Jatrorrhizine Improves Endothelial Function in Diabetes and Obesity through Suppression of Endoplasmic Reticulum Stress
<p>Structure of jatrorrhizine.</p> "> Figure 2
<p>Vasoprotective effect of jatrorrhizine (JAT) in mouse aortas ex vivo. (<b>A</b>,<b>B</b>) Effect of JAT and high glucose (HG; 30 mM, 48 h) on the acetylcholine (ACh)-induced endothelium-dependent relaxations (EDRs) in aortas from C57BL/6J mice as compared with control (NG; mannitol added as osmotic control). (<b>C</b>) Sodium nitroprusside (SNP)-induced endothelium-independent relaxations were not affected. (<b>D</b>) Diet-induced obese (DIO) and diabetic mouse model was induced by high-fat diet (HFD; 45% kcal% fat, 10 weeks) plus single intraperitoneal injection of streptozotocin (STZ; 120 mg/kg) and ex vivo treatment of JAT (1 µM, 24 h) improved ACh-induced relaxations in aortas. (<b>E</b>) SNP-induced relaxations were unaffected. Results are mean ± SEM of 4 experiments. * <span class="html-italic">p</span> < 0.05 vs. NG; # <span class="html-italic">p</span> < 0.05 vs. HG; † <span class="html-italic">p</span> < 0.05 vs. DIO.</p> "> Figure 3
<p>Jatrorrhizine attenuates endoplasmic reticulum (ER) stress and stimulates Akt/eNOS pathway in mouse aortas in hyperglycemic conditions ex vivo. (<b>A</b>–<b>C</b>) Western blotting data showing the expressions of ER stress markers, including phosphorylation and total JNK and elF2α, cleaved ATF6 and spliced XBP1; phosphorylation of eNOS at Ser<sup>1177</sup> and total eNOS; and phosphorylation of Akt at Ser<sup>473</sup> and total Akt in mouse aortas treated with HG (30 mM) and JAT (1 µM) for 48 h ex vivo. (<b>D</b>,<b>E</b>) JAT (1 µM) improved ACh-induced EDRs in mouse aortas treated with ER stress inducer tunicamycin (Tuni; 2 µg/mL, 24 h) ex vivo; with no effect on SNP-induced relaxations. Results are mean ± SEM of 4–5 experiments. * <span class="html-italic">p</span> < 0.05 vs. NG or Control; # <span class="html-italic">p</span> < 0.05 vs. HG or Tuni.</p> "> Figure 4
<p>Effect of jatrorrhizine on endoplasmic reticulum stress and Akt/eNOS pathway in aortas from DIO mice ex vivo. (<b>A</b>–<b>C</b>) Western blotting of ER stress markers, phosphorylation and total Akt and eNOS in aortas from DIO mice induced by high-fat diet (45% kcal% fat) plus single intraperitoneal injection of streptozotocin (120 mg/kg) and treated with JAT (1 µM) for 24 h ex vivo. Results are mean ± SEM of 5–6 experiments. * <span class="html-italic">p</span> < 0.05 vs. DIO.</p> "> Figure 5
<p>Effect of jatrorrhizine on endoplasmic reticulum stress and Akt/eNOS pathway in human umbilical cord vein endothelial cells (HUVECs). (<b>A</b>–<b>C</b>) Western blotting of ER stress markers and Akt/eNOS in HUVECs treated with HG (30 mM) and JAT (1 µM) for 48 h. Results are mean ± SEM of 5–6 experiments. * <span class="html-italic">p</span> < 0.05 vs. NG; # <span class="html-italic">p</span> < 0.05 vs. HG.</p> "> Figure 6
