Sediment Transport of Coastal Region Using Time-Series Unmanned Aerial Vehicle Spatial Data
<p>Location of the study area (Cheonjin–Bongpo Beach).</p> "> Figure 2
<p>Before and after coastal maintenance work.</p> "> Figure 3
<p>Wave observation points, W1 and WINK (from Google Earth).</p> "> Figure 4
<p>Long-term wave rose (WINK).</p> "> Figure 5
<p>Wave observation time series at W1 (Bongpo, <a href="#jmse-11-01313-f003" class="html-fig">Figure 3</a>) during Apr 2020–May 2021: (<b>a</b>) Significant wave height; (<b>b</b>) peak period; (<b>c</b>) peak direction (based on normal onshore direction); Blue line indicates the date of UAV survey.</p> "> Figure 6
<p>Set of ground control point (GCP) locations.</p> "> Figure 7
<p>Three-dimensional (3D) modeling flowchart of aerial photogrammetry using UAV.</p> "> Figure 8
<p>Accuracy analysis: (<b>a</b>) Numerical elevation model accuracy verification result. (<b>b</b>) Error histogram.</p> "> Figure 9
<p>Analysis criteria and areas: (<b>a</b>) beach width baseline; (<b>b</b>) beach area and volume zones.</p> "> Figure 10
<p>Beach-volume and beach-width time series: (<b>a</b>) Beach width. (<b>b</b>) Beach volume for each zone with z-score normalization. Blue line indicates swell and red line indicates typhoon.</p> "> Figure 10 Cont.
<p>Beach-volume and beach-width time series: (<b>a</b>) Beach width. (<b>b</b>) Beach volume for each zone with z-score normalization. Blue line indicates swell and red line indicates typhoon.</p> "> Figure 11
<p>Short-term topographical change (changes in beach elevation, red; accumulation, blue; erosion) and significant wave height, peak period, and peak wave direction during storms: (<b>a</b>) during typhoon; (<b>b</b>) swell; and (<b>c</b>) change in beach width.</p> ">
Abstract
:1. Introduction
2. Site Information
2.1. Study Area
2.2. Wave Characteristics
3. Method
3.1. Aerial Survey
3.2. Data Processing
3.3. Three-Dimensional (3D) Model Accuracy Evaluation
4. Results
4.1. Long-Term Topographical Changes
4.2. Short-Term Topography Change
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN-Habitat. Planning Sustainable Cities Global Report on Human Settlements 2009; UN-Habitat: Nairobi, Kenya, 2016. [Google Scholar]
- Saadon, M.S.I.; Ab Wahida, N.S.; Othman, M.R.; Nor, D.A.M.; Mokhtar, F.S.; Nordin, N.; Kowang, T.O.; Nordin, L. An evaluation of the impact of coastal erosion to the environment and economic activities at Mengabang Telipot, Terengganu. J. Crit. Rev. 2020, 7, 1132–1136. [Google Scholar]
- Komar, P.D. Coastal erosion—Underlying factors and human impacts. Shore Beach 2000, 68, 3–16. [Google Scholar]
- Kwon, H.J. Coastal erosion of western coast of Korea. Bull. Coll. Educ. 1993, 18, 137–155. (In Korean) [Google Scholar]
- Yoon, J.J.; Jun, K.C.; Shim, J.S.; Park, K.S. Estimation of maximum typhoon intensity considering climate change scenarios and simulation of corresponding storm surge. J. Korean Soc. Mar. Environ. Energy 2012, 15, 292–301. (In Korean) [Google Scholar] [CrossRef]
- Kang, T.S.; Oh, H.M.; Lee, H.M.; Eum, H.S. Storm surge vulnerability assessment due to typhoon attack on coastal area in Korea. Korean Soc. Mar. Environ. Saf. 2015, 21, 608–616. (In Korean) [Google Scholar] [CrossRef]
- Wojciech, G.; Wojciech, M.; Pawel, C. Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS J. Photogramm. Remote Sens. 2017, 126, 168–179. [Google Scholar]
- Artur, W.; Przemyslaw, K.; Bartosz, M.; Izabela, P. The use of TLS and UAV methods for measurement of the repose angle of granular materials in terrain conditions. Measurement 2019, 146, 780–791. [Google Scholar]
