Towards Predictive Maintenance in the Maritime Industry: A Component-Based Overview
<p>Review structure.</p> "> Figure 2
<p>Comparison of ML training schemes: (<b>A</b>) CML, (<b>B</b>) FL, and (<b>C</b>) TL.</p> "> Figure 3
<p>Distinction between RUL, TTF, and TTR.</p> "> Figure 4
<p>Key factors contributing to propulsion system failures.</p> "> Figure 5
<p>Hybrid propulsion architectural configurations: (<b>A</b>) serial hybrid system, (<b>B</b>) serial–parallel hybrid system, and (<b>C</b>) parallel hybrid system [<a href="#B40-jmse-13-00425" class="html-bibr">40</a>].</p> "> Figure 6
<p>Comparison of traditional and electric power system configurations. (<b>A</b>) Internal Combustion Engine (ICE), (<b>B</b>) Lithium–Nickel–Manganese–Cobalt–Oxide (NMC) batteries, (<b>C</b>) Lithium–Iron–Phosphate (LFP) batteries, (<b>D</b>) Lithium–Titanium–Oxide (LTO) batteries [<a href="#B88-jmse-13-00425" class="html-bibr">88</a>].</p> "> Figure 7
<p>Illustration of marine vessel hull corrosion [<a href="#B105-jmse-13-00425" class="html-bibr">105</a>].</p> ">
Abstract
:1. Introduction
2. Maintenance Approaches Used in the Maritime Industry
2.1. Overview of Maintenance Strategies
2.2. Advanced Maintenance Methods: Model-Based and Machine Learning-Based
2.2.1. Physics-Based Methods for Predictive Maintenance
2.2.2. Data-Driven-Based Methods for Predictive Maintenance
- Supervised Learning relies on labeled datasets comprising both the input (X) and its corresponding output label (Y) to learn a mapping function (). Example supervised tasks in the maritime domain include classification and regression used, respectively, for the detection of machinery failure and for the proactive prediction of potential failures.
- Unsupervised Learning deals with the discovery of patterns within data lacking the labeled outputs. Widely used techniques within unsupervised learning include clustering and dimensionality reduction. Clustering enables the grouping of similar data points, while dimensionality reduction enables the reduction of data dimensions, while preserving their structure. Within the maritime domain, unsupervised learning algorithms can be used to identify patterns concerning fuel usage and abnormal mechanical behavior or to simplify complex maritime data for analysis and visualization.
- RL focuses on learning a policy on a specific environment, taking into consideration the costs and cumulative rewards with each action. Example applications of RL within the maritime domain include autonomous vessel navigation and PdM inspections scheduling optimization.
2.2.3. Techniques in Predictive Maintenance
- Remaining Useful Life (RUL) is defined as the remaining time for an asset to be able to perform functionally before reaching its End Of useful Life (EOL) [37]. Suppose is the predicted EOL time, while t is the current time, RUL can be expressed as:
- Time To Failure (TTF) is defined as the remaining time before an asset reaches failure. Unlike RUL, TTF focuses on calculating the absolute time of failure. The difference between TTF and RUL is illustrated in Figure 3 [38]. Suppose is the time at which failure occurs, while t is the current time, TTF can be expressed as:
- Time To Repair (TTR) is defined as the time required to repair a maritime asset to its normal operating condition [39]. Suppose is the time when the asset is fully restored, while is the failure time, and TTR can be expressed as:
3. Component-Based Analysis of PdM Approaches
3.1. Propulsion and Auxiliary Systems
- Single-fuel systems use conventional fuels, such as Marine Diesel Oil (MDO) and Heavy Fuel Oil (HFO), or alternative fuels, like Liquefied Natural Gas (LNG).
- Dual-fuel systems enable flexibility, running on a combination of fuels (i.e., LNG/diesel, methanol/diesel, etc.).
- Hybrid electric (HE) systems combine ICE and batteries to further improve efficiency and reduce emissions. HE systems have been increasingly adopted due to the national and regional regulations introduced in the last few years (e.g., the European Fit for 55 Package [43] and IMO’s Sulfur Cap [44]). In detail, HE systems are broadly classified into three main architectures based on the energy administration, namely serial, parallel, and hybrid. Under an HE topology, all vessel subsystems, from the power generators to the bridge navigational equipment, are connected to the main electrical grid using different converters [40].
3.2. Electrical Systems
- ICE remains the most common power technology employed today in the maritime industry. Although battery-driven systems offer environmental advantages, ICEs utilizing fuels like HFO or sulfur fuel oil provide higher volumetric energy density. Additionally, ICEs operate on a PM schedule and typically do not need to be replaced during a ship’s service life.
- LNMC cells are considered the most common battery type used in maritime vessels, characterized by their high energy capacity.
