Thermodynamic Analysis of the Solubility of Isoniazid in (PEG 200 + Water) Cosolvent Mixtures from 278.15 K to 318.15 K
<p>Molecular structure of isoniazid.</p> "> Figure 2
<p>Molar fraction of isoniazid (10<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math><math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>) depending on the cosolvent composition (mass fraction) free of solute. □: 278.15 K; ■: 283.15 K; ∘: 288.15 K; •: 293.15 K; ▲: 298.15 K; Δ: 303.15 K; ♦: 308.15 K; ⋄: 313.15 K, and +: 318.15 K.</p> "> Figure 3
<p>Molar fraction of isoniazid (10<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math><math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>) depending on the solubility parameter of the cosolvent mixture free of solute. □: 278.15 K; ■: 283.15 K; ∘: 288.15 K; •: 293.15 K; ▲: 298.15 K; Δ: 303.15 K; ♦: 308.15 K; ⋄: 313.15 K, and +: 318.15 K.</p> "> Figure 4
<p>Molecular structure of the INH analog.</p> "> Figure 5
<p>DSC Spectra of Isoniazid.</p> "> Figure 6
<p>Experimental solubility of isoniazid in pure water □: Gong et al. [<a href="#B12-ijms-23-10190" class="html-bibr">12</a>]; ■: this work.</p> "> Figure 7
<p>van ’t Hoff plot, for isoniazid (3) in (PEG 200 (1) + water (2)) cosolvent mixtures at some cosolvent mixtures, ♦: <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math>; ▲: <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>; ■: <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>; ⋄: <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>; △: <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>; ∘: <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>; □: <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Relation between enthalpy (<math display="inline"><semantics> <mrow> <msub> <mo>Δ</mo> <mi>soln</mi> </msub> <msup> <mi>H</mi> <mi>o</mi> </msup> </mrow> </semantics></math>) and entropy (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>hm</mi> </msub> <msub> <mo>Δ</mo> <mi>soln</mi> </msub> <msup> <mi>S</mi> <mi>o</mi> </msup> </mrow> </semantics></math>) in terms of the process of isoniazid (3) solution in (PEG 200 (1) + water (2)) cosolvent mixtures at 297.6 K. The isoenergetic curves for <math display="inline"><semantics> <mrow> <msub> <mo>Δ</mo> <mi>soln</mi> </msub> <msup> <mi>G</mi> <mi>o</mi> </msup> </mrow> </semantics></math> are represented by dotted lines.</p> "> Figure 9
<p>Relation between enthalpy (<math display="inline"><semantics> <mrow> <msub> <mo>Δ</mo> <mi>tr</mi> </msub> <msup> <mi>H</mi> <mi>o</mi> </msup> </mrow> </semantics></math>) and entropy (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>hm</mi> </msub> <msub> <mo>Δ</mo> <mi>tr</mi> </msub> <msup> <mi>S</mi> <mi>o</mi> </msup> </mrow> </semantics></math>) of the process transfer of isoniazid (3) in (PEG 200 (1) + water (2)) cosolvent mixtures at 297.6 K. The isoenergetic curves for <math display="inline"><semantics> <mrow> <msub> <mo>Δ</mo> <mi>mix</mi> </msub> <msup> <mi>G</mi> <mi>o</mi> </msup> </mrow> </semantics></math> are represented by dotted lines.</p> "> Figure 10
<p>Relation between enthalpy (<math display="inline"><semantics> <mrow> <msub> <mo>Δ</mo> <mi>mix</mi> </msub> <msup> <mi>H</mi> <mi>o</mi> </msup> </mrow> </semantics></math>) and entropy (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>hm</mi> </msub> <msub> <mo>Δ</mo> <mi>mix</mi> </msub> <msup> <mi>S</mi> <mi>o</mi> </msup> </mrow> </semantics></math>) of the process mixing of isoniazid (3) in (PEG 200 (1) + water (2)) cosolvent mixtures at 297.6 K. The isoenergetic curves for <math display="inline"><semantics> <mrow> <msub> <mo>Δ</mo> <mi>mix</mi> </msub> <msup> <mi>G</mi> <mi>o</mi> </msup> </mrow> </semantics></math> are represented by dotted lines.</p> "> Figure 11
<p>Enthalpy–entropy compensation plot for the solubility of isoniazid (3) in (PEG 200 (1) + water (2)) mixtures at <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>h</mi> <mi>m</mi> </mrow> </msub> </semantics></math> = 297.6 K.</p> "> Figure 12
<p>Enthalpy–entropy compensation plot for the solubility of isoniazid (3) in (PEG 200 (1) + water (2)) mixtures at <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>h</mi> <mi>m</mi> </mrow> </msub> </semantics></math> = 297.6 K.</p> "> Figure 13
