Noise Cancellation Method for Mud Pulse Telemetry Based on Discrete Fourier Transform
<p>A sketch of an MPT system.</p> "> Figure 2
<p>Layout of pressure sensors.</p> "> Figure 3
<p>Flow chart of traditional pump noise cancellation based on standard pump signature.</p> "> Figure 4
<p>Flow chart of pump noise cancellation based on DFT.</p> "> Figure 5
<p>Simulated pump noise waveforms. (<b>a</b>) Pump noise 1; (<b>b</b>) pump noise 2.</p> "> Figure 6
<p>Pressure signal input.</p> "> Figure 7
<p>Noise cancellation output.</p> "> Figure 8
<p>Frequency spectrum contrast. (Blue: the input signal; Red: the output signal.)</p> "> Figure 9
<p>Pure pump noise block contrast. (Red: the input signal; Blue: the output signal.)</p> "> Figure 10
<p>Noise cancellation results of different Gaussian noises.</p> "> Figure 11
<p>The experimental site in Xinjiang.</p> "> Figure 12
<p>Pressure signal input.</p> "> Figure 13
<p>Noise cancellation output.</p> "> Figure 14
<p>Frequency spectrum contrast. (Blue: the input signal; Red: the output signal.)</p> "> Figure 15
<p>Pure pump noise block contrast. (Red: the input signal; Blue: the output signal.)</p> ">
Abstract
:1. Introduction
2. Methods
2.1. MPT System Model
2.2. Traditional Pump Noise Cancellation Method in Time Domain
2.3. Pump Noise Cancellation Based on DFT
3. Results
3.1. Simulation Test
3.2. Field Test
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mcdonald, W.J.; Ward, C.E. Borehole telemetry system is key to continuous down-hole drilling measurements. Oil Gas J. 1975, 73, 37. [Google Scholar]
- Gardner, W.R. High Data Rate MWD Mud Pulse Telemetry. In Proceedings of the United States Department of Energy Natural Gas Conference, Houston, TX, USA, 25 March 1997. [Google Scholar]
- Qu, S.; Zhu, K.; Nie, Z.; Sun, X.; Peng, Y. Analysis of signal transmission for use of logging while drilling. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1001–1005. [Google Scholar]
- Emmerich, W.; Akimov, O.; Brahim, I.B.; Greten, A. Reliable High-speed Mud Pulse Telemetry. In Proceedings of the SPE/IADC Drilling Conference and Exhibition, London, UK, 17–19 March 2015. [Google Scholar]
- Trofimenkoff, F.; Segal, M.; Klassen, A.; Haslett, J. Characterization of EM downhole-to-surface communication links. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2539–2548. [Google Scholar]
- Brooks, R.; Wilson, J. Drilling better wells cheaper and faster. In Proceedings of the Intelligent Energy Conference and Exhibition, Amsterdam, The Netherlands, 25–27 February 2008. [Google Scholar]
- Klotz, C.; Bond, P.R.; Wassermann, I.; Priegnitz, S. A new mud pulse telemetry system for enhanced MWD/LWD applications. In Proceedings of the IADC/SPE Drilling Conference, Orlando, FL, USA, 4–6 March 2008. [Google Scholar]
- Chin, W.; Yinao, S.U.; Sheng, L.; Lin, L.I.; Bian, H.; Shi, R. High-data-rate MWD system for very deep wells. Well Logging Technol. 2014, 38, 713–721. [Google Scholar]
- Bernasconi, G.; Re, S. Adaptive noise compensation and equalization in mud pulse telemetry. In Proceedings of the EAGE Conference and Exhibition, Madrid, Spain, 13–16 June 2005. [Google Scholar]
- Qu, F.; Zhang, Z.; Hu, J.; Xu, J.; Wang, S.; Wu, Y. Adaptive dual-sensor noise cancellation method for continuous wave mud pulse telemetry. J. Pet. Sci. Eng. 2017, 162, 386–393. [Google Scholar] [CrossRef]
- Jing, S.; Yan, Z.; Han, S.; Hui, L.; Gao, T.; Hu, X.; Wei, C. Differential signal extraction for continuous wave mud pulse telemetry. J. Pet. Sci. Eng. 2017, 148, 127–130. [Google Scholar]
- Kosmala, A.; Malone, D.; Masak, P. Mud Pump Noise Cancellation System. U.S. Patent 5,146,433, 8 September 1992. [Google Scholar]