- Despite having a lower energy capacity at the cell level, LFP cells leverage prismatic form factors, enabling them to have tight packaging, improving energy density at the system level.
- LTO cells are preferred in high-powered hybrid configurations requiring durability under repetitive use, based on their high number of cycles [88].
3.3. Hull and Structural Components
- Corrosion: Corrosion is a natural and unavoidable phenomenon occurring at the outer surface of a ship’s hull. Specifically, through the hull’s prolonged interaction with the marine environment, different electrochemical reactions cause the metallic materials to oxidate, leading to the minimization of both structure density and flexibility [9,98]. An example of hull corrosion is showcased in Figure 7.
- Structural Fatigue: Structural deformations of ship hulls are, in the majority of cases, caused by repeated contact damage, such as that created by waves, berthing operations, or even from excessive stress from cargo overloading [98].
4. Current Challenges and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AIS | Automatic Identification System |
CESs | Cyber-Enabled Ships |
CODLAG | Combined Diesel–Electric and Gas |
DE | Diesel Engine |
DL | Deep Learning |
DT | Decision Tree |
EGT | Exhaust Gas Temperature |
ESS | Energy Storage System |
EWMA | Exponentially Weighted Moving Average |
FL | Federated Learning |
FNN | Feed-Forward Network |
FPSO | Floating Production Storage and Offloading |
GT | Gas Turbine |
HE | Hybrid Electric Propulsion |
HFO | Heavy Fuel Oil |
HVAC | Heating, Ventilation, and Air Conditioning |
IACS | International Association of Classification Societies |
ICE | Internal Combustion Engine |
IMO | International Maritime Organization |
IoS | Internet of Ships |
IT | Information Technology |
KF | Kalman Filter |
LAR | Least Absolute Residual |
LFP | Lithium–Iron–Phosphate |
LNG | Liquefied Natural Gas |
LNMC | Lithium–Nickel–Manganese–Cobalt–Oxide |
LR | Linear Regression |
LSTM | Long Short Term Memory |
LTO | Lithium–Titanium–Oxide |
MCN | Maritime Communication Network |
MDO | Marine Diesel Oil |
ML | Machine Learning |
OT | Operational Technology |
PCA | Principal Component Analysis |
PdM | Predictive Maintenance |
PF | Particle Filter |
PM | Preventive Maintenance |
PSO | Particle Swarm Optimization |
RF | Random Forest |
RL | Reinforcement Learning |
RM | Reactive Maintenance |
RNN | Recurrent Neural Network |
RUL | Remaining Useful Life |
SCC | Shore-based Control Center |
SOH | State-of-Health |
SOLAS | International Convention for the Safety of Life at Sea |
TL | Transfer Learning |
TTF | Time to Failure |
TTR | Time to Repair |
References
- United Nations (UN). Review of Maritime Transport 2024: Navigating Maritime Chokepoints; United Nations Publications: New York, NY, USA, 2024. [Google Scholar]
- Simion, D.; Postolache, F.; Fleacă, B.; Fleacă, E. AI-Driven Predictive Maintenance in Modern Maritime Transport—Enhancing Operational Efficiency and Reliability. Appl. Sci. 2024, 14, 9439. [Google Scholar] [CrossRef]
- Allianz Global Corporate & Specialty (AGCS). Safety and Shipping Review 2019: An Annual Review of Trends and Developments in Shipping Losses and Safety; AGCS: Munich, Germany, 2019. [Google Scholar]
- Aiello, G.; Giallanza, A.; Mascarella, G. Towards Shipping 4.0. A preliminary gap analysis. Procedia Manuf. 2020, 42, 24–29. [Google Scholar] [CrossRef]
- Kalafatelis, A.; Nomikos, N.; Giannopoulos, A.; Trakadas, P. A Survey on Predictive Maintenance in the Maritime Industry Using Machine and Federated Learning. TechRxiv 2024. [Google Scholar] [CrossRef]
- Wang, H.; Yan, R.; Au, M.H.; Wang, S.; Jin, Y.J. Federated learning for green shipping optimization and management. Adv. Eng. Inform. 2023, 56, 101994. [Google Scholar] [CrossRef]
- Zhang, Z.; Guan, C.; Chen, H.; Yang, X.; Gong, W.; Yang, A. Adaptive privacy-preserving federated learning for fault diagnosis in internet of ships. IEEE Internet Things J. 2021, 9, 6844–6854. [Google Scholar] [CrossRef]
- Xylouris, G.; Nomikos, N.; Kalafatelis, A.; Giannopoulos, A.; Spantideas, S.; Trakadas, P. Sailing into the future: Technologies, challenges, and opportunities for maritime communication networks in the 6G era. Front. Commun. Netw. 2024, 5, 1439529. [Google Scholar] [CrossRef]
