Carrageenan-Based Compounds as Wound Healing Materials
<p>Applications (blue background) and biological uses or properties (red background) of carrageenan-based formulations.</p> "> Figure 2
<p>The process of wound healing.</p> "> Figure 3
<p>Carrageenan structure.</p> "> Figure 4
<p>Carrageenan nanofibers electrospinning principle.</p> ">
Abstract
:1. Introduction
2. Wound Healing
3. Carrageenans: Structure, Types, and Wound Healing Effects
3.1. Carrageenan Nanoformulations
3.1.1. Nanofibers
3.1.2. Nanoparticles
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aramwit, P. Introduction to Biomaterials for Wound Healing. In Wound Healing Biomaterials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–38. [Google Scholar] [CrossRef]
- Das, S.; Baker, A.B. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front. Bioeng. Biotechnol. 2016, 4, 82. [Google Scholar] [CrossRef] [PubMed]
- Branski, L.K.; Herndon, D.N.; Celis, M.M.; Norbury, W.B.; Masters, O.E.; Jeschke, M.G. Amnion in the Treatment of Pediatric Partial-Thickness Facial Burns. Burns 2008, 34, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.B. Regenerative Wound Healing Via Biomaterials. In Bioengineering Research of Chronic Wounds; Springer: Berlin/Heidelberg, Germany, 2009; pp. 405–424. [Google Scholar] [CrossRef]
- Wiegand, C.; Hipler, U.-C. Polymer-Based Biomaterials as Dressings for Chronic Stagnating Wounds. Macromol. Symp. 2010, 294, 1–13. [Google Scholar] [CrossRef]
- Demir, A.; Cevher, E. Biopolymers as Wound Healing Materials: Challenges and New Strategies. In Biomaterials Applications for Nanomedicine; InTech: Houston, TX, USA, 2011. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, H.; Dai, X.; Sun, S.; Machens, H.G.; Schilling, A.F. Biomaterials for Promoting Wound Healing in Diabetes. J. Tissue Sci. Eng. 2017, 8, 193. [Google Scholar] [CrossRef]
- Bibire, T.; Yilmaz, O.; Ghiciuc, C.M.; Bibire, N.; Dănilă, R. Biopolymers for Surgical Applications. Coatings 2022, 12, 211. [Google Scholar] [CrossRef]
- Khoo, Z.X.; Teoh, J.E.M.; Liu, Y.; Chua, C.K.; Yang, S.; An, J.; Leong, K.F.; Yeong, W.Y. 3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing. Virtual Phys. Prototyp. 2015, 10, 103–122. [Google Scholar] [CrossRef]
- Tibbitt, M.W.; Langer, R. Living Biomaterials. Acc. Chem. Res. 2017, 50, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Lin, S.; Yuk, H.; Zhao, X. Kirigami Enhances Film Adhesion. Soft Matter 2018, 14, 2515–2525. [Google Scholar] [CrossRef] [PubMed]
- Ratner, B.D. New Ideas in Biomaterials Science—a Path to Engineered Biomaterials. J. Biomed. Mater. Res. 1993, 27, 837–850. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.-M.; Liu, X. Advancing Biomaterials of Human Origin for Tissue Engineering. Prog. Polym. Sci. 2016, 53, 86–168. [Google Scholar] [CrossRef]
- Kennedy, J.F.; Knill, C.J.; Thorley, M. Natural polymers for healing wounds. In Recent Advances in Environmentally Compatible Polymers; Elsevier: Amsterdam, The Netherlands, 2001; pp. 97–104. [Google Scholar] [CrossRef]
- Chandran, V.; Trikkurmadom, S.A.; Rajalekshmi, G.; Pandimadevi, M. Potential Wound Healing Materials from The Natural Polymers—A Review. Int. J. Pharm. Bio. Sci. 2015, 6, 1365–1389. [Google Scholar]
- Stadelmann, W.K.; Digenis, A.G.; Tobin, G.R. Physiology and Healing Dynamics of Chronic Cutaneous Wounds. Am. J. Surg. 1998, 176, 26S–38S. [Google Scholar] [CrossRef]
- Broughton, G.; Janis, J.E.; Attinger, C.E. The Basic Science of Wound Healing. Plast. Reconstr. Surg. 2006, 117, 12S–34S. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Grumezescu, A.M. An Up-to-Date Review of Biomaterials Application in Wound Management. Polymers 2022, 14, 421. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef] [PubMed]
- Tampa, M.; Neagu, M.; Caruntu, C.; Georgescu, S.R. Personalized Medicine in the Field of Inflammatory Skin Disorders. J. Pers. Med. 2022, 12, 426. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Amini, M.R.; Hosseini, M.S.; Fatollah, S.; Mirpour, S.; Ghoranneviss, M.; Larijani, B.; Mohajeri-Tehrani, M.R.; Khorramizadeh, M.R. Beneficial effects of cold atmospheric plasma on inflammatory phase of diabetic foot ulcers; a randomized clinical trial. J. Diabetes Metab. Disord. 2020, 19, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, H.P.; Longaker, M.T. Wounds: Biology, Pathology, and Management. In Essential Practice of Surgery; Springer: New York, NY, USA; pp. 77–88. [CrossRef]
- Gosain, A.; DiPietro, L.A. Aging and Wound Healing. World J. Surg. 2004, 28, 321–326. [Google Scholar] [CrossRef]
- Whiteheart, S.W. Platelet Granules: Surprise Packages. Blood 2011, 118, 1190–1191. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.X.; Hu, M.S.; Esquivel, M.; Liang, G.Y.; Rennert, R.C.; McArdle, A.; Paik, K.J.; Duscher, D.; Gurtner, G.C.; Lorenz, H.P.; et al. The Role of Hypoxia-Inducible Factor in Wound Healing. Adv. Wound Care 2014, 3, 390–399. [Google Scholar] [CrossRef]
