Maarel, M.J.E.C.; Dijkhuizen, L. Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored α-glucanotransferase enzymes of Aspergillus niger. Eukaryot. Cell 2007, 6, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Yoshimi, A.; Abe, K. Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan. Unpublised work. 2017. [Google Scholar]
- Zhang, S.; Sato, H.; Ichinose, S.; Tanaka, M.; Miyazawa, K.; Yoshimi, A.; Abe, K.; Shintani, T.; Gomi, K. Cell wall α-1,3-glucan prevents α-amylase adsorption onto fungal cell in submerged culture of Aspergillus oryzae. J. Biosci. Bioeng. 2017, 124, 47–53. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, S.; Kaminskyj, S.G.W. An amylase-like protein, AmyD, is the major negative regulator for α-glucan synthesis in Aspergillus nidulans during the asexual life cycle. Int. J. Mol. Sci. 2017, 18, 695. [Google Scholar] [CrossRef] [PubMed]
- Van der Kaaij, R.M.; Janecek, S.; van der Maarel, M.J.E.C.; Dijkhuizen, L. Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal α-amylase enzymes. Microbiology 2007, 153, 4003–4015. [Google Scholar] [CrossRef] [PubMed]
- Van Munster, J.M.; Dobruchowska, J.M.; Veloo, R.; Dijkhuizen, L.; van der Maarel, M.J.E.C. Characterization of the starvation-induced chitinase and α-1,3-glucanase AgsB of Aspergillus niger. Appl. Microbiol. Biotechnol. 2015, 99, 2209–2223. [Google Scholar] [CrossRef] [PubMed]
- Levin, D.E. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway. Genetics 2011, 189, 1145–1175. [Google Scholar] [CrossRef] [PubMed]
- Verna, J.; Lodders, A.; Lee, K.H.; Vagts, A.; Ballester, R. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1997, 94, 13804–13809. [Google Scholar] [CrossRef] [PubMed]
- Lodders, A.L.; Lee, T.K.; Ballester, R. Characterization of the Wsc1 protein, a putative receptor in the stress response of Saccharomyces cerevisiae. Genetics 1999, 152, 1489–1499. [Google Scholar]
- Levin, D.E.; Fields, F.O.; Kunisawa, R.; Bishop, J.M.; Thorner, J. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 1990, 62, 213–224. [Google Scholar] [PubMed]
- Levin, D.E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2005, 69, 262–291. [Google Scholar] [CrossRef] [PubMed]
- Philip, B.; Levin, D.E. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that ant through Rom2, a guanine nucleotide exchange factor for Rho1. Mol. Cell. Biol. 2001, 21, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Kamada, Y.; Qadota, H.; Python, C.P.; Anraku, Y.; Ohya, Y.; Levin, D.E. Activation of yeast protein kinase C by Rho1 GTPase. J. Biol. Chem. 1996, 271, 9193–9196. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Levin, D.E. Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol. Cell. Biol. 1992, 12, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Irie, K.; Takase, M.; Lee, K.S.; Levin, D.E.; Araki, H.; Matsumoto, K.; Oshima, Y. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell. Biol. 1993, 13, 3076–3083. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.; Arroyo, J.; Sánchez, M.; Molina, M.; Nombela, C. Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 °C. Mol. Gen. Genet. 1993, 241, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.S.; Levin, D.E. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol. Microbiol. 1999, 34, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, O.; Nojima, A.; Yamamoto, M.; Furukawa, K.; Fujioka, T.; Yamagata, Y.; Abe, K.; Nakajima, T. Disordered cell integrity signaling caused by disruption of the kexB gene in Aspergillus oryzae. Eukaryot. Cell 2004, 3, 1036–1048. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, O.; Shiina, M.; Yoshimi, A.; Sano, M.; Watanabe, T.; Yamagata, Y.; Nakajima, T.; Gomi, K.; Abe, K. Substantial decrease in cell wall α-1,3-glucan caused by disruption of the kexB gene encoding a subtilisin-like processing protease in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 2016, 80, 1781–1791. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Nakamura, T.; Ohshima, T.; Tanaka, S.; Matsuo, H. Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem. Biophys. Res. Commun. 1988, 156, 246–254. [Google Scholar] [CrossRef]