- Ali, A.A.I.M.; Imran, M.M.H.; Jamaludin, S.; Ayob, A.F.M.; Russtam, M.I.; Suhrab, S.M.N.; Basri, S.B.H.; Mohamed, S.B. A review of predictive maintenance approaches for corrosion detection and maintenance of marine structures. J. Sustain. Sci. Manag. 2024, 19, 182–202. [Google Scholar]
- Zhang, P.; Gao, Z.; Cao, L.; Dong, F.; Zou, Y.; Wang, K.; Zhang, Y.; Sun, P. Marine systems and equipment prognostics and health management: A systematic review from health condition monitoring to maintenance strategy. Machines 2022, 10, 72. [Google Scholar] [CrossRef]
- Liang, Q.; Knutsen, K.E.; Vanem, E.; Æsøy, V.; Zhang, H. A review of maritime equipment prognostics health management from a classification society perspective. Ocean Eng. 2024, 301, 117619. [Google Scholar] [CrossRef]
- Barata, J.; Soares, C.G.; Marseguerra, M.; Zio, E. Simulation modelling of repairable multi-component deteriorating systems for ‘on condition’maintenance optimisation. Reliab. Eng. Syst. Saf. 2002, 76, 255–264. [Google Scholar] [CrossRef]
- Karatuğ, Ç.; Arslanoğlu, Y.; Soares, C.G. Review of maintenance strategies for ship machinery systems. J. Mar. Eng. Technol. 2023, 22, 233–247. [Google Scholar] [CrossRef]
- International Maritime Organization (IMO). International Convention for the Safety of Life At Sea (SOLAS); IMO: London, UK, 2002. [Google Scholar]
- IMO. Survey Guidelines Under the Harmonized System of Survey and Certification (HSSC), Resolution A.1120(30); IMO: London, UK, 2017. [Google Scholar]
- Basri, E.I.; Razak, I.H.A.; Ab-Samat, H.; Kamaruddin, S. Preventive maintenance (PM) planning: A review. J. Qual. Maint. Eng. 2017, 23, 114–143. [Google Scholar] [CrossRef]
- Ahmad, R.; Kamaruddin, S. An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 2012, 63, 135–149. [Google Scholar] [CrossRef]
- Cvrk, S.; Ilijević, D. Application of diagnostics as a basis of condition based maintenance of the marine propulsion diesel engine. Brodogr. Int. J. Nav. Archit. Ocean Eng. Res. Dev. 2020, 71, 119–134. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, J.; Wang, Z. Quantum assimilation-based state-of-health assessment and remaining useful life estimation for electronic systems. IEEE Trans. Ind. Electron. 2015, 63, 2379–2390. [Google Scholar] [CrossRef]
- Skordilis, E.; Moghaddass, R. A condition monitoring approach for real-time monitoring of degrading systems using Kalman filter and logistic regression. Int. J. Prod. Res. 2017, 55, 5579–5596. [Google Scholar] [CrossRef]
- Wang, J.; Yin, H. Failure rate prediction model of substation equipment based on Weibull distribution and time series analysis. IEEE Access 2019, 7, 85298–85309. [Google Scholar] [CrossRef]
- de la Peña Zarzuelo, I.; Soeane, M.J.F.; Bermúdez, B.L. Industry 4.0 in the port and maritime industry: A literature review. J. Ind. Inf. Integr. 2020, 20, 100173. [Google Scholar] [CrossRef]
- Kavallieratos, G.; Diamantopoulou, V.; Katsikas, S.K. Shipping 4.0: Security requirements for the cyber-enabled ship. IEEE Trans. Ind. Inform. 2020, 16, 6617–6625. [Google Scholar] [CrossRef]
- Gómez Ruiz, M.Á.; de Almeida, I.M.; Pérez Fernández, R. Application of Machine Learning Techniques to the Maritime Industry. J. Mar. Sci. Eng. 2023, 11, 1820. [Google Scholar] [CrossRef]
- Angelopoulos, A.; Giannopoulos, A.; Nomikos, N.; Kalafatelis, A.; Hatziefremidis, A.; Trakadas, P. Federated Learning-Aided Prognostics in the Shipping 4.0: Principles, Workflow, and Use Cases. IEEE Access 2024, 12, 6437–6454. [Google Scholar] [CrossRef]
- Achouch, M.; Dimitrova, M.; Ziane, K.; Sattarpanah Karganroudi, S.; Dhouib, R.; Ibrahim, H.; Adda, M. On predictive maintenance in industry 4.0: Overview, models, and challenges. Appl. Sci. 2022, 12, 8081. [Google Scholar] [CrossRef]
- Kalafatelis, A.S.; Trochoutsos, C.; Giannopoulos, A.E.; Angelopoulos, A.; Trakadas, P. A Stacking Ensemble Learning Model for Waste Prediction in Offset Printing. In Proceedings of the 2023 10th International Conference on Industrial Engineering and Applications, Rome, Italy, 9–11 January 2023; pp. 267–272. [Google Scholar]
- Zheng, H.; Paiva, A.R.; Gurciullo, C.S. Advancing from predictive maintenance to intelligent maintenance with ai and iiot. arXiv 2020, arXiv:2009.00351. [Google Scholar]