<p>Gibbs energy of transfer of isoniazid (3) from neat water to (PEG 200 (1) + water (2)) cosolvent mixtures at <span class="html-italic">T</span> = 298.15 K.</p> "> Figure 14
<p><math display="inline"><semantics> <mrow> <mi>δ</mi> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math> values for the isoniazid (3) (PEG 200 (1) + water (2)) cosolvent mixtures at 298.15 K.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Solubility ()
2.2. Ideal Solubility and Activity Coefficients
2.3. Thermodynamic Functions of Solution
2.4. Thermodynamic Functions of Transfer
2.5. Thermodynamic Functions of Mixing
2.6. Enthalpy–Entropy Compensation Analysis
2.7. Preferential Solvation
3. Materials and Methods
3.1. Reagents
3.2. Preparation of Solvent Mixtures
3.3. Solubility Determination
3.4. Calorimetric Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Molar heat capacity | |
CAS | Chemical Abstracts Service Registry Number |
DSC | Differential scanning calorimetry |
e | Molecular interactions |
g | grams |
G | Gibbs Energy |
GC | Gas chromatography |
H | Enthalpy |
HPLC | High-performance liquid chromatography |
INH | Isoniazid |
id | Ideal |
K | Kelvin |
kJ | Kilojoule |
m | Melting |
mix | Mixing |
PEG | Polyethylene glycol 200 |
R | Gas constant |
S | Entropy |
sol | Solution |
tr | Transfer |
T | Temperature |
Harmonic temperature | |
UV | Ultraviolet |
W | Water |
w | Mass fraction |
x | Mole fraction |
Activity coefficient | |
Solubility parameter |
References
- Erwin, E.R.; Addison, A.P.; John, S.F.; Olaleye, O.A.; Rosell, R.C. Pharmacokinetics of isoniazid: The good, the bad, and the alternatives. Tuberculosis 2019, 116, S66–S70. [Google Scholar] [CrossRef]
- Nahid, P.; Dorman, S.E.; Alipanah, N.; Barry, P.M.; Brozek, J.L.; Cattamanchi, A.; Chaisson, L.H.; Chaisson, R.E.; Daley, C.L.; Grzemska, M.; et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin. Infect. Dis. 2016, 63, e147–e195. [Google Scholar] [CrossRef] [PubMed]
- Smieja, M.; Marchetti, C.; Cook, D.; Smaill, F. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst. Rev. 1999, 1, CD001363. [Google Scholar] [CrossRef] [PubMed]
- Benator, D.; Bhattacharya, M.; Bozeman, L.; Burman, W.; Cantazaro, A.; Chaisson, R.; Gordin, F.; Horsburgh, C.R.; Horton, J.; Khan, A.; et al. Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: A randomised clinical trial. Lancet 2002, 360, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Soedarsono, S.; Jayanti, R.P.; Mertaniasih, N.M.; Kusmiati, T.; Permatasari, A.; Indrawanto, D.W.; Charisma, A.N.; Yuliwulandari, R.; Long, N.P.; Choi, Y.K.; et al. Development of population pharmacokinetics model of isoniazid in Indonesian patients with tuberculosis. Int. J. Infect. Dis. 2022, 117, 8–14. [Google Scholar] [CrossRef]
- Di, L.; Fish, P.V.; Mano, T. Bridging solubility between drug discovery and development. Drug Discov. Today 2012, 17, 486–495. [Google Scholar] [CrossRef]
- Strickley, R.G. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 2004, 21, 201–230. [Google Scholar] [CrossRef]
- Mohammadian, E.; Barzegar-Jalali, M.; Rahimpour, E. Solubility prediction of lamotrigine in cosolvency systems using Abraham and Hansen solvation parameters. J. Mol. Liq. 2019, 276, 675–679. [Google Scholar] [CrossRef]
- Rubino, J.; Yalkowsky, S. Cosolvency and Cosolvent Polarity. Pharm. Res. 1987, 4, 220–230. [Google Scholar] [CrossRef]
- Jouyban-Gharamaleki, A.; Valaee, L.; Barzegar-Jalali, M.; Clark, B.; Acree, W. Comparison of various cosolvency models for calculating solute solubility in water–cosolvent mixtures. Int. J. Pharm. 1999, 177, 93–101. [Google Scholar] [CrossRef]
- Yalkowsky, S.H. Solubility and Solubilization in Aqueous Media; American Chemical Society: Washington, DC, USA, 1999. [Google Scholar]
- Gong, T.; Han, D.; Chen, Y.; Wang, S.; Tang, W. Solubility and Data Correlation of Isoniazid in Different Pure and Binary Mixed Solvent Systems from 283.15 K to 323.15 K. J. Chem. Eng. Data 2018, 63, 4767–4778. [Google Scholar] [CrossRef]
- Heryanto, R.; Hasan, M.; Abdullah, E.C. Solubility of Isoniazid in Various Organic Solvents from (301 to 313) K. J. Chem. Eng. Data 2008, 53, 1962–1964. [Google Scholar] [CrossRef]