- Fuller, R.S.; Brake, A.; Thorner, J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc. Natl. Acad. Sci. USA 1989, 86, 1434–1438. [Google Scholar] [CrossRef] [PubMed]
- Hochstenbach, F.; Klis, F.M.; van den Ende, H.; van Donselaar, E.; Peters, P.J.; Klausner, R.D. Identification of a putative α-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc. Natl. Acad. Sci. USA 1998, 95, 9161–9166. [Google Scholar] [CrossRef] [PubMed]
- Vos, A.; Dekker, N.; Distel, B.; Leunissen, J.A.; Hochstenbach, F. Role of the synthase domain of Ags1p in cell wall α-glucan biosynthesis in fission yeast. J. Biol. Chem. 2007, 282, 18969–18979. [Google Scholar] [CrossRef] [PubMed]
- Grün, C.H.; Hochstenbach, F.; Humbel, B.M.; Verkleij, A.J.; Sietsma, J.H.; Klis, F.M.; Kamerling, J.P.; Vliegenthart, J.F.G. The structure of cell wall α-glucan from fission yeast. Glycobiology 2005, 15, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Lomako, J.; Lomako, W.M.; Whelan, W.J. Glycogenin: The primer for mammalian and yeast glycogen synthesis. Biochim. Biophys. Acta 2004, 1673, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Marion, C.L.; Rappleye, C.A.; Engle, J.T.; Goldman, W.E. An α-(1,4)-amylase is essential for α-(1,3)-glucan production and virulence in Histoplasma capsulatum. Mol. Microbiol. 2006, 62, 970–983. [Google Scholar] [CrossRef] [PubMed]
- Camacho, E.; Sepulveda, V.E.; Goldman, W.E.; San-Blas, G.; Niño-Vega, G.A. Expression of Paracoccidioides brasiliensis AMY1 in a Histoplasma capsulatum amy1 mutant, relates an α-(1,4)-amylase to cell wall α-(1,3)-glucan synthesis. PLoS ONE 2012, 7, e50201. [Google Scholar] [CrossRef] [PubMed]
- Choma, A.; Wiater, A.; Komaniecka, I.; Paduch, R.; Pleszczyñska, M.; Szczodrak, J. Chemical characterization of a water insoluble (1→3)-α-d-glucan from an alkaline extract of Aspergillus wentii. Carbohydr. Polym. 2013, 91, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Wiater, A.; Paduch, R.; Choma, A.; Sylwia, S.; Pleszczynska, M.; Tomczyk, M.; Locatelli, M.; Szczodrak, J. (1→3)-α-D-Glucans from Aspergillus spp.: Structural characterization and biological study on their carboxymethylated derivatives. Curr. Drug Targets 2015, 16, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Maeda, Y.; Tanoue, N.; Makita, T.; Kato, M.; Kobayashi, T. Expression profile of amylolytic genes in Aspergillus nidulans. Biosci. Biotechnol. Biochem. 2006, 70, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, B.M.; Jorgensen, T.R.; Akeroyd, M.; Meyer, V.; Ram, A.F.J. The carbon starvation response of Aspergillus niger during submerged cultivation: Insight from the transcriptome and secretome. BMC Genomics 2012, 13, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimpel, K.R.; Goldman, W.E. Isolation and characterization of spontaneous avirulent variants of Histoplasma capsulatum. Infect. Immun. 1987, 55, 528–533. [Google Scholar] [PubMed]
- Sato, H.; Toyoshima, Y.; Shintani, T.; Gomi, K. Identification of potential cell wall component that allows Taka-amylase A adsorption in submerged cultures of Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2011, 92, 961–969. [Google Scholar] [CrossRef] [PubMed]
- San-Blas, F.; San-Blas, G.; Cova, L.J. A morphological mutant of Paracoccidioides brasiliensis strain IVIC Pb9. Isolation and wall characterization. J. Gen. Microbiol. 1976, 93, 209–218. [Google Scholar] [CrossRef] [PubMed]
- San-Blas, F.; Vernet, D. Induction of the synthesis of cell wall α-1,3-glucan in the yeastlike form of Paracoccidioides brasiliensis strain IVIC Pb9 by fetal calf serum. Infect. Immun. 1977, 15, 897–902. [Google Scholar] [PubMed]
- San-Blas, G.; San-Blas, F.; Serrano, L.E. Host-parasite relationships in the yeast form of Paracoccidioides brasiliensis strain IVIC Pb9. Infect. Immun. 1977, 15, 343–346. [Google Scholar] [PubMed]
- San-Blas, G.; San-Blas, F.; Ormaechea, E.; Serrano, L.E. Cell wall analysis of an adenine-requiring mutant of the yeast-like form of Paracoccidioides brasiliensis strain IVIC Pb9. Sabouraudia 1977, 15, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Klimpel, K.R.; Goldman, W.E. Cell walls from avirulent variants of Histoplasma capsulatum lack α-(1,3)-glucan. Infect. Immun. 1988, 56, 2997–3000. [Google Scholar] [PubMed]