- Durlik, I.; Miller, T.; Dorobczyński, L.; Kozlovska, P.; Kostecki, T. Revolutionizing marine traffic management: A comprehensive review of machine learning applications in complex maritime systems. Appl. Sci. 2023, 13, 8099. [Google Scholar] [CrossRef]
- Nomikos, N.; Giannopoulos, A.; Kalafatelis, A.; Özduran, V.; Trakadas, P.; Karagiannidis, G.K. Improving connectivity in 6G maritime communication networks with UAV swarms. IEEE Access 2024, 12, 18739–18751. [Google Scholar] [CrossRef]
- Sarlas, A.; Kalafatelis, A.; Alexandridis, G.; Kourtis, M.A.; Trakadas, P. Exploring federated learning for speech-based parkinson’s disease detection. In Proceedings of the 18th International Conference on Availability, Reliability and Security, Benevento, Italy, 29 August–1 September 2023; pp. 1–6. [Google Scholar]
- Giannopoulos, A.; Gkonis, P.; Bithas, P.; Nomikos, N.; Kalafatelis, A.; Trakadas, P. Federated learning for maritime environments: Use cases, experimental results, and open issues. J. Mar. Sci. Eng. 2024, 12, 1034. [Google Scholar] [CrossRef]
- Han, C.; Yang, T. Privacy protection technology of maritime multi-agent communication based on part-federated learning. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Xiamen, China, 28–30 July 2021; pp. 266–271. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Es-Sakali, N.; Cherkaoui, M.; Mghazli, M.O.; Naimi, Z. Review of predictive maintenance algorithms applied to HVAC systems. Energy Rep. 2022, 8, 1003–1012. [Google Scholar] [CrossRef]
- Kalafatelis, A.S.; Nomikos, N.; Angelopoulos, A.; Trochoutsos, C.; Trakadas, P. An Effective Methodology for Imbalanced Data Handling in Predictive Maintenance for Offset Printing. In Proceedings of the International Conference on Mechatronics and Control Engineering, Athens, Greece, 29–31 January 2023; Springer: Berlin/Heidelberg, Germany, 2024; pp. 89–98. [Google Scholar]
- Okoh, C.; Roy, R.; Mehnen, J.; Redding, L. Overview of remaining useful life prediction techniques in through-life engineering services. Procedia Cirp 2014, 16, 158–163. [Google Scholar] [CrossRef]
- Galar, D.; Kumar, U.; Lee, J.; Zhao, W. Remaining useful life estimation using time trajectory tracking and support vector machines. In Journal of Physics: Conference Series 364; IOP Publishing: Bristol, UK, 2012; Volume 364, p. 012063. [Google Scholar]
- Alhilman, J.; Atmaji, F.T.D.; Athari, N. Software application for maintenance system: A combination of maintenance methods in printing industry. In Proceedings of the 2017 IEEE 5th International Conference on Information and Communication Technology (ICoIC7), Melaka, Malaysia, 17–19 May 2017; pp. 1–6. [Google Scholar]
- Inal, O.B.; Charpentier, J.F.; Deniz, C. Hybrid power and propulsion systems for ships: Current status and future challenges. Renew. Sustain. Energy Rev. 2022, 156, 111965. [Google Scholar] [CrossRef]
- Joung, T.H.; Kang, S.G.; Lee, J.K.; Ahn, J. The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. J. Int. Marit. Safety, Environ. Aff. Shipp. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Ni, P.; Wang, X.; Li, H. A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines. Fuel 2020, 279, 118477. [Google Scholar] [CrossRef]
- Erbach, G.; Jensen, L. Fit for 55 Package; EPRS, European Parliament: Brussels, Belgium, 2022. [Google Scholar]
- Zannis, T.C.; Katsanis, J.S.; Christopoulos, G.P.; Yfantis, E.A.; Papagiannakis, R.G.; Pariotis, E.G.; Rakopoulos, D.C.; Rakopoulos, C.D.; Vallis, A.G. Marine exhaust gas treatment systems for compliance with the IMO 2020 global sulfur cap and tier III NOx limits: A review. Energies 2022, 15, 3638. [Google Scholar] [CrossRef]
- Goldsworthy, B.; Goldsworthy, L. Assigning machinery power values for estimating ship exhaust emissions: Comparison of auxiliary power schemes. Sci. Total Environ. 2019, 657, 963–977. [Google Scholar] [CrossRef] [PubMed]
- Martinović, D.; Tudor, M.; Bernečić, D. A model of ship auxiliary system for reliable ship propulsion. Promet-Traffic Transp. 2012, 24, 125–134. [Google Scholar] [CrossRef]
- Vizentin, G.; Vukelic, G.; Murawski, L.; Recho, N.; Orovic, J. Marine propulsion system failures—A review. J. Mar. Sci. Eng. 2020, 8, 662. [Google Scholar] [CrossRef]