- Rodriguez, P.G.; Felix, F.N.; Woodley, D.T.; Shim, E.K. The Role of Oxygen in Wound Healing: A Review of the Literature. Dermatol. Surg. 2008, 34, 1159–1169. [Google Scholar] [CrossRef]
- Barbu, A.; Neamtu, B.; Zăhan, M.; Iancu, G.M.; Bacila, C.; Mireșan, V. Current Trends in Advanced Alginate-Based Wound Dressings for Chronic Wounds. J. Pers. Med. 2021, 11, 890. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Kirketerp-Møller, K.; Jensen, P.Ø.; Madsen, K.G.; Phipps, R.; Krogfelt, K.; Høiby, N.; Givskov, M. Why Chronic Wounds Will Not Heal: A Novel Hypothesis. Wound Repair Regen. 2008, 16, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.C.D.O.; Costa, T.F.; de Araújo Andrade, Z.; Medrado, A.R.A.P. Wound Healing—A Literature Review. An. Bras. De Dermatol. 2016, 91, 614–620. [Google Scholar] [CrossRef]
- Koh, T.J.; DiPietro, L.A. Inflammation and Wound Healing: The Role of the Macrophage. Expert Rev. Mol. Med. 2011, 13, e23. [Google Scholar] [CrossRef] [PubMed]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef] [PubMed]
- Menke, N.B.; Ward, K.R.; Witten, T.M.; Bonchev, D.G.; Diegelmann, R.F. Impaired Wound Healing. Clin. Dermatol. 2007, 25, 19–25. [Google Scholar] [CrossRef]
- Orsted, H.L.; Keast, D.; Forest-Lalande, L.; Mégie, M.F. Basic Principles of Wound Healing. Wound Care Can. 2011, 9, 4–12. [Google Scholar]
- Hackam, D.J.; Ford, H.R. Cellular, Biochemical, and Clinical Aspects of Wound Healing. Surg. Infect. 2002, 3 (Suppl. S1), s23–s35. [Google Scholar] [CrossRef]
- Ali, J.; Khan, A.; Kotta, S.; Ansari, S.; Sharma, R.; Kumar, A. Formulation Development, Optimization and Evaluation of Aloe Vera Gel for Wound Healing. Pharmacogn. Mag. 2013, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, T.R.; Kanwar, M.; Lal, R.; Gupta, A. Natural Gums and Modified Natural Gums as Sustained-Release Carriers. Drug Dev. Ind. Pharm. 2000, 26, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Coviello, T.; Matricardi, P.; Marianecci, C.; Alhaique, F. Polysaccharide Hydrogels for Modified Release Formulations. J. Control. Release 2007, 119, 5–24. [Google Scholar] [CrossRef] [PubMed]
- Campo, V.L.; Kawano, D.F.; da Silva, D.B.; Carvalho, I. Carrageenans: Biological Properties, Chemical Modifications and Structural Analysis—A Review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Jiao, G.; Yu, G.; Zhang, J.; Ewart, H. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae. Mar. Drugs 2011, 9, 196–223. [Google Scholar] [CrossRef]
- de Ruiter, G.A.; Rudolph, B. Carrageenan Biotechnology. Trends Food Sci. Technol. 1997, 8, 389–395. [Google Scholar] [CrossRef]
- Kusaykin, M.; Bakunina, I.; Sova, V.; Ermakova, S.; Kuznetsova, T.; Besednova, N.; Zaporozhets, T.; Zvyagintseva, T. Structure, Biological Activity, and Enzymatic Transformation of Fucoidans from the Brown Seaweeds. Biotechnol. J. 2008, 3, 904–915. [Google Scholar] [CrossRef]
- Iota-Carrageenans|C24H34O31S4-4—PubChem. National Center for Biotechnology Information. PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/11966245 (accessed on 8 May 2022).
- Carrageenan and Salts of Carrageenan|C42H74O46S6—PubChem. National Center for Biotechnology Information. PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6850766 (accessed on 8 May 2022).
- Venugopal, V. Marine Polysaccharides: Food Applications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Liu, J.; Zhan, X.; Wan, J.; Wang, Y.; Wang, C. Review for Carrageenan-Based Pharmaceutical Biomaterials: Favourable Physical Features versus Adverse Biological Effects. Carbohydr. Polym. 2015, 121, 27–36. [Google Scholar] [CrossRef]
- Cunha, L.; Grenha, A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar. Drugs 2016, 14, 42. [Google Scholar] [CrossRef]
- Li, L.; Ni, R.; Shao, Y.; Mao, S. Carrageenan and Its Applications in Drug Delivery. Carbohydr. Polym. 2014, 103, 1–11. [Google Scholar] [CrossRef]
- Cui, S.W. (Ed.) Food Carbohydrates; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Khan, A.K.; Saba, A.U.; Nawazish, S.; Akhtar, F.; Rashid, R.; Mir, S.; Nasir, B.; Iqbal, F.; Afzal, S.; Pervaiz, F.; et al. Carrageenan Based Bionanocomposites as Drug Delivery Tool with Special Emphasis on the Influence of Ferromagnetic Nanoparticles. Oxidative Med. Cell. Longev. 2017, 2017, 8158315. [Google Scholar] [CrossRef]
- Alpha-Carrageenan|C14H24O12S—PubChem. National Center for Biotechnology Information. PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/102199625 (accessed on 8 May 2022).
- Beta-Carrageenan|C14H24O9—PubChem. National Center for Biotechnology Information. PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/102199626 (accessed on 8 May 2022).
- Kappa-Carrageenan|C24H36O25S2-2—PubChem. National Center for Biotechnology Information. PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/11966249 (accessed on 8 May 2022).