- Hogan, L.H.; Klein, B.S. Altered expression of surface α-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect. Immun. 1994, 62, 3543–3546. [Google Scholar] [PubMed]
- Domer, J.E. Monosaccharide and chitin content of cell walls of Histoplasma capsulatum and Blastomyces dermatitidis. J. Bacteriol. 1971, 107, 870–877. [Google Scholar] [PubMed]
- Edwards, J.A.; Alore, E.A.; Rappleye, C.A. The yeast-phase requirement for α-glucan synthase differs among Histoplasma capsulatum chemotypes. Eukaryot. Cell 2011, 10, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Reese, A.J.; Doering, T.L. Cell wall α-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol. Microbiol. 2003, 50, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Reese, A.J.; Yoneda, A.; Breger, J.A.; Beauvais, A.; Liu, H.; Griffith, C.L.; Bose, I.; Kim, M.J.; Skau, C.; Yang, S.; et al. Loss of cell wall α(1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol. Microbiol. 2007, 63, 1385–1398. [Google Scholar] [CrossRef] [PubMed]
- Stephen-Victor, E.; Karnam, A.; Fontaine, T.; Beauvais, A.; Das, M.; Hegde, P.; Prakhae, P.; Holla, S.; Balaji, K.N.; Kaveri, S.V.; et al. Aspergillus fumigatus cell wall α-(1,3)-glucan stimulates regulatory T-cell polarization by inducing PD-L1 expression on human dendritic cells. J. Infect. Dis. 2017. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.S.; Possos, C.P.; Madureira, P.; Vilanova, M.; Coimbra, M.A. Structure-function relationships of immunostimulatory polysaccharides. Carbohydr. Polym. 2015, 132, 378–396. [Google Scholar] [CrossRef] [PubMed]
- Yoshimi, A.; Hirama, M.; Tsubota, Y.; Kawakami, K.; Zhang, S.; Gomi, K.; Abe, K. Characterization of cell wall α-1,3-glucan-deficient mutants in Aspergillus oryzae isolated by a screening method based on their sensitivity to Congo Red or Lysing Enzyme. J. Appl. Glycobiol. 2017, 64, 77–86. [Google Scholar] [CrossRef]
A. nidulans | A. fumigatus | A. oryzae | A. niger | ||||
---|---|---|---|---|---|---|---|
Gene | Phenotypes | Gene | Phenotypes | Gene | Phenotypes | Gene | Phenotypes |
α-1,3-Glucan synthases | |||||||
agsA | Expressed at a very low level [16] High expression level in ΔmpkA strain [32] | AGS2 | No change in α-1,3-glucan content in Δags2 strain [29] | agsA | Expressed at a very low level [36] | agsD | Not reported |
agsB | Main α-1,3-glucan synthase [16] Hyphal aggregation [16] Upregulated by micafungin treatment [32] | AGS1 | 50% reduction in α-1,3-glucan content in Δags1 strain [29] | agsB | Major α-1,3-glucan synthase [36] | agsE | Upregulated by CFW treatment [31] |
AGS3 | Hypervirulence in Δags3 strain [30] | agsC | Not directly involved in α-1,3-glucan synthesis [36] | agsA | Upregulated by CFW treatment [31] | ||
agsB | Not reported | ||||||
agsC | Downregulated by CFW treatment [31] | ||||||
Intracellular α-amylases | |||||||
amyG | Important for α-1,3-glucan synthesis [33,37] | 1 | Not reported | 2 | Not reported | amyD | Starch hydrolysis [38] |
1 | Not reported | ||||||
GPI-anchored α-amylases | |||||||
amyD | Degradation of α-1,3-glucan [33,37] | 3 | Not reported | 2 | Not reported | agtA | α-1,4-Glucano-transferase [34] |
agtB | α-1,4-Glucano-transferase [34] | ||||||
agtC | Not reported | ||||||
α-1,3-Glucanases | |||||||
mutA | Hülle cell localization [24] Hydrolysis of α-1,3-glucan [37] | Not annotated | Not annotated | agnB | α-1,3-Glucan hydrolysis [39] | ||
agnB | Hydrolysis of α-1,3-glucan [37] | agnE | Not reported | ||||
agnE | No α-1,3-glucan hydrolysis [37] | ||||||
2 | Not reported |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshimi, A.; Miyazawa, K.; Abe, K. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi. J. Fungi 2017, 3, 63. https://doi.org/10.3390/jof3040063
Yoshimi A, Miyazawa K, Abe K. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi. Journal of Fungi. 2017; 3(4):63. https://doi.org/10.3390/jof3040063
Chicago/Turabian StyleYoshimi, Akira, Ken Miyazawa, and Keietsu Abe. 2017. "Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi" Journal of Fungi 3, no. 4: 63. https://doi.org/10.3390/jof3040063
APA StyleYoshimi, A., Miyazawa, K., & Abe, K. (2017). Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi. Journal of Fungi, 3(4), 63. https://doi.org/10.3390/jof3040063