<p>Jatrorrhizine suppresses oxidative stress and increases nitric oxide (NO) bioavailability. (<b>A</b>,<b>B</b>) Representative images and summarized data showing exposure to high glucose (30 mM, 48 h) increased the level of reactive oxygen species (ROS) in mouse carotid arteries and HUVECs, and such elevation was decreased by JAT at 1 µM as measured by dihydroethidium (DHE) staining. (<b>C</b>) JAT (1 µM) treatment inhibited the tunicamycin (tuni; 2 µg/mL, 1 h)-triggered ROS generation in HUVECs. (<b>D</b>,<b>E</b>) NO release from mouse aortas and HUVECs upon high glucose (30 mM) stimulation and cotreatment with JAT (1 µM) for 48 h as assessed by measuring the nitrite level in culture medium using Griess reagent. Results are mean ± SEM of 4-6 experiments. * <span class="html-italic">p</span> < 0.05 vs. NG or Control; # <span class="html-italic">p</span> < 0.05 vs. HG or Tuni.</p> "> Figure 7
<p>Jatrorrhizine treatment improves blood glucose, blood pressure and vascular relaxations in DIO mice. (<b>A</b>) Body weight in mice fed a high-fat diet or normal chow for 15 weeks and oral administered with JAT at 50 mg/kg body weight daily for the last 5 weeks. (<b>B</b>) Oral glucose tolerance test (OGTT) upon 6 h fasting. (<b>C</b>) Insulin tolerance test (ITT) upon 2 h fasting. (<b>D</b>) Fasting blood glucose (FBG) upon 6 h fasting. (<b>E</b>,<b>F</b>) Changes in systolic (SBP) and diastolic (DBP) blood pressure measured by tail-cuff method. (<b>G</b>) Effect of oral administration of JAT (50 mg/kg/day, 5 weeks) on ACh-induced relaxations in aortas from DIO mice. (<b>H</b>) SNP-induced endothelium-independent relaxations. Data are mean ± SEM from six mice for each group. * <span class="html-italic">p</span> < 0.05 vs. Control; # <span class="html-italic">p</span> < 0.05 vs. DIO.</p> "> Figure 8
<p>Effect of jatrorrhizine on liver and plasma lipid profile in DIO mice. (<b>A</b>,<b>B</b>) Representative images of H&E staining and oil red O staining sections of livers from mice (scale bar: 50 µm). (<b>C</b>–<b>H</b>) Plasma levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) measured by corresponding test kits. Data are mean ± SEM from six mice for each group. * <span class="html-italic">p</span> < 0.05 vs. Control; # <span class="html-italic">p</span> < 005 vs. DIO.</p> "> Figure 9
<p>Chronic jatrorrhizine treatment attenuates endoplasmic reticulum stress and increases Akt/eNOS pathway in DIO mice. (<b>A</b>–<b>C</b>) The expressions of ER stress markers (JNK, eIF2α, cleaved ATF6 and spliced XBP1) and Akt/eNOS in aortas from DIO mice. (<b>D</b>) Changes in ROS as measured by dihydroethidium (DHE) staining. Data are mean ± SEM from 5–6 mice for each group. * <span class="html-italic">p</span> < 0.05 vs. Control; # <span class="html-italic">p</span> < 0.05 vs. DIO.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Jatrorrhizine Improves Vascular Functions in Diabetes
2.2. Jatrorrhizine Increases Akt/eNOS Phosphorylation and Alleviates ER Stress
2.3. Jatrorrhizine Suppresses Oxidative Stress and Increases NO Bioavailability
2.4. Chronic Jatrorrhizine Treatment Attenuates Endothelial Function in Diabetic and Obese Mice
2.5. Jatrorrhizine Improves Liver and Plasma Lipid Profile in DIO Mice
2.6. Jatrorrhizine Treatment Activates Akt/eNOS Pathway and Suppresses ER Stress and Oxidative Stress in Aortas of DIO Mice
3. Discussion
4. Materials and Methods
4.1. Animal Experiments
4.2. Blood Pressure Measurement
4.3. Blood Glucose Measurement
4.4. Determination of Plasma Lipid Profile
4.5. Hematoxylin and Eosin Staining and Oil Red O Staining
4.6. Culture of Human Umbilical Cord Vein Endothelial Cells (HUVECs)
4.7. Ex Vivo Culture of Mouse Aortas
4.8. Isometric Force Measurement in Wire Myograph