- Lambda-Carrageenan|C14H26O19S3—PubChem. National Center for Biotechnology Information. PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/101231953 (accessed on 8 May 2022).
- Anderson, N.S.; Dolan, T.C.S.; Penman, A.; Rees, D.A.; Mueller, G.P.; Stancioff, D.J.; Stanley, N.F. Carrageenans. Part IV. Variations in the Structure and Gel Properties of κ-Carrageenan, and the Characterisation of Sulphate Esters by Infrared Spectroscopy. J. Chem. Soc. C 1968, 602–606. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L. Carrageenan: A Review. Veterinární Med. 2013, 58, 187–205. [Google Scholar] [CrossRef]
- Anisuzzaman, S.M.; Bono, A.; Samiran, S.; Ariffin, B.; Farm, Y.Y. Influence of Potassium Hydroxide Concentration on the Carrageenan Functional Group Composition. In Developments in Sustainable Chemical and Bioprocess Technology; Springer US: Boston, MA, USA, 2013; pp. 355–363. [Google Scholar] [CrossRef]
- Munarin, F.; Tanzi, M.C.; Petrini, P. Advances in Biomedical Applications of Pectin Gels. Int. J. Biol. Macromol. 2012, 51, 681–689. [Google Scholar] [CrossRef]
- Chen, H.M.; Yan, X.J.; Wang, F.; Xu, W.F.; Zhang, L. Assessment of the Oxidative Cellular Toxicity of a κ-Carrageenan Oxidative Degradation Product towards Caco-2 Cells. Food Res. Int. 2010, 43, 2390–2401. [Google Scholar] [CrossRef]
- de Jesus Raposo, M.; de Morais, A.; de Morais, R. Marine Polysaccharides from Algae with Potential Biomedical Applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef] [PubMed]
- Şen, M.; Avci, E.N. Radiation Synthesis of Poly(N-Vinyl-2-Pyrrolidone)-κ-Carrageenan Hydrogels and Their Use in Wound Dressing Applications. I. Preliminary Laboratory Tests. J. Biomed. Mater. Res. Part A 2005, 74A, 187–196. [Google Scholar] [CrossRef]
- Yuan, H.; Song, J.; Zhang, W.; Li, X.; Li, N.; Gao, X. Antioxidant Activity and Cytoprotective Effect of κ-Carrageenan Oligosaccharides and Their Different Derivatives. Bioorganic Med. Chem. Lett. 2006, 16, 1329–1334. [Google Scholar] [CrossRef]
- Lim, Y.-M.; Gwon, H.-J.; Choi, J.-H.; Shin, J.; Nho, Y.-C.; Jeong, S.I.; Chong, M.S.; Lee, Y.-M.; Kwon, I.K.; Kim, S.E. Preparation and Biocompatibility Study of Gelatin/Kappa-Carrageenan Scaffolds. Macromol. Res. 2010, 18, 29–34. [Google Scholar] [CrossRef]
- Pawar, H.V.; Tetteh, J.; Boateng, J.S. Preparation, Optimisation and Characterisation of Novel Wound Healing Film Dressings Loaded with Streptomycin and Diclofenac. Colloids Surf. B: Biointerfaces 2013, 102, 102–110. [Google Scholar] [CrossRef]
- Boateng, J.S.; Pawar, H.V.; Tetteh, J. Polyox and Carrageenan Based Composite Film Dressing Containing Anti-Microbial and Anti-Inflammatory Drugs for Effective Wound Healing. Int. J. Pharm. 2013, 441, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jiang, X.; Aubree, E.; Boulenguer, P.; Critchley, A.T. Preparation and In Vivo. Antitumor Activity of κ-Carrageenan Oligosaccharides. Pharm. Biol. 2006, 44, 646–650. [Google Scholar] [CrossRef]
- Barbu, A.; Neamțu, M.B.; Zăhan, M.; Mireșan, V. Trends in alginate-based films and membranes for wound healing. Rom. Biotechnol. Lett. 2020, 25, 1683–1689. [Google Scholar] [CrossRef]
- Baloğlu, E.; Şenyiğit, T. A Design and Evaluation of Layered Matrix Tablet Formulations of Metoprolol Tartrate. AAPS PharmSciTech 2010, 11, 563–573. [Google Scholar] [CrossRef]
- Jafari, A.; Farahani, M.; Sedighi, M.; Rabiee, N.; Savoji, H. Carrageenans for Tissue Engineering and Regenerative Medicine Applications: A Review. Carbohydr. Polym. 2022, 281, 119045. [Google Scholar] [CrossRef] [PubMed]
- Raghav, P.K.; Mann, Z.; Ahlawat, S.; Mohanty, S. Mesenchymal Stem Cell-Based Nanoparticles and Scaffolds in Regenerative Medicine. Eur. J. Pharmacol. 2022, 918, 174657. [Google Scholar] [CrossRef] [PubMed]
- Madruga, L.Y.C.; Kipper, M.J. Expanding the Repertoire of Electrospinning: New and Emerging Biopolymers, Techniques, and Applications. Adv. Healthc. Mater. 2022, 11, 2101979. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G. Electrically Driven Jets. Proc. R. Soc. London. A. Math. Phys. Sci. 1969, 313, 453–475. [Google Scholar] [CrossRef]
- Taylor, G. The Force Exerted by an Electric Field on a Long Cylindrical Conductor. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1966, 291, 145–158. [Google Scholar] [CrossRef]
- Taylor, G.I. Disintegration of Water Drops in an Electric Field. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1964, 280, 383–397. [Google Scholar] [CrossRef]
- Vargas-Osorio, Z.; Ruther, F.; Chen, S.; Sengupta, S.; Liverani, L.; Michálek, M.; Galusek, D.; Boccaccini, A. Environmentally friendly fabrication of electrospun nanofibers made of polycaprolactone, chitosan and κ-carrageenan (PCL/CS/κ-C). Biomed. Mater. 2022, 17, 045019. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Abou-Okeil, A.; Fahmy, H.M.; Fouda, M.M.G.; Aly, A.A.; Ibrahim, H.M. Hyaluronic Acid/Oxidized K-Carrageenan Electrospun Nanofibers Synthesis and Antibacterial Properties. Bionanoscience 2021, 11, 687–695. [Google Scholar] [CrossRef]
- Stijnman, A.C.; Bodnar, I.; Tromp, R.H. Electrospinning of Food-Grade Polysaccharides. Food Hydrocoll. 2011, 25, 1393–1398. [Google Scholar] [CrossRef]
- Salihfudin, M.A.; Bakar, N.F.A.; Adam, F. Development of Carrageenan Based Nanofibers via Electrospinning Technique. Res. Commun. Eng. Sci. Technol. 2019, 3, 8. Available online: http://www.asianscientificresearch.com/journals/index.php/RCEST/article/view/74/75 (accessed on 9 May 2022).