- Jarrot, A.; Jeffryes, B. Wideband Mud Pump Noise Cancellation Method for Well Telemetry. U.S. Patent 8,380,438, 19 February 2013. [Google Scholar]
- Peng, Y. Digital Signal Receiver for Measurement While Drilling System Having Noise Cancellation. U.S. Patent 6,741,185, 25 May 2004. [Google Scholar]
- Hutin, R.; Reyes, S.; Mehta, S.B. Systems and Methods for Cancelling Noise and/or Echoes in Borehole Communication. U.S. Patent 8,408,330, 2 April 2013. [Google Scholar]
- Berstein, S.; Reich, M.; Namuq, M. Continuous wavelet transformation: A novel approach for better detection of mud pulses. J. Pet. Sci. Eng. 2013, 110, 232–242. [Google Scholar]
- Brandon, T.; Mintchev, M.; Tabler, H. Adaptive compensation of the mud pump noise in a measurement-while-drilling system. SPE J. 1999, 4, 128–133. [Google Scholar] [CrossRef]
- Narayanasamy, B.; Luo, F. A survey of active EMI filters for conducted EMI noise reduction in power electronic converters. IEEE Trans. Electromagn. Compat. 2019, 61, 2040–2049. [Google Scholar] [CrossRef]
- Chen, P.S.; Lai, Y.S. Effective EMI filter design method for three-phase inverter based upon software noise separation. IEEE Trans. Power Electron. 2010, 25, 2797–2806. [Google Scholar] [CrossRef]
- Alam, A.; Mukul, M.K.; Thakura, P. Wavelet transform-based EMI noise mitigation in power converter topologies. IEEE Trans. Electromagn. Compat. 2016, 58, 1662–1673. [Google Scholar] [CrossRef]
- Pei, S.C.; Tseng, C.C. Elimination of AC interference in electrocardiogram using IIR notch filter with transient suppression. IEEE Trans. Biomed. Eng. 1995, 42, 1128–1132. [Google Scholar] [PubMed]
- Ziarani, A.K.; Konrad, A. A nonlinear adaptive method of elimination of power line interference in ECG signals. IEEE Trans. Biomed. Eng. 2002, 49, 540–547. [Google Scholar] [CrossRef]
- Borgström, B.J.; Brandstein, M.S. Speech enhancement via attention masking network (SEAMNET): An end-to-end system for joint suppression of noise and reverberation. IEEE ACM Trans. Audio Speech Lang. Process. 2020, 29, 515–526. [Google Scholar] [CrossRef]
- Sivapatham, S.; Ramadoss, R.; Kar, A.; Majhi, B. Monaural speech separation using GA-DNN integration scheme. Appl. Acoust. 2020, 160, 107140. [Google Scholar] [CrossRef]
- Liang, Y.; Du, G.; Li, A. A signal processing method for continuous mud pressure wave signals in logging-while-drilling systems. J. Comput. Methods Sci. Eng. 2023, 6, 3027–3035. [Google Scholar] [CrossRef]
- Liang, Y.; Ju, X.; Li, A. The Process of High-Data-Rate Mud Pulse Signal in Logging While Drilling System. Math. Probl. Eng. 2020, 2020, 3207087. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, S.; Zhang, J.; Wang, R. A continuous phase-frequency modulation technique and adaptive pump noise cancellation method of continuous-wave signal over mud telemetry channel. Digit. Signal Process. 2021, 117, 103147. [Google Scholar] [CrossRef]
- Baek, J.; Lee, C.; Yoo, J. Design of Filter Length of Order Filter and Its Application to Filtered-X Algorithm for Active Noise Cancellation of Interior Noise Inside an Excavator Cabin. Int. J. Automot. Technol. 2022, 23, 1269–1283. [Google Scholar] [CrossRef]
- Jiang, S.; Yan, Z.; Sun, R.; Wang, Z.; Sun, H. Study on signal decomposition-based pump noise cancellation method for continuous-wave mud pulse telemetry. Geoenergy Sci. Eng. 2023, 228, 211948. [Google Scholar] [CrossRef]
- Yan, X.; Chen, L.; Qing, M.; Dou, X.; Liang, H. Adaptive Noise Cancellation Method for Continuous Wave Mud Channel of MWD. In Proceedings of the 2020 IEEE 16th International Conference on Control & Automation (ICCA), Singapore, 9–11 October 2020. [Google Scholar]