4.9. Western Blotting Assay
4.10. Determination of ROS by Dihydroethidium (DHE) Staining
4.11. Determination of NO Generation
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Bakker, W.; Eringa, E.C.; Sipkema, P.; van Hinsbergh, V.W. Endothelial dysfunction and diabetes: Roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 2009, 335, 165–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poredos, P.; Poredos, A.V.; Gregoric, I. Endothelial Dysfunction and Its Clinical Implications. Angiology 2021, 72, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, P.M. Endothelial Dysfunction and Vascular Pathology. Bull. Mem. Acad. R Med. Belg. 2006, 161, 529–537. [Google Scholar]
- Tan, Y.; Cheong, M.S.; Cheang, W.S. Roles of Reactive Oxygen Species in Vascular Complications of Diabetes: Therapeutic Properties of Medicinal Plants and Food. Oxygen 2022, 2, 246–268. [Google Scholar] [CrossRef]
- Cheang, W.S.; Wong, W.T.; Tian, X.Y.; Yang, Q.; Lee, H.K.; He, G.W.; Yao, X.; Huang, Y. Endothelial nitric oxide synthase enhancer reduces oxidative stress and restores endothelial function in db/db mice. Cardiovasc. Res. 2011, 92, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.Y.; Wong, W.T.; Wang, N.; Lu, Y.; Cheang, W.S.; Liu, J.; Liu, L.; Liu, Y.; Lee, S.S.; Chen, Z.Y.; et al. PPARdelta activation protects endothelial function in diabetic mice. Diabetes 2012, 61, 3285–3293. [Google Scholar] [CrossRef] [Green Version]
- Harding, H.P.; Zhang, Y.; Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999, 397, 271–274. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Q.; Gao, A.; Chen, L.; Li, L. Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease. Clin. Chim. Acta 2020, 504, 125–137. [Google Scholar] [CrossRef]
- Cheang, W.S.; Wong, W.T.; Zhao, L.; Xu, J.; Wang, L.; Lau, C.W.; Chen, Z.Y.; Ma, R.C.; Xu, A.; Wang, N.; et al. PPARdelta Is Required for Exercise to Attenuate Endoplasmic Reticulum Stress and Endothelial Dysfunction in Diabetic Mice. Diabetes 2017, 66, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Murugan, D.D.; Khan, H.; Huang, Y.; Cheang, W.S. Roles and Therapeutic Implications of Endoplasmic Reticulum Stress and Oxidative Stress in Cardiovascular Diseases. Antioxidants 2021, 10, 1167. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Fang, S.; Liu, X.; Li, J.; Wang, X.; Cui, J.; Chen, T.; Li, Z.; Yang, F.; Tian, J.; et al. Omentin-1 protects against high glucose-induced endothelial dysfunction via the AMPK/PPARdelta signaling pathway. Biochem. Pharmacol. 2020, 174, 113830. [Google Scholar] [CrossRef] [PubMed]
- Beriault, D.R.; Werstuck, G.H. The role of glucosamine-induced ER stress in diabetic atherogenesis. Exp. Diabetes Res. 2012, 2012, 187018. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.; Liang, C.; Fan, H.; Zhou, W.; Huang, L.; Qi, S.; Wang, W.; Ma, P. KAP1 silencing relieves OxLDL-induced vascular endothelial dysfunction by down-regulating LOX-1. Biosci. Rep. 2020, 40, BSR20200821. [Google Scholar] [CrossRef] [PubMed]
- Radwan, E.; Bakr, M.H.; Taha, S.; Sayed, S.A.; Farrag, A.A.; Ali, M. Inhibition of endoplasmic reticulum stress ameliorates cardiovascular injury in a rat model of metabolic syndrome. J. Mol. Cell. Cardiol. 2020, 143, 15–25. [Google Scholar] [CrossRef]