- Gouda, M.H.; Ali, S.M.; Othman, S.S.; Al-Aziz, S.A.A.; Abu-Serie, M.M.; Elsokary, N.A.; Elessawy, N.A. Novel Scaffold Based Graphene Oxide Doped Electrospun Iota Carrageenan/Polyvinyl Alcohol for Wound Healing and Pathogen Reduction: In-Vitro and in-Vivo Study. Sci. Rep. 2021, 11, 20456. [Google Scholar] [CrossRef] [PubMed]
- Madruga, L.Y.C.; Balaban, R.C.; Popat, K.C.; Kipper, M.J. Biocompatible Crosslinked Nanofibers of Poly(Vinyl Alcohol)/Carboxymethyl-Kappa-Carrageenan Produced by a Green Process. Macromol. Biosci. 2021, 21, 2000292. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Wang, S. Biodegradable κ-Carrageenan/Nanoclay Nanocomposite Films Containing Rosmarinus Officinalis, L. Extract for Improved Strength and Antibacterial Performance. Int. J. Biol. Macromol. 2018, 115, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Rhim, J.-W. Antimicrobial Wrapping Paper Coated with a Ternary Blend of Carbohydrates (Alginate, Carboxymethyl Cellulose, Carrageenan) and Grapefruit Seed Extract. Carbohydr. Polym. 2018, 196, 92–101. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Y.; Bai, R.; Zhang, X.; Yuan, L.; Liu, J. Preparation of PH-Sensitive and Antioxidant Packaging Films Based on κ-Carrageenan and Mulberry Polyphenolic Extract. Int. J. Biol. Macromol. 2019, 134, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.R.; Li, Y.-C.; Jang, H.L.; Khoshakhlagh, P.; Akbari, M.; Nasajpour, A.; Zhang, Y.S.; Tamayol, A.; Khademhosseini, A. Graphene-Based Materials for Tissue Engineering. Adv. Drug Deliv. Rev. 2016, 105, 255–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Qian, F.; Saltikov, C.W.; Jiao, Y.; Li, Y. Microbial Reduction of Graphene Oxide by Shewanella. Nano Res. 2011, 4, 563–570. [Google Scholar] [CrossRef]
- Deepachitra, R.; Ramnath, V.; Sastry, T.P. Graphene Oxide Incorporated Collagen–Fibrin Biofilm as a Wound Dressing Material. RSC Adv. 2014, 4, 62717–62727. [Google Scholar] [CrossRef]
- Almoshari, Y. Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source. Gels 2022, 8, 174. [Google Scholar] [CrossRef] [PubMed]
- Basilia, B.A.; Dagbay, K.B.; Ledda, K.A.; Robles, A. In-Vitro and In-Vivo Screenings of Electrospun Polycaprolactone-Carrageenan Nanofibrous Scaffolds for Tissue Engineering. TechConnect Briefs 2008, 2, 306–309. [Google Scholar]
- Goonoo, N.; Khanbabaee, B.; Steuber, M.; Bhaw-Luximon, A.; Jonas, U.; Pietsch, U.; Jhurry, D.; Schönherr, H. κ-Carrageenan Enhances the Biomineralization and Osteogenic Differentiation of Electrospun Polyhydroxybutyrate and Polyhydroxybutyrate Valerate Fibers. Biomacromolecules 2017, 18, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Ignatova, M.; Manolova, N.; Rashkov, I.; Markova, N. Quaternized Chitosan/κ-Carrageenan/Caffeic Acid–Coated Poly(3-Hydroxybutyrate) Fibrous Materials: Preparation, Antibacterial and Antioxidant Activity. Int. J. Pharm. 2016, 513, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Goonoo, N.; Bhaw-Luximon, A.; Jonas, U.; Jhurry, D.; Schönherr, H. Enhanced Differentiation of Human Preosteoblasts on Electrospun Blend Fiber Mats of Polydioxanone and Anionic Sulfated Polysaccharides. ACS Biomater. Sci. Eng. 2017, 3, 3447–3458. [Google Scholar] [CrossRef] [PubMed]
- Kocaaga, B.; Kurkcuoglu, O.; Tatlier, M.; Dinler-Doganay, G.; Batirel, S.; Güner, F.S. Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release. Polymers 2022, 14, 460. [Google Scholar] [CrossRef] [PubMed]
- Mihai, M.M.; Dima, M.B.; Dima, B.; Holban, A.M. Nanomaterials for Wound Healing and Infection Control. Materials 2019, 12, 2176. [Google Scholar] [CrossRef]
- Jaiswal, L.; Shankar, S.; Rhim, J.-W. Carrageenan-Based Functional Hydrogel Film Reinforced with Sulfur Nanoparticles and Grapefruit Seed Extract for Wound Healing Application. Carbohydr. Polym. 2019, 224, 115191. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, S.; Mokhtari, H.; Kharaziha, M.; Kermanpur, A.; Talebi, A.; Moshtaghian, J. A Multifunctional Nanocomposite Spray Dressing of Kappa-Carrageenan-Polydopamine Modified ZnO/L-Glutamic Acid for Diabetic Wounds. Mater. Sci. Eng. C 2020, 111, 110837. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Jaiswal, M.K.; Peak, C.W.; Carrow, J.K.; Gentry, J.; Dolatshahi-Pirouz, A.; Gaharwar, A.K. Injectable Shear-Thinning Nanoengineered Hydrogels for Stem Cell Delivery. Nanoscale 2016, 8, 12362–12372. [Google Scholar] [CrossRef] [PubMed]