- Chaudhary, N.; Nain, A.K. Densities, speeds of sound, refractive indices, excess and partial molar properties of polyethylene glycol 200 + methyl acrylate or ethyl acrylate or n-butyl acrylate binary mixtures at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 2018, 271, 501–513. [Google Scholar] [CrossRef]
- Soleymani, J.; Djozan, D.; Martínez, F.; Jouyban, A. Solubility of ranitidine hydrochloride in solvent mixtures of PEG 200, PEG 400, ethanol and propylene glycol at 25 °C. J. Mol. Liq. 2013, 182, 91–94. [Google Scholar] [CrossRef]
- Bhat, M.A.; Haq, N.; Shakeel, F. Solubility of N-(4-chlorophenyl)-2-(pyridin-4-ylcarbonyl)hydrazinecarbothioamide in PEG 400 + water co-solvent mixtures at 298.15 K to 338.15 K. Thermochim. Acta 2014, 589, 235–240. [Google Scholar] [CrossRef]
- Bhat, M.A.; Haq, N.; Shakeel, F. Solubility and dissolution thermodynamics of N-(4-chlorophenyl)-2-(pyridin-4-ylcarbonyl) hydrazinecarbothioamide in PG+water co-solvent mixtures at (298.15 to 338.15) K. Thermochim. Acta 2014, 593, 37–42. [Google Scholar] [CrossRef]
- Hoffmann, M.M. Polyethylene glycol as a green chemical solvent. Curr. Opin. Colloid Interface Sci. 2022, 57, 101537. [Google Scholar] [CrossRef]
- Kidwai, M.; Mishra, N.K.; Bhatnagar, D.; Jahan, A. A green methodology for one-pot synthesis of polysubstituted-tetrahydropyrimidines using PEG. Green Chem. Lett. Rev. 2011, 4, 109–115. [Google Scholar] [CrossRef]
- Sheskey, P.J.; Hancock, B.C.; Moss, G.P.; Goldfarb, D.J. Handbook of Pharmaceutical Excipients, 9th ed.; PharmPress: Denver, CO, USA, 2020. [Google Scholar]
- Yadav, D.; Dewangan, H.K. PEGYLATION: An important approach for novel drug delivery system. J. Biomater. Sci. Polym. Ed. 2021, 32, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Delgado, D.R.; Martínez, F. Solution thermodynamics of sulfadiazine in some ethanol+water mixtures. J. Mol. Liq. 2013, 187, 99–105. [Google Scholar] [CrossRef]
- Delgado, D.R.; Martínez, F. Solubility and preferential solvation of sulfadiazine in methanol+water mixtures at several temperatures. Fluid Phase Equilibria 2014, 379, 128–138. [Google Scholar] [CrossRef]
- Delgado, D.R.; Martínez, F. Solubility and Solution Thermodynamics of Some Sulfonamides in 1-Propanol + Water Mixtures. J. Solut. Chem. 2014, 43, 836–852. [Google Scholar] [CrossRef]
- Delgado, D.R.; Martínez, F. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol+water mixtures. Fluid Phase Equilibria 2013, 360, 88–96. [Google Scholar] [CrossRef]
- Delgado, D.R.; Almanza, O.A.; Martínez, F.; Peña, M.A.; Jouyban, A.; Acree, W.E. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J. Chem. Thermodyn. 2016, 97, 264–276. [Google Scholar] [CrossRef]
- Delgado, D.R.; Martínez, F. Solution Thermodynamics and Preferential Solvation of Sulfamerazine in Methanol + Water Mixtures. J. Solut. Chem. 2015, 44, 360–377. [Google Scholar] [CrossRef]
- Jouyban, A. Handbook of Solubility Data for Pharmaceuticals, 1st ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Barton, A.F.M. Handbook of Solubility Parameters and Other Cohesion Parameters, 2d ed.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Jouyban, A.; Shayanfar, A.; Panahi-Azar, V.; Soleymani, J.; Yousefi, B.; Acree, W.E.; York, P. Solubility Prediction of Drugs in Mixed Solvents Using Partial Solubility Parameters. J. Pharm. Sci. 2011, 100, 4368–4382. [Google Scholar] [CrossRef]
- Jouyban, A.; Soleymani, J.; Soltanpour, S. Solubility of Ketoconazole in Polyethylene Glycol 200 + Water Mixtures at 298.2–318.2 K. J. Solut. Chem. 2014, 43, 950–958. [Google Scholar] [CrossRef]
- Magnasco, V. Chapter 17—Atomic and molecular interactions. In Elementary Molecular Quantum Mechanics, 2nd ed.; Magnasco, V., Ed.; Elsevier: Oxford, UK, 2013; pp. 723–788. [Google Scholar] [CrossRef]
- Bajić, D.M.; Jovanović, J.; Živković, E.M.; Visak, Z.P.; Šerbanović, S.P.; Kijevčanin, M.L. Experimental measurement and modelling of viscosity of the binary systems pyridine or nicotine with polyethylene glycols at T = (288.15–333.15) K. New UNIFAC–VISCO and ASOG–VISCO interaction parameters. Fluid Phase Equilibria 2013, 338, 282–293. [Google Scholar] [CrossRef]