- Cheang, W.S.; Tian, X.Y.; Wong, W.T.; Lau, C.W.; Lee, S.S.; Chen, Z.Y.; Yao, X.; Wang, N.; Huang, Y. Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5’ adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor delta pathway. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 830–836. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, L.; Lou, G.H.; Zeng, H.R.; Hu, J.; Huang, Q.W.; Peng, W.; Yang, X.B. Coptidis Rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm. Biol. 2019, 57, 193–225. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Liu, J.; Huang, Z.; Yu, X.; Zhang, X.; Dou, D.; Huang, Y. Berberine improves endothelial function by inhibiting endoplasmic reticulum stress in the carotid arteries of spontaneously hypertensive rats. Biochem. Biophys. Res. Commun. 2015, 458, 796–801. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, C.; Zhang, X.; Vong, C.T.; Wang, Y.; Cheang, W.S. Coptisine Attenuates Diabetes-Associated Endothelial Dysfunction through Inhibition of Endoplasmic Reticulum Stress and Oxidative Stress. Molecules 2021, 26, 4210. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, B.; Tang, Q.; Fu, Q.; Xiang, J. Hypoglycemic activity of jatrorrhizine. J. Huazhong Univ. Sci. Technol. Med. Sci. 2005, 25, 491–493. [Google Scholar] [CrossRef]
- Yang, W.; She, L.; Yu, K.; Yan, S.; Zhang, X.; Tian, X.; Ma, S.; Zhang, X. Jatrorrhizine hydrochloride attenuates hyperlipidemia in a high-fat diet-induced obesity mouse model. Mol. Med. Rep. 2016, 14, 3277–3284. [Google Scholar] [CrossRef] [PubMed]
- Han, K.A.; Patel, Y.; Lteif, A.A.; Chisholm, R.; Mather, K.J. Contributions of dysglycaemia, obesity, and insulin resistance to impaired endothelium-dependent vasodilation in humans. Diabetes Metab. Res. Rev. 2011, 27, 354–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Remessy, A.B.; Abou-Mohamed, G.; Caldwell, R.W.; Caldwell, R.B. High glucose-induced tyrosine nitration in endothelial cells: Role of eNOS uncoupling and aldose reductase activation. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Forstermann, U.; Munzel, T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation 2006, 113, 1708–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.P.; Hsu, S.C.; Li, D.E.; Chen, K.H.; Kuo, C.Y.; Hung, L.M. Resveratrol Mitigates High-Fat Diet-Induced Vascular Dysfunction by Activating the Akt/eNOS/NO and Sirt1/ER Pathway. J. Cardiovasc. Pharmacol. 2018, 72, 231–241. [Google Scholar] [CrossRef]
- Zhang, K.; Kaufman, R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008, 454, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Zhang, M.; Wang, S.; Liang, B.; Zhao, Z.; Liu, C.; Wu, M.; Choi, H.C.; Lyons, T.J.; Zou, M.H. Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes 2010, 59, 1386–1396. [Google Scholar] [CrossRef] [Green Version]
- San Cheang, W.; Yuen Ngai, C.; Yen Tam, Y.; Yu Tian, X.; Tak Wong, W.; Zhang, Y.; Wai Lau, C.; Chen, Z.Y.; Bian, Z.X.; Huang, Y.; et al. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress. Sci. Rep. 2015, 5, 10340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Feng, J.; Cheng, B.; Lu, Q.; Chen, X. Oleanolic acid protects against oxidative stressinduced human umbilical vein endothelial cell injury by activating AKT/eNOS signaling. Mol. Med. Rep. 2018, 18, 3641–3648. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Huang, L.; Wang, A.; Liu, Y.; Cai, R.; Li, W.; Zhou, M.S. Corrigendum: Resistin-Induced Endoplasmic Reticulum Stress Contributes to the Impairment of Insulin Signaling in Endothelium. Front. Pharmacol. 2018, 9, 1446. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, J.; Qi, J.; Jin, Y.; Tong, L. Activation of NADPH/ROS pathway contributes to angiogenesis through JNK signaling in brain endothelial cells. Microvasc. Res. 2020, 131, 104012. [Google Scholar] [CrossRef] [PubMed]