- Lokhande, G.; Carrow, J.K.; Thakur, T.; Xavier, J.R.; Parani, M.; Bayless, K.J.; Gaharwar, A.K. Nanoengineered Injectable Hydrogels for Wound Healing Application. Acta Biomater. 2018, 70, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Cross, L.M.; Shah, K.; Palani, S.; Peak, C.W.; Gaharwar, A.K. Gradient Nanocomposite Hydrogels for Interface Tissue Engineering. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2465–2474. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, H.; Kharaziha, M.; Karimzadeh, F.; Tavakoli, S. An Injectable Mechanically Robust Hydrogel of Kappa-Carrageenan-Dopamine Functionalized Graphene Oxide for Promoting Cell Growth. Carbohydr. Polym. 2019, 214, 234–249. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, H.; Tavakoli, S.; Safarpour, F.; Kharaziha, M.; Bakhsheshi-Rad, H.R.; Ramakrishna, S.; Berto, F. Recent Advances in Chemically-Modified and Hybrid Carrageenan-Based Platforms for Drug Delivery, Wound Healing, and Tissue Engineering. Polymers 2021, 13, 1744. [Google Scholar] [CrossRef]
- Akrami-Hasan-Kohal, M.; Ghorbani, M.; Mahmoodzadeh, F.; Nikzad, B. Development of Reinforced Aldehyde-Modified Kappa-Carrageenan/Gelatin Film by Incorporation of Halloysite Nanotubes for Biomedical Applications. Int. J. Biol. Macromol. 2020, 160, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Yegappan, R.; Selvaprithiviraj, V.; Amirthalingam, S.; Mohandas, A.; Hwang, N.S.; Jayakumar, R. Injectable Angiogenic and Osteogenic Carrageenan Nanocomposite Hydrogel for Bone Tissue Engineering. Int. J. Biol. Macromol. 2019, 122, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Mahdavinia, G.R.; Karimi, M.H.; Soltaniniya, M.; Massoumi, B. In Vitro Evaluation of Sustained Ciprofloxacin Release from κ-Carrageenan-Crosslinked Chitosan/Hydroxyapatite Hydrogel Nanocomposites. Int. J. Biol. Macromol. 2019, 126, 443–453. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Doroudian, M.; Ahadpour, A.; Azari, S. Injectable Chitosan/κ-Carrageenan Hydrogel Designed with Au Nanoparticles: A Conductive Scaffold for Tissue Engineering Demands. Int. J. Biol. Macromol. 2019, 126, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Salgueiro, A.M.; Daniel-da-Silva, A.L.; Fateixa, S.; Trindade, T. κ-Carrageenan Hydrogel Nanocomposites with Release Behavior Mediated by Morphological Distinct Au Nanofillers. Carbohydr. Polym. 2013, 91, 100–109. [Google Scholar] [CrossRef]
- Daniel-da-Silva, A.L.; Moreira, J.; Neto, R.; Estrada, A.C.; Gil, A.M.; Trindade, T. Impact of Magnetic Nanofillers in the Swelling and Release Properties of κ-Carrageenan Hydrogel Nanocomposites. Carbohydr. Polym. 2012, 87, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Mahdavinia, G.R.; Etemadi, H. In Situ Synthesis of Magnetic CaraPVA IPN Nanocomposite Hydrogels and Controlled Drug Release. Mater. Sci. Eng. C 2014, 45, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Hezaveh, H.; Muhamad, I.I. Impact of Metal Oxide Nanoparticles on Oral Release Properties of PH-Sensitive Hydrogel Nanocomposites. Int. J. Biol. Macromol. 2012, 50, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Bardajee, G.R.; Hooshyar, Z.; Rastgo, F. Kappa Carrageenan-g-Poly (Acrylic Acid)/SPION Nanocomposite as a Novel Stimuli-Sensitive Drug Delivery System. Colloid Polym. Sci. 2013, 291, 2791–2803. [Google Scholar] [CrossRef]
- Bosio, V.E.; Cacicedo, M.L.; Calvignac, B.; León, I.; Beuvier, T.; Boury, F.; Castro, G.R. Synthesis and Characterization of CaCO 3 –Biopolymer Hybrid Nanoporous Microparticles for Controlled Release of Doxorubicin. Colloids Surf. B: Biointerfaces 2014, 123, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Raman, M.; Devi, V.; Doble, M. Biocompatible ι-Carrageenan-γ-Maghemite Nanocomposite for Biomedical Applications—Synthesis, Characterization and in Vitro Anticancer Efficacy. J. Nanobiotechnol. 2015, 13, 18. [Google Scholar] [CrossRef]
- Yegappan, R.; Selvaprithiviraj, V.; Amirthalingam, S.; Jayakumar, R. Carrageenan Based Hydrogels for Drug Delivery, Tissue Engineering and Wound Healing. Carbohydr. Polym. 2018, 198, 385–400. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K.-Y.; Lee, C.-M. Selenium Nanoparticles Formed by Modulation of Carrageenan Enhance Osteogenic Differentiation of Mesenchymal Stem Cells. J. Nanosci. Nanotechnol. 2016, 16, 2482–2487. [Google Scholar] [CrossRef]
- Azizi, S.; Mohamad, R.; Rahim, R.A.; Mohammadinejad, R.; Bin Ariff, A. Hydrogel Beads Bio-Nanocomposite Based on Kappa-Carrageenan and Green Synthesized Silver Nanoparticles for Biomedical Applications. Int. J. Biol. Macromol. 2017, 104, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Singh, A.; Singh, R. Polyvinyl Pyrrolidone/Carrageenan Blend Hydrogels with Nanosilver Prepared by Gamma Radiation for Use as an Antimicrobial Wound Dressing. J. Biomater. Sci. Polym. Ed. 2015, 26, 1269–1285. [Google Scholar] [CrossRef] [PubMed]