- Forte, A.; Melo, C.I.; Bogel-Łukasik, R.; Bogel-Łukasik, E. A favourable solubility of isoniazid, an antitubercular antibiotic drug, in alternative solvents. Fluid Phase Equilibria 2012, 318, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Duarte-Freire, F.; Soares-Aragão, C.F.; Accioly de Lima e Moura, T.F.; Nervo-Raffin, F. Thermal studies of isoniazid and mixtures with rifampicin. J. Therm. Anal. Calorim. 2009, 97, 333–336. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; Wu, M. Estimation of the ideal solubility (crystal-liquid fugacity ratio) of organic compounds. J. Pharm. Sci. 2010, 99, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, J.H.; Prausnitz, J.M.; Scott, R.L. Regular and Related Solutions: The Solubility of Gases, Liquids, and Solids; Van Nostrand Reinhold: New York, NY, USA, 1970. [Google Scholar]
- Neau, S.H.; Flynn, G.L. Solid and Liquid Heat Capacities of n-Alkyl Para-aminobenzoates Near the Melting Point. Pharm. Res. 1990, 7, 157–1162. [Google Scholar] [CrossRef] [PubMed]
- Neau, S.H.; Bhandarkar, S.V.; Hellmuth, E.W. Differential Molar Heat Capacities to Test Ideal Solubility Estimations. Pharm. Res. 1997, 14, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Opperhuizen, A.; Gobas, F.A.P.C.; Van der Steen, J.M.D.; Hutzinger, O. Aqueous solubility of polychlorinated biphenyls related to molecular structure. Environ. Sci. Technol. 1988, 22, 638–646. [Google Scholar] [CrossRef]
- Krug, R.R.; Hunter, W.G.; Grieger, R.A. Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of va not Hoff and Arrhenius data. J. Phys. Chem. 1976, 80, 2335–2341. [Google Scholar] [CrossRef]
- Krug, R.R.; Hunter, W.G.; Grieger, R.A. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem. 1976, 80, 2341–2351. [Google Scholar] [CrossRef]
- Perlovich, G.L.; Tkachev, V.V.; Strakhova, N.N.; Kazachenko, V.P.; Volkova, T.V.; Surov, O.V.; Schaper, K.; Raevsky, O.A. Thermodynamic and structural aspects of sulfonamide crystals and solutions. J. Pharm. Sci. 2009, 98, 4738–4755. [Google Scholar] [CrossRef]
- Perlovich, G.L.; Strakhova, N.N.; Kazachenko, V.P.; Volkova, T.V.; Tkachev, V.V.; Schaper, K.J.; Raevsky, O.A. Sulfonamides as a subject to study molecular interactions in crystals and solutions: Sublimation, solubility, solvation, distribution and crystal structure. Int. J. Pharm. 2008, 349, 300–313. [Google Scholar] [CrossRef]
- Ortiz, C.P.; Cardenas-Torres, R.E.; Martínez, F.; Delgado, D.R. Solubility of Sulfamethazine in the Binary Mixture of Acetonitrile + Methanol from 278.15 to 318.15 K: Measurement, Dissolution Thermodynamics, Preferential Solvation, and Correlation. Molecules 2021, 26, 7588. [Google Scholar] [CrossRef]
- Bustamante, P.; Romero, S.; Peña, A.; Escalera, B.; Reillo, A. Enthalpy–entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide, and nalidixic acid in dioxane–water. J. Pharm. Sci. 1998, 87, 1590–1596. [Google Scholar] [CrossRef]
- Peña, M.; Escalera, B.; Reíllo, A.; Sánchez, A.; Bustamante, P. Thermodynamics of Cosolvent Action: Phenacetin, Salicylic Acid and Probenecid. J. Pharm. Sci. 2009, 98, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Holguín, A.R.; Rodríguez, G.A.; Cristancho, D.M.; Delgado, D.R.; Martínez, F. Solution thermodynamics of indomethacin in propylene glycol+water mixtures. Fluid Phase Equilibria 2012, 314, 134–139. [Google Scholar] [CrossRef]
- Marcus, Y. Solvent Mixtures: Properties and Selective Solvation; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Ben-Naim, A. Theory of preferential solvation of nonelectrolytes. Cell Biochem. Biophys. 1988, 12, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq. 2008, 140, 61–67. [Google Scholar] [CrossRef]
- Yasmin, M.; Gupta, M. Density, Viscosity, Velocity and Refractive Index of Binary Mixtures of Poly (Ethylene Glycol) 200 with Ethanolamine, m-Cresol and Aniline at 298.15 K. J. Solut. Chem. 2011, 40, 1458–1472. [Google Scholar] [CrossRef]
- Ninni, L.; Camargo, M.; Meirelles, A. Water activity in poly(ethylene glycol) aqueous solutions. Thermochim. Acta 1999, 328, 169–176. [Google Scholar] [CrossRef]
- Marcus, Y. The Properties of Solvents, 1st ed.; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Chemical Book. Isoniazid. 2022. Available online: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB5102053.htm (accessed on 1 August 2022).