- Cai, C.; Weng, X.; Zhang, C. A novel approach for marine diesel engine fault diagnosis. Clust. Comput. 2017, 20, 1691–1702. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Bi, F.; Bi, X.; Shao, K. Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension. Mech. Syst. Signal Process. 2013, 41, 581–597. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Zhang, C.; Ma, X. An integrated methodology for system-level early fault detection and isolation. Expert Syst. Appl. 2022, 201, 117080. [Google Scholar] [CrossRef]
- Xu, X.; Yan, X.; Sheng, C.; Yuan, C.; Xu, D.; Yang, J. A belief rule-based expert system for fault diagnosis of marine diesel engines. IEEE Trans. Syst. Man Cybern. Syst. 2017, 50, 656–672. [Google Scholar] [CrossRef]
- Velasco-Gallego, C.; Lazakis, I. RADIS: A real-time anomaly detection intelligent system for fault diagnosis of marine machinery. Expert Syst. Appl. 2022, 204, 117634. [Google Scholar] [CrossRef]
- Bai, H.; Zhan, X.; Yan, H.; Wen, L.; Jia, X. Combination of optimized variational mode decomposition and deep transfer learning: A better fault diagnosis approach for diesel engines. Electronics 2022, 11, 1969. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, X.; Li, Y.; Liu, J.; Li, S. Fault detection and diagnosis of marine diesel engines: A systematic review. Ocean Eng. 2024, 294, 116798. [Google Scholar] [CrossRef]
- Cheliotis, M.; Lazakis, I.; Theotokatos, G. Machine learning and data-driven fault detection for ship systems operations. Ocean Eng. 2020, 216, 107968. [Google Scholar] [CrossRef]
- Kang, Y.J.; Noh, Y.; Jang, M.S.; Park, S.; Kim, J.T. Hierarchical level fault detection and diagnosis of ship engine systems. Expert Syst. Appl. 2023, 213, 118814. [Google Scholar] [CrossRef]
- Laake, P.; Benestad, H.B.; Olsen, B.R. Research in Medical and Biological Sciences: From Planning and Preparation to Grant Application and Publication; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Filzmoser, P.; Nordhausen, K. Robust linear regression for high-dimensional data: An overview. Wiley Interdiscip. Rev. Comput. Stat. 2021, 13, e1524. [Google Scholar] [CrossRef]
- Teng, J.; Yuan, Y. Inject Machine Learning into Significance Test for Misspecified Linear Models. arXiv 2020, arXiv:2006.03167. [Google Scholar]
- Hurtado, J.; Salvati, D.; Semola, R.; Bosio, M.; Lomonaco, V. Continual learning for predictive maintenance: Overview and challenges. Intell. Syst. Appl. 2023, 19, 200251. [Google Scholar] [CrossRef]
- Coraddu, A.; Oneto, L.; Ghio, A.; Savio, S.; Anguita, D.; Figari, M. Machine learning approaches for improving condition-based maintenance of naval propulsion plants. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2016, 230, 136–153. [Google Scholar] [CrossRef]
- Coraddu, A.; Oneto, L.; Ghio, A.; Savio, S.; Figari, M.; Anguita, D. Machine learning for wear forecasting of naval assets for condition-based maintenance applications. In Proceedings of the 2015 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), Aachen, Germany, 3–5 March 2015; pp. 1–5. [Google Scholar]
- Vorkapić, A.; Radonja, R.; Babić, K.; Martinčić-Ipšić, S. Machine learning methods in monitoring operating behaviour of marine two-stroke diesel engine. Transport 2020, 35, 474–485. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Z.; Shao, Y. Fast Support Vector Machine With Low-Computational Complexity for Large-Scale Classification. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 4151–4163. [Google Scholar] [CrossRef]
- Wu, C.H.; Tzeng, G.H.; Lin, R.H. A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst. Appl. 2009, 36, 4725–4735. [Google Scholar] [CrossRef]
- Lorencin, I.; Anđelić, N.; Mrzljak, V.; Car, Z. Multilayer perceptron approach to condition-based maintenance of marine CODLAG propulsion system components. Pomorstvo 2019, 33, 181–190. [Google Scholar] [CrossRef]
- Guerrero, D.P.; Jiménez-Espadafor, F.J. Torsional system dynamics of low speed diesel engines based on instantaneous torque: Application to engine diagnosis. Mech. Syst. Signal Process. 2019, 116, 858–878. [Google Scholar] [CrossRef]