- Oun, A.A.; Rhim, J.-W. Carrageenan-Based Hydrogels and Films: Effect of ZnO and CuO Nanoparticles on the Physical, Mechanical, and Antimicrobial Properties. Food Hydrocoll. 2017, 67, 45–53. [Google Scholar] [CrossRef]
- Jaiswal, L.; Shankar, S.; Rhim, J.-W.; Hahm, D.-H. Lignin-Mediated Green Synthesis of AgNPs in Carrageenan Matrix for Wound Dressing Applications. Int. J. Biol. Macromol. 2020, 159, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Abdelgawad, A.M.; El-Naggar, M.E.; Elsherbiny, D.A.; Ali, S.; Abdel-Aziz, M.S.; Abdel-Monem, Y.K. Antibacterial Carrageenan/Cellulose Nanocrystal System Loaded with Silver Nanoparticles, Prepared via Solid-State Technique. J. Environ. Chem. Eng. 2020, 8, 104276. [Google Scholar] [CrossRef]
- Sharifzadeh, G.; Wahit, M.U.; Soheilmoghaddam, M.; Whye, W.T.; Pasbakhsh, P. Kappa-Carrageenan/Halloysite Nanocomposite Hydrogels as Potential Drug Delivery Systems. J Taiwan Inst Chem Eng 2016, 67, 426–434. [Google Scholar] [CrossRef]
- Mallapragada, S.K.; Narasimhan, B. Immunomodulatory Biomaterials. Int. J. Pharm. 2008, 364, 265–271. [Google Scholar] [CrossRef]
- Grigore, N.; Pirvut, V.; Mihai, I.; Hasegan, A.; Mitariu, S.I.C. Side-Effects of Polyurethane Ureteral Stents with or without Hydrogel Coating in Urologic Pathology. Mater. Plast. 2017, 54, 517–519. [Google Scholar] [CrossRef]
- Popov, S.V.; Ovodov, Y.S. Polypotency of the Immunomodulatory Effect of Pectins. Biochemistry 2013, 78, 823–835. [Google Scholar] [CrossRef]
- Joy, R.; Vigneshkumar, P.N.; John, F.; George, J. Chapter 9—Hydrogels based on carrageenan. In Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine; Giri, T.K., Ghosh, B., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 293–325. [Google Scholar] [CrossRef]
- Cao, W.; Jin, J.; Wu, G.; Bravenboer, N.; Helder, M.N.; Pathak, J.L.; Zandieh-Doulabi, B.; Hogervorst, J.M.A.; Matsukawa, S.; Geonzon, L.C.; et al. K-Carrageenan Stimulates Pre-Osteoblast Proliferation and Osteogenic Differentiation: A Potential Factor for the Promotion of Bone Regeneration? Molecules 2021, 26, 6131. [Google Scholar] [CrossRef]
- Roshanfar, F.; Hesaraki, S.; Dolatshahi-Pirouz, A. Electrospun Silk Fibroin/kappa-Carrageenan Hybrid Nanofibers with Enhanced Osteogenic Properties for Bone Regeneration Applications. Biology 2022, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- Nourmohammadi, J.; Roshanfar, F.; Farokhi, M.; Nazarpak, M.H. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Graceffa, V.; Zeugolis, D.I. Carrageenan enhances chondrogenesis and osteogenesis in human bone marrow stem cell culture. Eur. Cell Mater. 2019, 37, 310–332. [Google Scholar] [CrossRef] [PubMed]
- Popa, E.; Gomes, M.; Reis, R. Cell Delivery Systems Using Alginate–Carrageenan Hydrogel Beads and Fibers for Regenerative Medicine Applications. Biomacromolecules 2011, 12, 3952–3961. [Google Scholar] [CrossRef] [PubMed]
- Popa, E.; Carvalho, P.; Dias, A.; Santos, T.; Santo, V.; Marques, A.; Viegas, C.; Dias, I.; Gomes, M.; Reis, R. Evaluation of the in vitro and in vivo biocompatibility of carrageenan-based hydrogels. J. Biomed. Mater. Res. Part A 2014, 102, 4087–4097. [Google Scholar] [CrossRef]
- Pacheco-Quito, E.-M.; Ruiz-Caro, R.; Veiga, M.-D. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar. Drugs 2020, 18, 583. [Google Scholar] [CrossRef]
- Marques, D.M.C.; Silva, J.C.; Serro, A.P.; Cabral, J.M.S.; Sanjuan-Alberte, P.; Ferreira, F.C. 3D Bioprinting of Novel κ-Carrageenan Bioinks: An Algae-Derived Polysaccharide. Bioengineering 2022, 9, 109. [Google Scholar] [CrossRef]
Characteristics | Description | Reference |
---|---|---|
Type | Sulfated polysaccharides | [45,48] |
Source | Red algae (Chondrus, Eucheuma, Furcellaria, Gigartina, Hypnea) | [40,45,48,49] |
Structure | Alternating 3-linked b-D-galactopyranose (G-units) and 4-linked a-D-galactopyranose (D-units) or 4-linked 3,6-anhydro-a-D-galactopyranose (DA-units) | [39,41,45,50] |
Molecular weight | High and variable, A CG 416.39 g/mol B CG 336.33 g/mol I CG 946.74 g/mol K CG 788.64 g/mol L CG 594.52 g/mol | [43,44,51,52,53,54] |
Functional groups | 3,6-anhydrogalactose, ester sulfate, 3,6-anhydrogalactose-2-sulfate, and galactose-4-sulfate | [39,44,49,55] |
Solubility | Water-soluble, insoluble in organic solvents, oil or fats K-, I-CG—dissolves in Na+; L, T, X—insoluble | [45] |