- Muñoz, M.M.; Tinjacá, D.A.; Jouyban, A.; Martínez, F.; Acree, W.E.A., Jr. Volumetric properties of PEG 200 (or 300) (1) + water (2) mixtures at several temperatures and correlation with the Jouyban—Acree model. Phys. Chem. Liq. 2018, 56, 100–109. [Google Scholar] [CrossRef]
- Delgado, D.R.; Martínez, F. Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol+water solvent mixtures according to the IKBI method. J. Mol. Liq. 2014, 193, 152–159. [Google Scholar] [CrossRef]
- Delgado, D.R.; Bahamón-Hernandez, O.; Cerquera, N.E.; Ortiz, C.P.; Martínez, F.; Rahimpour, E.; Jouyban, A.; Acree, W.E. Solubility of sulfadiazine in (acetonitrile + methanol) mixtures: Determination, correlation, dissolution thermodynamics and preferential solvation. J. Mol. Liq. 2021, 322, 114979. [Google Scholar] [CrossRef]
- Dittert, L.W.; Higuchi, T.; Reese, D.R. Phase Solubility Technique in Studying the Formation of Complex Salts of Triamterene. J. Pharm. Sci. 1964, 53, 1325–1328. [Google Scholar] [CrossRef]
Temperature (K) | |||||||||
---|---|---|---|---|---|---|---|---|---|
278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | 318.15 | |
0.0 | 8.93 ± 0.13 | 11.05 ± 0.18 | 13.4 ± 0.21 | 16.45 ± 0.1 | 19.7 ± 0.27 | 23.8 ± 0.5 | 28.3 ± 0.6 | 33.8 ± 0.4 | 39.0 ± 0.4 |
0.1 | 9.49 ± 0.07 | 11.71 ± 0.16 | 14.08 ± 0.2 | 17.34 ± 0.34 | 20.9 ± 0.4 | 24.8 ± 0.4 | 29.3 ± 0.23 | 35 ± 0.6 | 41.3 ± 0.5 |
0.2 | 9.75 ± 0.2 | 12.06 ± 0.05 | 14.49 ± 0.14 | 17.82 ± 0.42 | 21.23 ± 0.14 | 25.1 ± 0.4 | 29.8 ± 0.7 | 35.8 ± 0.6 | 41.3 ± 0.6 |
0.3 | 10.66 ± 0.08 | 12.99 ± 0.06 | 15.42 ± 0.21 | 18.8 ± 0.12 | 22.31 ± 0.2 | 26.65 ± 0.11 | 31.64 ± 0.29 | 37.19 ± 0.3 | 42.6 ± 0.4 |
0.4 | 11.64 ± 0.06 | 14.07 ± 0.07 | 16.6 ± 0.18 | 20.04 ± 0.07 | 23.38 ± 0.25 | 27.81 ± 0.06 | 32.81 ± 0.33 | 38.4 ± 0.4 | 43.7 ± 0.26 |
0.5 | 12.56 ± 0.17 | 15.02 ± 0.19 | 17.97 ± 0.27 | 21.35 ± 0.16 | 24.8 ± 0.29 | 28.97 ± 0.3 | 33.68 ± 0.31 | 39.7 ± 0.4 | 44.8 ± 0.7 |
0.6 | 13.46 ± 0.30 | 16.18 ± 0.33 | 18.9 ± 0.14 | 22.65 ± 0.23 | 26.3 ± 0.42 | 31.0 ± 0.6 | 35.8 ± 0.4 | 42.1 ± 0.6 | 47.1 ± 0.6 |
0.7 | 13.39 ± 0.10 | 16.04 ± 0.14 | 19.06 ± 0.26 | 22.75 ± 0.15 | 26.64 ± 0.34 | 31.71 ± 0.21 | 36.83 ± 0.14 | 43.07 ± 0.3 | 49.0 ± 0.5 |
0.8 | 13.75 ± 0.33 | 16.73 ± 0.22 | 19.72 ± 0.3 | 24.00 ± 0.21 | 28.49 ± 0.15 | 33.6 ± 0.6 | 39.3 ± 1.0 | 46.6 ± 0.7 | 53.0 ± 1.0 |
0.9 | 13.12 ± 0.18 | 16.83 ± 0.30 | 20.4 ± 0.21 | 25.76 ± 0.33 | 31.1 ± 0.3 | 37.7 ± 0.7 | 45.7 ± 0.5 | 55.1 ± 1.0 | 65.6 ± 0.2 |
1.0 | 10.83 ± 0.14 | 15.15 ± 0.41 | 20.48 ± 0.21 | 28.3 ± 0.34 | 37.35 ± 0.57 | 50.6 ± 0.4 | 66.4 ± 1.7 | 86.7 ± 0.6 | 111.5 ± 0.9 |