- Jabbar, H.; Khan, R.Z. Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study). Comput. Sci. Commun. Instrum. Devices 2015, 70, 978–981. [Google Scholar]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Han, P.; Ellefsen, A.L.; Li, G.; Æsøy, V.; Zhang, H. Fault prognostics using LSTM networks: Application to marine diesel engine. IEEE Sens. J. 2021, 21, 25986–25994. [Google Scholar] [CrossRef]
- Gribbestad, M.; Hassan, M.U.; Hameed, I.A. Transfer learning for Prognostics and health Management (PHM) of marine Air Compressors. J. Mar. Sci. Eng. 2021, 9, 47. [Google Scholar] [CrossRef]
- Kang, J.; Park, J.; Choi, S.; Sim, J. Q-LAtte: An Efficient and Versatile LSTM Model for Quantized Attention-Based Time Series Forecasting in Building Energy Applications. IEEE Access 2024, 12, 69325–69341. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Networks Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, K. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Ji, Z.; Gan, H.; Liu, B. A deep learning-based fault warning model for exhaust temperature prediction and fault warning of marine diesel engine. J. Mar. Sci. Eng. 2023, 11, 1509. [Google Scholar] [CrossRef]
- Li, X.; Cao, H.; Ma, Z. Research on Remaining Useful Life Prediction of Dual-fuel Main EngineBased on CBAM Attention Mechanism. In Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms, Beijing, China, 21–23 July 2023; pp. 91–99. [Google Scholar]
- Liu, B.; Gan, H.; Chen, D.; Shu, Z. Research on fault early warning of marine diesel engine based on CNN-BiGRU. J. Mar. Sci. Eng. 2022, 11, 56. [Google Scholar] [CrossRef]
- Kalafatelis, A.S.; Stamou, N.; Dailani, A.; Theodoridis, T.; Nomikos, N.; Giannopoulos, A.; Tsoulakos, N.; Alexandridis, G.; Trakadas, P. A Lightweight Predictive Maintenance Strategy for Marine HFO Purification Systems. In Proceedings of the 21st European Mediterranean Middle Eastern Conference on Information Systems (EMCIS), Athens, Greece, 2–3 September 2024. [Google Scholar]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef]
- Santos, C.F.G.D.; Papa, J.P. Avoiding overfitting: A survey on regularization methods for convolutional neural networks. ACM Comput. Surv. CSUR 2022, 54, 1–25. [Google Scholar] [CrossRef]
- Thanapol, P.; Lavangnananda, K.; Bouvry, P.; Pinel, F.; Leprévost, F. Reducing overfitting and improving generalization in training convolutional neural network (CNN) under limited sample sizes in image recognition. In Proceedings of the 2020—5th IEEE International Conference on Information Technology (InCIT), Chonburi, Thailand, 21–22 October 2020; pp. 300–305. [Google Scholar]
- Bei, Z.; Wang, J.; Li, Y.; Wang, H.; Li, M.; Qian, F.; Xu, W. Challenges and Solutions of Ship Power System Electrification. Energies 2024, 17, 3311. [Google Scholar] [CrossRef]
- Zahedi, B.; Norum, L.E.; Ludvigsen, K.B. Optimized efficiency of all-electric ships by dc hybrid power systems. J. Power Sources 2014, 255, 341–354. [Google Scholar] [CrossRef]
- Wu, P.; Partridge, J.; Bucknall, R. Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships. Appl. Energy 2020, 275, 115258. [Google Scholar] [CrossRef]
- Kistner, L.; Schubert, F.L.; Minke, C.; Bensmann, A.; Hanke-Rauschenbach, R. Techno-economic and environmental comparison of internal combustion engines and solid oxide fuel cells for ship applications. J. Power Sources 2021, 508, 230328. [Google Scholar] [CrossRef]
- Kolodziejski, M.; Michalska-Pozoga, I. Battery energy storage systems in ships’ hybrid/electric propulsion systems. Energies 2023, 16, 1122. [Google Scholar] [CrossRef]
- Kistner, L.; Bensmann, A.; Hanke-Rauschenbach, R. Potentials and limitations of battery-electric container ship propulsion systems. Energy Convers. Manag. X 2024, 21, 100507. [Google Scholar] [CrossRef]
- Tang, W.; Roman, D.; Dickie, R.; Robu, V.; Flynn, D. Prognostics and health management for the optimization of marine hybrid energy systems. Energies 2020, 13, 4676. [Google Scholar] [CrossRef]
- Schmolck, A.; Everson, R. Smooth relevance vector machine: A smoothness prior extension of the RVM. Mach. Learn. 2007, 68, 107–135. [Google Scholar] [CrossRef]
- Bishop, C.M.; Tipping, M. Variational relevance vector machines. arXiv 2013, arXiv:1301.3838. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Aidan, N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS): Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. itransformer: Inverted transformers are effective for time series forecasting. arXiv 2023, arXiv:2310.06625. [Google Scholar]