Gelation factors | Influenced by temperature, concentration, ions (Na+, K+, and Ca2+), and pH Thermo-reversible. L, T, X—do not form a gel M, N, K, I—gel with K+ or Ca2+ ions, or alkali treatment K-CG in K+ and Na= salts presence—weak gel K-, I-CG in K+ and Ca2+ ions—higher gelling temperature K-CG 35 to 65 °C I-CG: higher Viscosities: 5–800 cps in 1.5% solutions at 75 °C | [44,46,48,56] |
Swelling factors | Levels of hydrophilic sulfate groups, salt form, Fe3O4 nanoparticles, molecular weight | [39,42,46,57] |
Dissolution factors/time | Types/number of solutes present, temperature, carrageenan type, molecular weight, concentration; slow | [46,49,53,56] |
CG Used | Technique | Studied Effects | Ref |
---|---|---|---|
OKC | K-CG oxidation—exposure to NaIO4 (1:0.5 ratio; at 40 °C; for 3 h; at pH 3), crosslinking with PVA and HA (HA:OKC:PVA—0:4:6; 1:3:6; 2:2:6; 3:1:6; 2.5:2.5:5; 3.5:3.5:3). Electrospinning: 5 mL syringe; 22G needle; 0.5 mL/h at 25 ± 2 °C; 10 cm tip-to-collector; 17.5 kV DC voltage | Antibacterial properties | [77] |
K-CG | Solvents: distilled H2O, with and without sonication; NaCl solution; crosslinking with fully or partially hydrolyzed PVA (PVA:K-CG 70:30) | Drug and nutrient delivery ability | [79] |
CMKC | Crosslinked with PVA; PVA:CMKC—1:0; 1:0.25; 1:0.4; 1:0.5; 1:0.75. Electrospinning: 19G needle; 1 mL/h at 20 ± 2 °C; 15 cm tip-to-collector 15 kV DC voltage | Cytocompatibility, biodegradability, cell growth, cell adhesion, adipose-derived stem cells’ response to osteogenic differentiation signals | [81] |
I-CG | Crosslinked with PVA and addition of graphene oxide (PVA:I-CG:GO—95:3:2). Electrospinning: 15 cm tip-to-collector 20 kV DC voltage | Wound healing, skin repair, antimicrobial properties | [80] |
I-CG | Crosslinking with polycaprolactone (PCL); PCL:I-CG—100:0; 95:5; 90:10; 85:15; 80:20; 0:100. Electrospinning: 10; 15; 18 cm tip-to-collector 20 kV DC voltage | Biocompatibility, bone tissue growth | [89] |
K-CG | Crosslinked with polyhydroxybutyrate (PHB) or polyhydroxybutyrate valerate (PHBV); PHB:K-CG and PHBV:K-CG—100:0; 90:10; 80:20; 70:30. Electrospinning: 1 mLSyringe dispensed at 3.5 mL/h (PHB/K-CG) and 3.0 mL/h (PHBV/K-CG); 15 cm tip-to-collector; 20 kV DC voltage | Bone tissue engineering | [90] |
K-CG | Crosslinked with PHB, caffeic acid (CA), and quaternized chitosan (QCh). Electrospinning: 2 mL/h; 15 cm tip-to-collector; 25 kV DC voltage | Antimicrobial and antioxidant properties | [91] |
K-CG | Crosslinked with polydioxanone (PDX); PDX:K-CG—100:0; 90:10; 80:20; 70:30. Electrospinning: 6 mL/h; 15 cm tip-to-collector; 25 kV DC voltage | Viability and differentiation of SaOS-2 preosteoblasts | [92] |
Nanoparticles Used | Application | Studied Properties | Ref |
---|---|---|---|
Chitosan capped sulfur particles and grapefruit seed extract | Hydrogel films Animal study | Wound healing effect, mechanical strength, increased swelling ratio and ultraviolet barrier properties, decreased water vapor permeability and water solubility | [95] |
Polydopamine modified ZnO nanoparticles | Sprayable bioadhesive hydrogel | Mechanical, antibacterial, and cellular properties, blood clotting ability, and biocompatibility | [96] |
L-glutamic acid | Sprayable bioadhesive hydrogel | Wound healing | [96] |
2D-nanosilicates | Injectable hydrogels for cellular delivery for cartilage tissue regeneration and 3D bioprinting | Shear-thinning characteristics, enhanced mechanical stiffness, elastomeric properties, and physiological stability | [97] |
2D-nanosilicates | Injectable hydrogels for hemostasis and tissue regeneration | Mechanical properties, stiffness, protein adsorption, cell adhesion and spreading, increased platelet binding and reduced blood clotting time. Suppression of entrapping vascular endothelial growth factor (VEGF), in vitro tissue regeneration, and wound healing. | [98] |
2D-nanosilicates | Bone-cartilage interface tissue engineering | Shear-thinning characteristics, increased the mechanical stiffness, mechanical properties, microstructures, cell adhesion characteristics | [99] |
Dopamine functionalized graphene oxide | Injectable hydrogels | Compressive strength and toughness, enhanced in vitro fibroblast proliferation and spreading | [100] |
Halloysite nanotubes | Nanocomposite film for tissue engineering | Biocompatibility, mechanical properties, cellular functions | [101,102] |
Whitlockite nanoparticles | Injectable hydrogels | Mechanical stability, biocompatibility, protein adsorption, stimulation of osteogenesis and angiogenesis | [103] |