Group | Group Number | U (kJ mol) | V (cm mol) |
---|---|---|---|
=CH- | 4 | 4.31 × 4 = 17.24 | 13.5 × 4 = 54 |
>C= | 1 | 4.31 × 1 = 4.31 | −5.5 × 1 = −5.5 |
-N= | 1 | 11.7 × 1 = 11.7 | 5.0 × 1 = 5.0 |
-NH | 1 | 12.6 × 1 = 12.6 | 19.2 × 1 = 19.2 |
-CONH- | 1 | 33.5 × 1 = 33.5 | 9.5 × 1 = 9.5 |
Ring closure | 1 | 1.05 × 1 = 1.05 | 16.0 × 1 = 16.0 |
Conjugation in ring | 3 | 1.67 × 3 = 5.01 | −2.2 × 3 = −6.6 |
= 85.41 | = 91.6 | ||
= 30.54 MPa |
Sample | Enthalpy of Fusion, (kJ mol) | Melting Point (K) | Ref. |
---|---|---|---|
Original sample | 28.1 ± 0.5 | 445.1 ± 0.5 | This work |
27.912 ± 0.28 | 445.84 ± 0.50 | [34] | |
28.38 ± 0.56 | 445.15 ± 1.0 | [35] | |
28.13 ± 1.41 | 446.04 ± 0.50 | [12] | |
Water | 28.4 ± 0.5 | 446.6 ± 0.5 | This work |
27.8 ± 0.5 | 445.3 ± 0.5 | This work | |
PEG 200 | 28.1 ± 0.5 | 446.4 ± 0.5 | This work |
Temperature (K) | |||||||||
---|---|---|---|---|---|---|---|---|---|
278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | 318.15 | |
0.0 | 3.12 | 2.88 | 2.71 | 2.52 | 2.39 | 2.24 | 2.14 | 2.02 | 1.98 |
0.1 | 2.93 | 2.72 | 2.58 | 2.39 | 2.26 | 2.15 | 2.06 | 1.95 | 1.87 |
0.2 | 2.85 | 2.64 | 2.51 | 2.32 | 2.22 | 2.13 | 2.03 | 1.91 | 1.87 |
0.3 | 2.61 | 2.45 | 2.36 | 2.2 | 2.11 | 2.01 | 1.91 | 1.84 | 1.81 |
0.4 | 2.39 | 2.26 | 2.19 | 2.07 | 2.01 | 1.92 | 1.84 | 1.78 | 1.76 |
0.5 | 2.22 | 2.12 | 2.02 | 1.94 | 1.90 | 1.84 | 1.80 | 1.72 | 1.72 |
0.6 | 2.07 | 1.97 | 1.92 | 1.83 | 1.79 | 1.73 | 1.69 | 1.62 | 1.64 |
0.7 | 2.08 | 1.98 | 1.91 | 1.82 | 1.77 | 1.69 | 1.64 | 1.59 | 1.57 |
0.8 | 2.02 | 1.90 | 1.84 | 1.73 | 1.65 | 1.59 | 1.54 | 1.47 | 1.46 |
0.9 | 2.12 | 1.89 | 1.71 | 1.61 | 1.51 | 1.42 | 1.32 | 1.24 | 1.17 |
1.0 | 2.57 | 2.10 | 1.71 | 1.46 | 1.26 | 1.06 | 0.91 | 0.79 | 0.69 |
(kJ/mol) | (kJ/mol) | (J/mol·K) | (kJ/mol) | |||
---|---|---|---|---|---|---|
0.0 | 9.76 ± 0.14 | 27.3 ± 0.16 | 58.9 ± 0.9 | 17.54 ± 0.27 | 0.609 | 0.391 |
0.1 | 9.64 ± 0.14 | 27.00 ± 0.15 | 58.3 ± 0.9 | 17.36 ± 0.27 | 0.609 | 0.391 |
0.2 | 9.59 ± 0.14 | 26.57 ± 0.17 | 57.1 ± 0.9 | 16.98 ± 0.28 | 0.610 | 0.390 |
0.3 | 9.45 ± 0.08 | 25.75 ± 0.11 | 54.8 ± 0.5 | 16.31 ± 0.15 | 0.612 | 0.388 |
0.4 | 9.31 ± 0.07 | 24.55 ± 0.11 | 51.2 ± 0.4 | 15.24 ± 0.13 | 0.617 | 0.383 |
0.5 | 9.18 ± 0.11 | 23.48 ± 0.14 | 48.0 ± 0.6 | 14.29 ± 0.19 | 0.622 | 0.378 |
0.6 | 9.03 ± 0.14 | 23.24 ± 0.18 | 47.8 ± 0.8 | 14.21 ± 0.24 | 0.621 | 0.379 |
0.7 | 9.00 ± 0.08 | 24.06 ± 0.11 | 50.6 ± 0.5 | 15.06 ± 0.15 | 0.615 | 0.385 |
0.8 | 8.86 ± 0.14 | 25.01 ± 0.18 | 54.3 ± 0.9 | 16.15 ± 0.28 | 0.608 | 0.392 |
0.9 | 8.64 ± 0.11 | 29.44 ± 0.16 | 69.9 ± 1.0 | 20.8 ± 0.29 | 0.586 | 0.414 |