- Liu, Y.; Jin, H.; Yang, X.; Tang, T.; Song, Q.; Chen, Y.; Liu, L.; Jiang, S. Early Fault Diagnosis and Prediction of Marine Large-Capacity Batteries Based on Real Data. J. Mar. Sci. Eng. 2024, 12, 2253. [Google Scholar] [CrossRef]
- Yang, X.; Yan, B.; Li, H.; Chen, Y. ReTransformer: ReRAM-based processing-in-memory architecture for transformer acceleration. In Proceedings of the 39th International Conference on Computer-Aided Design, Virtual, 2–5 November 2020; pp. 1–9. [Google Scholar]
- Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. CSUR 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Karandika, N.; Knutsen, K.; Wang, S.; Løvoll, G. Federated Learning on Trusted Data for Distributed PHM Data Analysis. In Proceedings of the PHM Conference, Turin, Italy, 6–8 July 2022. [Google Scholar]
- Lin, B.; Dong, X. Ship hull inspection: A survey. Ocean Eng. 2023, 289, 116281. [Google Scholar] [CrossRef]
- Wen, F.; Pray, J.; McSweeney, K.; Gu, H. Emerging inspection technologies–enabling remote surveys/inspections. In Proceedings of the Offshore Technology Conference, OTC, Houston, TX, USA, 6–9 May 2019; p. D011S002R003. [Google Scholar]
- Melnyk, O.; Onyshchenko, S.; Onishchenko, O.; Shibaev, O.; Volyanskaya, Y. A Comprehensive Approach to Structural Integrity Analysis and Maintenance Strategy for Ship’s Hull. J. Marit. Res. 2024, 21, 36–44. [Google Scholar]
- Townsin, R. The ship hull fouling penalty. Biofouling 2003, 19, 9–15. [Google Scholar] [CrossRef]
- Moser, C.S.; Wier, T.P.; Grant, J.F.; First, M.R.; Tamburri, M.N.; Ruiz, G.M.; Miller, A.W.; Drake, L.A. Quantifying the total wetted surface area of the world fleet: A first step in determining the potential extent of ships’ biofouling. Biol. Invasions 2016, 18, 265–277. [Google Scholar] [CrossRef]
- Valchev, I.; Coraddu, A.; Kalikatzarakis, M.; Geertsma, R.; Oneto, L. Numerical methods for monitoring and evaluating the biofouling state and effects on vessels’ hull and propeller performance: A review. Ocean Eng. 2022, 251, 110883. [Google Scholar] [CrossRef]
- Davies, J.; Truong-Ba, H.; Cholette, M.E.; Will, G. Optimal inspections and maintenance planning for anti-corrosion coating failure on ships using non-homogeneous Poisson Processes. Ocean Eng. 2021, 238, 109695. [Google Scholar] [CrossRef]
- Chliveros, G.; Tzanetatos, I.; Kamzelis, K. MaVeCoDD dataset: Marine vessel hull corrosion in dry-dock images. Mendeley Data 2021. [Google Scholar] [CrossRef]
- Jung, K.H.; Lee, J.H. Prediction of Corrosion Rate for Carbon Steel Using Regression Model with Commercial LPR Sensor Data. Appl. Sci. 2024, 14, 10836. [Google Scholar] [CrossRef]
- Ji, H.; Ma, X.; Cai, Y.; Jiao, S. Predictive mapping and analysis of aging severity for acrylic resin coatings in global marine environments. J. Mater. Sci. 2024, 59, 14790–14806. [Google Scholar] [CrossRef]
- Blockeel, H.; Devos, L.; Frénay, B.; Nanfack, G.; Nijssen, S. Decision trees: From efficient prediction to responsible AI. Front. Artif. Intell. 2023, 6, 1124553. [Google Scholar] [CrossRef]
- Ji, H.; Wang, H.; Chen, Q.; Ma, X.; Cai, Y. Corrosion behavior prediction for hull steels under dynamic marine environments by jointly utilizing LSTM network and PSO-RF model. Ocean Eng. 2024, 300, 117371. [Google Scholar] [CrossRef]
- Pereira, A.A.; Neves, A.C.; Ladeira, D.; Caprace, J.D. Corrosion prediction of FPSOs hull using machine learning. Mar. Struct. 2024, 97, 103652. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Mao, Q.; Cao, Y. Can a Single Tree Outperform an Entire Forest? arXiv 2024, arXiv:2411.17003. [Google Scholar]
- Probst, P.; Boulesteix, A.L. To tune or not to tune the number of trees in random forest. J. Mach. Learn. Res. 2018, 18, 1–18. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cipollini, F.; Oneto, L.; Coraddu, A.; Murphy, A.J.; Anguita, D. Condition-based maintenance of naval propulsion systems with supervised data analysis. Ocean Eng. 2018, 149, 268–278. [Google Scholar] [CrossRef]
- ISO 19030; Ships and Marine Technology—Measurement of Changes in Hull and Propeller Performance. International Organization for Standardization: Geneva, Switzerland, 2016.