- Shikai, S.; Yu, P.; Chenglong, H.; Yun, D. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Trans. 2020, 97, 415–430. [Google Scholar]
- Dalamagkidis, K.; Valavanis, K.P.; Piegl, L.A. On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System. Prog. Aerosp. Sci. 2008, 44, 503–519. [Google Scholar] [CrossRef]
- Chiabrando, F.; Nex, F.; Piatti, D.; Rinaudo, F. UAV and PRV systems for photogrammetric surveys in archaelogical areas: Two tests in the Piedmont region. J. Archaeol. Sci. 2011, 38, 697–710. [Google Scholar] [CrossRef]
- Rhee, S.A.; Kim, T.J.; Kim, J.I.; Kim, M.C.; Chang, H.J. DSM generation and accuracy analysis from UAV images on river-side facilities. Korean J. Remote Sens. 2015, 31, 183–191. (In Korean) [Google Scholar] [CrossRef]
- Jung, S.H.; Lim, H.M.; Lee, J.K. Acquisition of 3D spatial information using UAV photogrammetric method. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2010, 28, 161–168. (In Korean) [Google Scholar]
- Kim, D.I.; Song, Y.S.; Kim, C.W. A study on the application of UAV for Korean land monitoring. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2014, 32, 29–38. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Lim, S.B.; Seo, C.W.; Yun, H.C. Digital map updates with UAV photogrammetric method. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2015, 33, 397–405. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Long, N.; Millescamps, B.; Guillot, B.; Pouget, F.; Bertin, X. Monitoring the topography of a dynamic tidal inlet using UAV imagery. Remote Sens. 2016, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Choi, K.; Kong, H.; Jung, S.; Park, S.; Lee, S. Coastal change detected using drone-based mapping in Hashidong beach, Gangneung, South Korea. J. Korean Geomorphol. Assoc. 2016, 23, 101–112. (In Korean) [Google Scholar] [CrossRef]
- Jeong, J.H.; Kim, J.H.; Lee, J.L. Analysis of wave transmission characteristics on the TTP submerged breakwater using a parabolic-type linear wave deformation model. J. Ocean Eng. Technol. 2021, 35, 82–90. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Clark, A.; Moorman, B.; Whalen, D.; Fraser, P. Arctic coastal erosion: UAV-SfM data collection strategies for planimetric and volumetric measurements. Arct. Sci. 2021, 7, 605–633. [Google Scholar] [CrossRef]
- Miřijovský, J.; Langhammer, J. Multitemporal monitoring of the morphodynamics of a mid-mountain stream using UAS photogrammetry. Remote Sens. 2015, 7, 8586–8609. [Google Scholar] [CrossRef] [Green Version]
- Fiorucci, F.; Giordan, D.; Dutto, F.; Rossi, M.; Guzzetti, F. Geomorphological mapping of shallow landslides using UAVs. EGU Gen. Assem. Conf. Abstr. 2015, 17, 14993. [Google Scholar]
- Casella, E.; Rovere, A.; Pedroncini, A.; Stark, C.P.; Casella, M.; Ferrari, M.; Firpo, M. Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Mar. Lett. 2016, 36, 151–163. [Google Scholar] [CrossRef]
- Pérez-Alberti, A.; Trenhaile, A.S. An initial evaluation of drone-based monitoring of boulder beaches in Galicia, north-western Spain. Earth Surf. Process. Landf. 2015, 40, 105–111. [Google Scholar] [CrossRef]
Time | Observation Period | Time | Observation Period |
---|---|---|---|
1st | 6 April 2020–9 June 2020 | 2nd | 9 June 2020–16 July 2020 |
3rd | 22 July 2020–24 August 2020 | 4th | 24 August 2020–21 October 2020 |
5th | 21 October 2020–26 November 2020 | 6th | 22 January 2021–16 March 2021 |
DIV. | Location | Depth | Observation Device |
---|---|---|---|
W1 | 38°15′38.33″ N | DL (-) 25.5 m | Signature 500 (Nortek) |