1.0 | 8.19 ± 0.11 | 42.96 ± 0.16 | 116.8 ± 1.7 | 34.77 ± 0.5 | 0.553 | 0.447 |
Ideal | 7.58 ± 0.03 | 18.7 ± 0.17 | 37.5 ± 0.4 | 11.17 ± 0.11 | 0.627 | 0.373 |
More Polar→Less Polar | (kJ/mol) | (kJ/mol) | (J/mol·K) | (kJ/mol) |
---|---|---|---|---|
0.0→0.1 | −0.12 ± 0.19 | −0.30 ± 0.22 | −0.6 ± 1.3 | −0.2 ± 0.4 |
0.1→0.2 | −0.05 ± 0.20 | −0.40 ± 0.23 | −1.3 ± 1.3 | −0.4 ± 0.4 |
0.2→0.3 | −0.14 ± 0.16 | −0.80 ± 0.21 | −2.26 ± 1.1 | −0.67 ± 0.31 |
0.3→0.4 | −0.45 ± 0.15 | −2.80 ± 0.19 | −7.74 ± 1 | −2.3 ± 0.3 |
0.4→0.5 | −0.13 ± 0.13 | −1.10 ± 0.18 | −3.16 ± 0.8 | −0.94 ± 0.23 |
0.5→0.6 | −0.28 ± 0.15 | −1.30 ± 0.21 | −3.4 ± 0.9 | −1.02 ± 0.27 |
0.6→0.7 | −0.03 ± 0.16 | 0.80 ± 0.20 | 2.86 ± 0.9 | 0.85 ± 0.28 |
0.7→0.8 | −0.14 ± 0.16 | 0.90 ± 0.21 | 3.6 ± 1.1 | 1.08 ± 0.31 |
0.8→0.9 | −0.22 ± 0.18 | 4.40 ± 0.24 | 15.6 ± 1.4 | 4.7 ± 0.4 |
0.9→0.10 | −0.45 ± 0.16 | 13.50 ± 0.23 | 46.9 ± 2.0 | 14 ± 0.6 |
(kJ/mol) | (kJ/mol) | (J/mol·K) | (kJ/mol) | |
---|---|---|---|---|
0.0 | 2.18 ± 0.14 | 8.55 ± 0.23 | 21.4 ± 1.3 | 6.37 ± 0.29 |
0.1 | 2.06 ± 0.14 | 8.25 ± 0.23 | 20.8 ± 1.2 | 6.19 ± 0.29 |
0.2 | 2.01 ± 0.15 | 7.82 ± 0.24 | 19.5 ± 1.8 | 5.81 ± 0.3 |
0.3 | 1.87 ± 0.08 | 7.01 ± 0.21 | 17.3 ± 0.6 | 5.14 ± 0.19 |
0.4 | 1.73 ± 0.07 | 5.80 ± 0.21 | 13.7 ± 0.6 | 4.07 ± 0.17 |
0.5 | 1.60 ± 0.11 | 4.73 ± 0.22 | 10.5 ± 0.7 | 3.13 ± 0.22 |
0.6 | 1.45 ± 0.14 | 4.50 ± 0.25 | 10.2 ± 0.9 | 3.04 ± 0.27 |
0.7 | 1.42 ± 0.08 | 5.31 ± 0.20 | 13.1 ± 0.6 | 3.89 ± 0.18 |
0.8 | 1.28 ± 0.14 | 6.26 ± 0.25 | 16.7 ± 1.0 | 4.98 ± 0.3 |
0.9 | 1.06 ± 0.12 | 10.69 ± 0.24 | 32.4 ± 1.1 | 9.63 ± 0.31 |
1.0 | 0.61 ± 0.12 | 24.21 ± 0.24 | 79.3 ± 1.7 | 23.6 ± 0.5 |
D | Q | ||||||||
---|---|---|---|---|---|---|---|---|---|
(kJ/mol) | (kJ/mol) | (cm/mol) | (cm/mol) | (cm/mol) | (cm/mol) | (cm/mol) | (cm/mol) | ||
0.00 | −11.92 | 2.479 | 1.133 | 170.66 | 18.06 | −194.4 | −107.5 | 610 | 0.00 |
0.05 | −5.37 | 5.372 | 1.128 | 172.40 | 18.02 | −124.6 | −116.2 | 750 | −0.06 |
0.01 | −3.17 | 6.640 | 1.124 | 173.90 | 17.90 | −115.2 | −115.9 | 884 | 0.01 |
0.15 | −2.19 | 6.795 | 1.119 | 175.18 | 17.71 | −112.4 | −116.0 | 1010 | 0.05 |
0.20 | −1.67 | 6.251 | 1.115 | 176.26 | 17.49 | −111.3 | −117.0 | 1132 | 0.09 |
0.25 | −1.36 | 5.333 | 1.110 | 177.15 | 17.23 | −110.9 | −118.9 | 1250 | 0.13 |
0.30 | −1.17 | 4.286 | 1.105 | 177.86 | 16.96 | −110.8 | −122.1 | 1366 | 0.19 |
0.35 | −1.05 | 3.285 | 1.101 | 178.42 | 16.69 | −111.0 | −127.4 | 1480 | 0.28 |
0.40 | −0.96 | 2.443 | 1.096 | 178.84 | 16.44 | −111.5 | −135.7 | 1592 | 0.40 |
0.45 | −0.90 | 1.822 | 1.092 | 179.13 | 16.23 | −112.0 | −147.6 | 1704 | 0.56 |