- Spandonidis, C.; Paraskevopoulos, D. Evaluation of a Deep Learning-Based Index for Prognosis of a Vessel’s Propeller-Hull Degradation. Sensors 2023, 23, 8956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Beck, M.W.; Winkler, D.A.; Huang, B.; Sibanda, W.; Goyal, H. Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Ann. Transl. Med. 2018, 6, 216. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shen, M.; Wang, H.; Wang, X.; van Rechem, C.; Fu, T.; Wei, W. Machine learning for synthetic data generation: A review. arXiv 2023, arXiv:2302.04062. [Google Scholar]
- International Maritime Organization (IMO). Guidelines on Maritime Cyber Risk Management; Resolution MSC-FAL. 1/Circ. 3; International Maritime Organization: London, UK, 2017. [Google Scholar]
- IMO; MSC. Outcome of the Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS); IMO: London, UK, 2021. [Google Scholar]
- Ackerman, S.; Raz, O.; Zalmanovici, M.; Zlotnick, A. Automatically detecting data drift in machine learning classifiers. arXiv 2021, arXiv:2111.05672. [Google Scholar]
- Velasco-Gallego, C.; Lazakis, I. Mar-RUL: A remaining useful life prediction approach for fault prognostics of marine machinery. Appl. Ocean Res. 2023, 140, 103735. [Google Scholar] [CrossRef]
- Kotsev, A.; Minghini, M.; Tomas, R.; Cetl, V.; Lutz, M. From spatial data infrastructures to data spaces—A technological perspective on the evolution of European SDIs. ISPRS Int. J. Geo-Inf. 2020, 9, 176. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Poor, H.V. Federated learning for internet of things: A comprehensive survey. IEEE Commun. Surv. Tutor. 2021, 23, 1622–1658. [Google Scholar] [CrossRef]
- Bharati, S.; Mondal, M.R.H.; Podder, P.; Prasath, V.S. Federated learning: Applications, challenges and future directions. Int. J. Hybrid Intell. Syst. 2022, 18, 19–35. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Madiega, T. Artificial Intelligence Act; European Parliament (European Parliamentary Research Service): Brussels, Belgium, 2021. [Google Scholar]
- Cummins, L.; Sommers, A.; Ramezani, S.B.; Mittal, S.; Jabour, J.; Seale, M.; Rahimi, S. Explainable predictive maintenance: A survey of current methods, challenges and opportunities. IEEE Access 2024, 12, 57574–57602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalafatelis, A.S.; Nomikos, N.; Giannopoulos, A.; Alexandridis, G.; Karditsa, A.; Trakadas, P. Towards Predictive Maintenance in the Maritime Industry: A Component-Based Overview. J. Mar. Sci. Eng. 2025, 13, 425. https://doi.org/10.3390/jmse13030425
Kalafatelis AS, Nomikos N, Giannopoulos A, Alexandridis G, Karditsa A, Trakadas P. Towards Predictive Maintenance in the Maritime Industry: A Component-Based Overview. Journal of Marine Science and Engineering. 2025; 13(3):425. https://doi.org/10.3390/jmse13030425
Chicago/Turabian StyleKalafatelis, Alexandros S., Nikolaos Nomikos, Anastasios Giannopoulos, Georgios Alexandridis, Aikaterini Karditsa, and Panagiotis Trakadas. 2025. "Towards Predictive Maintenance in the Maritime Industry: A Component-Based Overview" Journal of Marine Science and Engineering 13, no. 3: 425. https://doi.org/10.3390/jmse13030425
APA StyleKalafatelis, A. S., Nomikos, N., Giannopoulos, A., Alexandridis, G., Karditsa, A., & Trakadas, P. (2025). Towards Predictive Maintenance in the Maritime Industry: A Component-Based Overview. Journal of Marine Science and Engineering, 13(3), 425. https://doi.org/10.3390/jmse13030425