128°34′57.92″ E | |||
Gonghyunjin (WINK) | 38°21′40.40″ N | DL (-) 32.0 m | AWAC 600 |
128°31′41.6″ E | (Nortek) |
DIV. | Characteristics at Each Storm Peak, Hs | Duration (h) at Hs ≥ 3 m | |||
---|---|---|---|---|---|
Date and Time | Hs (m) | Tp (s) | Dp (°N) | ||
Swell-1 | 30 June 2020 12:00 | 4.08 | 8.85 | 58.80 | 25 |
Swell-2 | 24 July 2020 11:00 | 3.73 | 7.89 | 108.46 | 12 |
TY-MAYSAY | 3 September 2020 09:00 | 5.43 | 10.01 | 101.89 | 4 |
TY-HAISHEN | 7 September 2020 16:00 | 5.47 | 11.38 | 90.42 | 14 |
Swell-3 | 13 September 2020 13:00 | 4.39 | 11.58 | 59.43 | 40 |
Swell-4 | 29 January 2021 10:00 | 3.39 | 11.70 | 58.67 | 4 |
Swell-5 | 2 March 2021 00:00 | 5.21 | 11.43 | 66.05 | 28 |
Swell-6 | 6 March 2021 13:00 | 4.97 | 11.57 | 75.23 | 16 |
No. | E | N | Z (DL, m) |
---|---|---|---|
GCP1 | 128°33′41.19″ | 38°15′33.96″ | 4.310 |
GCP2 | 128°33′36.33″ | 38°15′35.63″ | 2.116 |
GCP3 | 128°33′34.32″ | 38°15′33.90″ | 3.264 |
GCP4 | 128°33′43.44″ | 38°15′19.03″ | 5.179 |
GCP5 | 128°33′44.32″ | 38°15′18.21″ | 5.203 |
GCP6 | 128°34′02.88″ | 38°15′08.38″ | 1.747 |
GCP7 | 128°34′03.91″ | 38°15′09.18″ | 3.626 |
Observation Date (Year/Month/Day/Hour) | Mean RMS Error (m) | Significant Wave Height (m) | Tidal Height (DL, m) |
---|---|---|---|
23 May 2020 09–10 | 0.066 | 0.81 | 0.27 |
16 June 2020 15–16 | 0.067 | 0.48 | 0.38 |
28 July 2020 08–09 | 0.056 | 0.61 | 0.55 |
12 August 2020 08–09 | 0.072 | 0.37 | 0.51 |
25 August 2020 07–08 | 0.051 | 0.54 | 0.63 |
9 September 2020 07–08 | 0.052 | 0.75 | 0.61 |
17 September 2020 10–11 | 0.045 | 0.45 | 0.62 |
7 October 2020 07–08 | 0.059 | 0.41 | 0.37 |
18 November 2020 11–12 | 0.049 | 0.91 | 0.13 |
2 December 2020 11–12 | 0.047 | 0.54 | 0.17 |
21 January 2021 09–10 | 0.049 | 0.39 | 0.17 |
22 April 2021 11–12 | 0.061 | 0.51 | 0.27 |
18 May 2021 15–16 | 0.040 | 0.56 | 0.38 |
DIV. | Area-1 | Area-2 | Area-3 | Area-4 | Area-5 | Area-6 | Area-7 |
---|---|---|---|---|---|---|---|
BW | SBW | SBW | SBW | ||||
Average volume (m3) | 14,796 | 7904 | 20,028 | 2910 | 8667 | 5180 | 16,585 |
Standard deviation | 1246 | 1338 | 1044 | 465 | 1313 | 1201 | 1071 |
Coefficient of variation | 0.08 | 0.17 | 0.05 | 0.16 | 0.15 | 0.21 | 0.06 |
Date | Area-1 | Area-2 | Area-3 | Area-4 | Area-5 | Area-6 | Area-7 |
---|---|---|---|---|---|---|---|
BW | SBW | SBW | SBW | ||||
25 August 2020 | 12,763 | 6730 | 20,004 | 3336 | 6840 | 5573 | 16,178 |
9 September 2020 | 17,412 | 9704 | 20,866 | 2498 | 7838 | 4347 | 15,519 |
17 September 2020 | 14,982 | 9544 | 20,888 | 2363 | 8656 | 3560 | 15,477 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Chang, S.; Shin, S.; Do, K.; Kim, I. Sediment Transport of Coastal Region Using Time-Series Unmanned Aerial Vehicle Spatial Data. J. Mar. Sci. Eng. 2023, 11, 1313. https://doi.org/10.3390/jmse11071313
Kim S, Chang S, Shin S, Do K, Kim I. Sediment Transport of Coastal Region Using Time-Series Unmanned Aerial Vehicle Spatial Data. Journal of Marine Science and Engineering. 2023; 11(7):1313. https://doi.org/10.3390/jmse11071313
Chicago/Turabian StyleKim, Sulki, Sungyeol Chang, Sungwon Shin, Kideok Do, and Inho Kim. 2023. "Sediment Transport of Coastal Region Using Time-Series Unmanned Aerial Vehicle Spatial Data" Journal of Marine Science and Engineering 11, no. 7: 1313. https://doi.org/10.3390/jmse11071313
APA StyleKim, S., Chang, S., Shin, S., Do, K., & Kim, I. (2023). Sediment Transport of Coastal Region Using Time-Series Unmanned Aerial Vehicle Spatial Data. Journal of Marine Science and Engineering, 11(7), 1313. https://doi.org/10.3390/jmse11071313