0.50 | −0.87 | 1.439 | 1.087 | 179.31 | 16.07 | −112.4 | −161.5 | 1814 | 0.73 |
0.55 | −0.84 | 1.280 | 1.082 | 179.40 | 15.97 | −112.3 | −172.4 | 1920 | 0.83 |
0.60 | −0.82 | 1.304 | 1.078 | 179.41 | 15.96 | −111.6 | −175.7 | 2023 | 0.82 |
0.65 | −0.82 | 1.455 | 1.073 | 179.36 | 16.04 | −110.7 | −173.0 | 2122 | 0.71 |
0.70 | −0.82 | 1.674 | 1.069 | 179.26 | 16.24 | −110.0 | −168.7 | 2220 | 0.59 |
0.75 | −0.82 | 1.900 | 1.064 | 179.14 | 16.58 | −109.4 | −165.5 | 2317 | 0.48 |
0.80 | −0.83 | 2.089 | 1.060 | 179.00 | 17.05 | −109.0 | −164.3 | 2413 | 0.39 |
0.85 | −0.84 | 2.214 | 1.055 | 178.86 | 17.70 | −108.6 | −165.1 | 2507 | 0.30 |
0.90 | −0.85 | 2.282 | 1.050 | 178.75 | 18.52 | −108.3 | −167.7 | 2601 | 0.21 |
0.95 | −0.87 | 2.339 | 1.046 | 178.66 | 19.53 | −108.0 | −170.7 | 2692 | 0.12 |
1.00 | −0.89 | 2.479 | 1.041 | 178.63 | 20.76 | −107.6 | −171.7 | 2782 | 0.00 |
Chemical Name | CAS | Source | Purity in Mass Fraction | Analytic Technique |
---|---|---|---|---|
Isoniazid | 57-83-0 | Sigma-Aldrich, Burlington, MA, USA | >0.990 | HPLC |
Polyethylene glycol 200 | 25322-68-3 | Sigma-Aldrich, Burlington, MA, USA | 0.998 | GC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baracaldo-Santamaría, D.; Calderon-Ospina, C.A.; Ortiz, C.P.; Cardenas-Torres, R.E.; Martinez, F.; Delgado, D.R. Thermodynamic Analysis of the Solubility of Isoniazid in (PEG 200 + Water) Cosolvent Mixtures from 278.15 K to 318.15 K. Int. J. Mol. Sci. 2022, 23, 10190. https://doi.org/10.3390/ijms231710190
Baracaldo-Santamaría D, Calderon-Ospina CA, Ortiz CP, Cardenas-Torres RE, Martinez F, Delgado DR. Thermodynamic Analysis of the Solubility of Isoniazid in (PEG 200 + Water) Cosolvent Mixtures from 278.15 K to 318.15 K. International Journal of Molecular Sciences. 2022; 23(17):10190. https://doi.org/10.3390/ijms231710190
Chicago/Turabian StyleBaracaldo-Santamaría, Daniela, Carlos Alberto Calderon-Ospina, Claudia Patricia Ortiz, Rossember Edén Cardenas-Torres, Fleming Martinez, and Daniel Ricardo Delgado. 2022. "Thermodynamic Analysis of the Solubility of Isoniazid in (PEG 200 + Water) Cosolvent Mixtures from 278.15 K to 318.15 K" International Journal of Molecular Sciences 23, no. 17: 10190. https://doi.org/10.3390/ijms231710190
APA StyleBaracaldo-Santamaría, D., Calderon-Ospina, C. A., Ortiz, C. P., Cardenas-Torres, R. E., Martinez, F., & Delgado, D. R. (2022). Thermodynamic Analysis of the Solubility of Isoniazid in (PEG 200 + Water) Cosolvent Mixtures from 278.15 K to 318.15 K. International Journal of Molecular Sciences, 23(17), 10190. https://doi.org/10.3390/ijms231710190