- Ding, W.; Hou, S.; Tian, S. Bayesian Optimized Variational Mode Decomposition-Based Denoising Method for Measurement While Drilling Signal of Down-the-Hole Drilling. IEEE Trans. Instrum. Meas. 2023, 72, 6502214. [Google Scholar] [CrossRef]
- Seto, K.; Kobayashi, T.; Tokunaga, E. Intensity Noise Cancellation of White Pulsed Probe Light Based on Time Division Discrimination for Multi-Channel Spectroscopy in Pump/probe measurement. Jpn. Soc. Appl. Phys. 2020, 4, 125009. [Google Scholar]
- Jafarizadeh, F.; Larki, B.; Kazemi, B. A new robust predictive model for lost circulation rate using convolutional neural network: A case study from Marun Oilfield. Petroleum 2023, 9, 468–485. [Google Scholar] [CrossRef]
- Qu, F.; Jiang, Q.; Jing, G.; Wei, Y.; Zhang, M. Noise cancellation for continuous wave mud pulse telemetry based onempirical mode decomposition and particle swarm optimization. J. Pet. Sci. Eng. 2021, 200, 108308. [Google Scholar] [CrossRef]
- Qu, F.; Jiang, Q.; Jing, G.; Wei, Y.; Zhang, Z. Mud pulse signal demodulation based on support vector machines and particle swarm optimization. J. Pet. Sci. Eng. 2020, 193, 107432. [Google Scholar] [CrossRef]
- Pico, C.; Aguiar, R.; Pires, A.P. Wavelet Filtering of Permanent Downhole Gauge Data. In Proceedings of the Latin American and Caribbean Petroleum Engineering Conference, Cartagena de Indias, Colombia, 31 May–3 June 2009. [Google Scholar]
- Goswami, J.C.; Chan, A.K. Fundamentals of Wavelets: Theory, Algorithms, and Applications, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999. [Google Scholar]
- Hui, L. The contrastive study between direct FFT and phase difference in parameter estimation of sinusoidal signal. J. Electron. Inf. Technol. 2010, 32, 544–547. [Google Scholar]
No. | Modulation Mode | Data Rate (bit/s) | BER | SIR |
---|---|---|---|---|
1 | BFSK | 3 | 0 | 26.61 |
2 | BFSK | 6 | 0 | 25.28 |
3 | BFSK | 8 | 0 | 25.52 |
4 | BFSK | 10 | 0 | 25.66 |
5 | BFSK | 12 | 0 | 24.69 |
6 | OOK | 3 | 0 | 18.05 |
7 | OOK | 6 | 0 | 18.38 |
8 | OOK | 9 | 0 | 16.62 |
9 | OOK | 12 | 0 | 17.02 |
No. | Modulation Mode | Depth (m) | Data Rate (bit/s) | BER | SIR (dB) | ||
---|---|---|---|---|---|---|---|
Traditional Method | DFT-Based Method | Traditional Method | DFT-Based Method | ||||
1 | BFSK | 887 | 8 | 0 | 0 | 17.06 | 17.49 |
2 | BFSK | 887 | 10 | 0.12 | 0.03 | 6.99 | 10.07 |
3 | BFSK | 2559 | 12 | 0.11 | 0.05 | 7.39 | 10.72 |
4 | BFSK | 2602 | 10 | 0.08 | 0 | 13.87 | 15.23 |
5 | BFSK | 2632 | 6 | 0.19 | 0 | 7.89 | 12.48 |
6 | BFSK | 2712 | 10 | 0.04 | 0 | 10.41 | 14.25 |
7 | BFSK | 2890 | 10 | 0.14 | 0.12 | 6.59 | 8.19 |
8 | BFSK | 3016 | 12 | 0.08 | 0 | 14.39 | 14.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Sha, Z.; Tu, X.; Zhang, Z.; Zhu, J.; Wei, Y.; Qu, F. Noise Cancellation Method for Mud Pulse Telemetry Based on Discrete Fourier Transform. J. Mar. Sci. Eng. 2025, 13, 75. https://doi.org/10.3390/jmse13010075
Zhang J, Sha Z, Tu X, Zhang Z, Zhu J, Wei Y, Qu F. Noise Cancellation Method for Mud Pulse Telemetry Based on Discrete Fourier Transform. Journal of Marine Science and Engineering. 2025; 13(1):75. https://doi.org/10.3390/jmse13010075
Chicago/Turabian StyleZhang, Jingchen, Zitong Sha, Xingbin Tu, Zhujun Zhang, Jiang Zhu, Yan Wei, and Fengzhong Qu. 2025. "Noise Cancellation Method for Mud Pulse Telemetry Based on Discrete Fourier Transform" Journal of Marine Science and Engineering 13, no. 1: 75. https://doi.org/10.3390/jmse13010075
APA StyleZhang, J., Sha, Z., Tu, X., Zhang, Z., Zhu, J., Wei, Y., & Qu, F. (2025). Noise Cancellation Method for Mud Pulse Telemetry Based on Discrete Fourier Transform. Journal of Marine Science and Engineering, 13(1), 75. https://doi.org/10.3390/jmse13010075