Hydroxyapatite nanoparticles | Sustained release drug delivery hydrogels | Sustained release of hydrogel-loaded ciprofloxacin as opposed to burst-release of other hydrogels | [104] |
Gold particles | Injectable hydrogels | Electrical conductance, cell growth, and attachment | [105] |
Gold particles | Drug delivery hydrogels | Drug release kinetics (diclofenac sodium) | [106] |
Magnetic nanofillers (Fe3O4 nanoparticles) | Drug delivery hydrogels | Drug release kinetics (methylene blue, diclofenac sodium) | [107,108] |
MgO nanoparticles | Drug delivery hydrogels | Drug release kinetics (methylene blue) | [109] |
Super paramagnetic iron oxide nanoparticles | Drug delivery hydrogels | Stimulus-dependent (magnetic field, temperature, and pH-sensitive) drug release, biocompatibility | [110] |
CaCO3 -based nanoporous microparticles | Cancer cell targeting drug delivery nanocomposites | Drug release and cell targeting capabilities (doxorubicin) | [111] |
Maghemite | Drug delivery nanocomposites | Drug delivery in cancer therapy, biocompatibility | [112] |
Selenium | Nanocomposite for tissue engineering | Biochemical properties, osteoblast cell growth | [113,114] |
Silver particles | Hydrogel beads | Antibacterial activity, biological safety | [115] |
Silver particles | Wound dressing | Antimicrobial effectiveness and physical properties | [116] |
ZnO, CuO | Hydrogel and dry films | Mechanical, UV-screening, water-holding, thermal stability, and antimicrobial properties | [117] |
Silver particles and divalent cations (MgCl2, CuCl2, CaCl2) | Wound dressing material (hydrogels) | Biocompatibility, tissue regeneration | [118] |
Cellulose nanocrystals and silver nanoparticles | Wound dressing material (hydrogels) | Mechanical characteristics, nanocomposite drug release, antimicrobial properties | [119] |
Properties | Description | Reference |
---|---|---|
Formulations | 3D scaffolds, beads, drug-loaded plasticized films, fibers, gels, hydrogels, nanofibers, nanoparticles, PVP-KCG, three-layered matrix, and sponges | [48,56,61,68] |
Topical biocompatibility | Low toxicity but non-teratogenic, may cause inflammation and adverse effects on human intestinal epithelial cells | [48,61] |
Local properties | Drug delivery, anticoagulant, anti-HIV, antioxidant, antithrombotic, antitumor, and antiviral effect | [1,39,46,48,56,62,120] |
Mechanisms | Super case II release mechanism; hydrolysis of glycosidic bonds at pH ≤ 3.0; desulfation by sulfatases; anionic CG molecules interact with the positively charged virus or cell surface | [40,56,68,120] |
Immunogenicity | Interfere with antigens lowering the normal immune function Interact with the virus cell surface or its positive charges and prevent host cells from being penetrated by the virus | [56,121] |
Anti-infectious properties | Bacteriostatic: Salmonella enteritidis; antimicrobial: Aeromonas hydrophila, enterotoxigenic E. coli, Listeria monocytogenes, Salmonella enteritidis, S. typhimurium, S. aureus, P. aeruginosa, Vibrio mimicus | [45,117] |
Anti-inflammatory properties | Induce inflammation (paw edema), but interfere with NSAIDs. If loaded with diclofenac, they reduce inflammation. | [48,56,122,123] |
3D scaffolds | Alginate–carrageenan mix, gelatin/K-CG sponges, K-CG/calcium phosphate, hydrogel beads and fibers, metoprolol tartrate delivery in 3-layered matrix tablets, PVP-KCG | [1,56,63,68,117] |
Elimination | Fecal elimination after oral intake | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neamtu, B.; Barbu, A.; Negrea, M.O.; Berghea-Neamțu, C.Ș.; Popescu, D.; Zăhan, M.; Mireșan, V. Carrageenan-Based Compounds as Wound Healing Materials. Int. J. Mol. Sci. 2022, 23, 9117. https://doi.org/10.3390/ijms23169117
Neamtu B, Barbu A, Negrea MO, Berghea-Neamțu CȘ, Popescu D, Zăhan M, Mireșan V. Carrageenan-Based Compounds as Wound Healing Materials. International Journal of Molecular Sciences. 2022; 23(16):9117. https://doi.org/10.3390/ijms23169117
Chicago/Turabian StyleNeamtu, Bogdan, Andreea Barbu, Mihai Octavian Negrea, Cristian Ștefan Berghea-Neamțu, Dragoș Popescu, Marius Zăhan, and Vioara Mireșan. 2022. "Carrageenan-Based Compounds as Wound Healing Materials" International Journal of Molecular Sciences 23, no. 16: 9117. https://doi.org/10.3390/ijms23169117
APA StyleNeamtu, B., Barbu, A., Negrea, M. O., Berghea-Neamțu, C. Ș., Popescu, D., Zăhan, M., & Mireșan, V. (2022). Carrageenan-Based Compounds as Wound Healing Materials. International Journal of Molecular Sciences, 23(16), 9117. https://doi.org/10.3390/ijms23169117