- Saaoud, F.; Drummer, I.V.C.; Shao, Y.; Sun, Y.; Lu, Y.; Xu, K.; Ni, D.; Jiang, X.; Wang, H.; Yang, X. Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. Pharmacol. Ther. 2021, 220, 107715. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.; Michel, L.Y.M.; Balligand, J.L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 2018, 15, 292–316. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Wang, X.C.; Xu, Y.M.; Luo, N.C.; Luo, S.; Hao, X.Y.; Cheng, S.Y.; Fang, J.S.; Wang, Q.; Zhang, S.J.; et al. Berberine Improves Diabetic Encephalopathy Through the SIRT1/ER Stress Pathway in db/db Mice. Rejuvenation Res. 2018, 21, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Pang, B.; Yu, X.T.; Zhou, Q.; Zhao, T.Y.; Wang, H.; Gu, C.J.; Tong, X.L. Effect of Rhizoma coptidis (Huang Lian) on Treating Diabetes Mellitus. Evid. Based Complement. Alternat. Med. 2015, 2015, 921416. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.K.; Li, Y.J.; Zhang, L.; Feng, W.S.; Zhang, X. Antihyperglycemic activity of Selaginella tamariscina (Beauv.) Spring. J. Ethnopharmacol. 2011, 133, 531–537. [Google Scholar] [CrossRef]
- Wang, Y.; You, Y.; Tian, Y.; Sun, H.; Li, X.; Wang, X.; Wang, Y.; Liu, J. Pediococcus pentosaceus PP04 Ameliorates High-Fat Diet-Induced Hyperlipidemia by Regulating Lipid Metabolism in C57BL/6N Mice. J. Agric. Food Chem. 2020, 68, 15154–15163. [Google Scholar] [CrossRef]
Treatment | pD2 | Emax% |
---|---|---|
NG | 7.48 ± 0.12 | 95.38 ± 2.96 |
HG | 6.97 ± 0.05 * | 65.05 ± 1.29 * |
0.1 µM JAT+HG | 6.97 ± 0.07 | 80.96 ± 2.08 # |
1 µM JAT+HG | 7.57 ± 0.06 # | 95.72 ± 1.60 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wang, Y.; Vong, C.T.; Zhu, Y.; Xu, B.; Ruan, C.-C.; Wang, Y.; Cheang, W.S. Jatrorrhizine Improves Endothelial Function in Diabetes and Obesity through Suppression of Endoplasmic Reticulum Stress. Int. J. Mol. Sci. 2022, 23, 12064. https://doi.org/10.3390/ijms232012064
Zhou Y, Wang Y, Vong CT, Zhu Y, Xu B, Ruan C-C, Wang Y, Cheang WS. Jatrorrhizine Improves Endothelial Function in Diabetes and Obesity through Suppression of Endoplasmic Reticulum Stress. International Journal of Molecular Sciences. 2022; 23(20):12064. https://doi.org/10.3390/ijms232012064
Chicago/Turabian StyleZhou, Yan, Yuehan Wang, Chi Teng Vong, Yanyan Zhu, Baojun Xu, Cheng-Chao Ruan, Yitao Wang, and Wai San Cheang. 2022. "Jatrorrhizine Improves Endothelial Function in Diabetes and Obesity through Suppression of Endoplasmic Reticulum Stress" International Journal of Molecular Sciences 23, no. 20: 12064. https://doi.org/10.3390/ijms232012064
APA StyleZhou, Y., Wang, Y., Vong, C. T., Zhu, Y., Xu, B., Ruan, C.-C., Wang, Y., & Cheang, W. S. (2022). Jatrorrhizine Improves Endothelial Function in Diabetes and Obesity through Suppression of Endoplasmic Reticulum Stress. International Journal of Molecular Sciences, 23(20), 12064. https://doi.org/10.3390/ijms232012064